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The effects of "diffusing diffusivity” (DD), a stochastically time-varying diffusion coefficient, are explored
within the frameworks of three different forms of fractional Brownian motion (FBM): (i) the Langevin
equation driven by fractional Gaussian noise (LE-FBM), (ii) the Weyl integral representation introduced by Man-
delbrot and van Ness (MN-FBM), and (iii) the Riemann-Liouville fractional integral representation (RL-FBM)
introduced by Lévy. The statistical properties of the three FBM-generalized DD models are examined, including
the mean-squared displacement (MSD), mean-squared increment (MSI), autocovariance function (ACVF) of
increments, and the probability density function (PDF). Despite the long-believed equivalence of MN-FBM
and LE-FBM, their corresponding FBM-DD models exhibit distinct behavior in terms of MSD and MSI. In
the MN-FBM-DD model, the statistical characteristics directly reflect an effective diffusivity equal to its mean
value. In contrast, in LE-FBM-DD, correlations in the random diffusivity give rise to an unexpected crossover
behavior in both MSD and MSI. We also find that the MSI and ACVF are nonstationary in RL-FBM-DD but
stationary in the other two DD models. All DD models display a crossover from a short-time non-Gaussian
PDF to a long-time Gaussian PDF. Our findings offer guidance for experimentalists in selecting appropriate
FBM-generalized models to describe viscoelastic yet non-Gaussian dynamics in bio- and soft-matter systems
with heterogeneous environments.
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I. INTRODUCTION

Since Robert Brown first observed the erratic motion of
micron-sized granules ejected by pollen grains suspended in
water [1], this phenomenon, now known as Brownian motion
(BM), has been detected in numerous thermal systems and
has significantly influenced conceptual advances in nonequi-
librium statistical physics. A major breakthrough came with
Albert Einstein’s work [2], which provided a statistical inter-
pretation of BM. Einstein proposed that the particle position
increments are independent random variables following a
specific distribution, leading to the prediction of the linear
growth of the mean-squared displacement (MSD) over time
and a Gaussian probability density function (PDF) for the
displacement. Building on similar contributions by William
Sutherland [3], Marian Smoluchowski [4], and Paul Langevin
[5], the theory of Brownian motion was firmly established.
Notably, with the experimental work of Jean Perrin, sophis-
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ticated experiments on Brownian motion allowed to pinpoint
Avogadro’s number and thus lay the foundation for the atomic
theory of matter [6].

With the recent advances in modern measurement tech-
niques, in particular, single particle tracking, anomalous
diffusion with a power-law growth of the MSD [7]

〈x2(t )〉 = 2DHt2H , (1)

where DH is the generalized diffusion coefficient of phys-
ical dimension [DH ] = length2/time2H and H is Hurst or
anomalous diffusion exponent, has been observed across a
wide range of spatiotemporal scales in various physical areas.
Inter alia, these include systems in cellular biology [8–11],
soft matter [12–14], finance [15,16], ecology [17–20], astro-
physics [21], geophysics [22,23], and quantum physics [24].
"Subdiffusion” features anomalous diffusion exponents in the
range 0 < H < 1/2, while "superdiffusion” is realized for
1/2 < H . BM corresponds to the special case H = 1/2, and
H = 1 describes ballistic transport [7,25–29].1

1The Hurst exponent is used here due to its historical connotation
with FBM. In anomalous diffusion literature, another popular nota-
tion uses the anomalous diffusion exponent α = 2H .
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Two prominent processes have proven particularly effec-
tive for the modeling of anomalous diffusion across various
systems. One is the continuous time random walk [30–33]
with randomly distributed waiting times τ between two
successive jumps. When the associated waiting time PDF
ψ (τ ) has the scale-free form ψ (τ ) � τ−1−α with 0 < α <

1 [31–35], the resulting motion is subdiffusive with H =
α/2. The second common anomalous diffusion process is
fractional Brownian motion (FBM), initially introduced by
Kolmogorov [36] and later formalized using stochastic in-
tegrals by Mandelbrot and van Ness [37]. An alternative
formulation for FBM is based on the stochastic Langevin
equation dx(t )/dt = √

2DHξH (t ), which is driven by frac-
tional Gaussian noise with the stationary autocovariance func-
tion (ACVF) 〈ξH (t )ξH (t + τ )〉 ∼ H (2H − 1)τ 2H−2 for τ >

0 and 0 < H � 1. The ACVF is negative ("antipersistent”)
for subdiffusion and positive ("persistent”) for superdiffu-
sion. FBM is widely used to model diffusion in viscoelastic
media [38,39], animal movement patterns [20], serotonergic
brain fiber density profiles [40,41], and roughness in finan-
cial data [42]. FBM was studied under confinement by hard
walls as well as potentials of the generic form V (x) ∝ |x|c
(c > 0), observing distinct non-equilibrium shapes of the
stationary PDF [43–45] as well as multimodal states and non-
confinement in shallow potential [46,47]. More recently, FBM
based on the fractional integral of Riemann-Liouville type
originally introduced by Lévy [37] with nonstationary incre-
ments has garnered significant attention [48–50] in systems
with nonequilibrated initial condition, see also [51].

Diffusion in heterogeneous media displays numerous
anomalous characteristics [52]. In environments with "an-
nealed” disorder,2 the particle’s motion can be described by a
purely time-dependent diffusion coefficient, i.e., its diffusivity
fluctuates over time. Such an annealed heterogeneous dynam-
ics leads to the phenomenon of Brownian yet non-Gaussian
motion, which has been observed in various complex systems
[53–59]. In these processes, while the MSD remains linear
over time, the PDF deviates from the Gaussian form, often
exhibiting a distinct exponential shape that eventually crosses
over to a Gaussian distribution after a characteristic time (not
all experiments have a sufficiently large window to observe
such a crossover). The concept of diffusing diffusivity (DD),
in which the diffusion coefficient of the tracer particle itself
becomes a time-dependent random process, was first proposed
by Chubinsky and Slater [60]. Chechkin et al. [61] intro-
duced a minimal DD model, in which the diffusion coefficient
evolves according to the square of an Ornstein-Uhlenbeck
process. Non-equilibrium initial conditions and other forms of
random diffusivity processes were considered in [62,63]. An
alternative DD formulation was presented by Tyagi and Cher-
ayil [64]. Concurrently, Jan and Sebastian [65,66] formalize
the DD model using a path integral approach.

Viscoelastic and correlated superdiffusive yet non-
Gaussian phenomena have recently been observed in biologi-

2Loosely, we distinguish “quenched” disorder, when the particle
experiences the same diffusivity value each time it revisits the same
site, from annealed disorder, when the value changes at each new
visit [25,74–76].

cal systems [11,12,67–71], motivating the extension of the DD
concept to correlated processes such as FBM. In our earlier
work [72,73], we introduced a minimal FBM-generalized DD
model formulated on the basis of the Langevin equation de-
scription of FBM, exploring various diffusivity protocols. In
particular, unexpected crossovers in the MSD were observed
beyond the correlation time. More recently, FBM based on
Lévy’s Riemann-Liouville formulation with a random dif-
fusivity was analyzed in [48]—in this work, no crossover
behavior in the MSD was found. Despite the similarities
shared by different FBM formulations, the combination with
DD-driven dynamics turns out to affect significant differences.
In this paper, we investigate FBM-generalized models based
on the three representations of FBM and analyze the impact
of the random diffusivity on the statistical dynamics, as quan-
tified by the MSD, MSI, ACVF, and the PDF.

The paper is organized as follows. In Sec. II, we introduce
the physical observables usually evaluated from experimental
data. These will then be employed to characterize the differ-
ent DD models. In Sec. III, we present the three definitions
of FBM in detail and generalize them to FBM-DD models.
In Sec. IV, we present the numerical approach to generate
trajectories of the FBM-DD processes. Then, we present the
statistical characteristics of these three FBM-DD models in
Sec. V, including MSD, MSI, ACVF, and PDF. We summarize
and discuss our results in Sec. VI. We also present a table
summarizing the main results for comparison of the statistical
properties of the three FBM-generalized DD models.

II. PHYSICAL OBSERVABLES

To characterize the average diffusive behavior of tracer par-
ticles, the conventional measurable is the MSD. It is calculated
by averaging over an ensemble of trajectories xi(t ) at time t ,
relative to each particle’s initial position xi(0),

〈x2(t )〉 = 1

N

N∑
i=1

(xi(t ) − xi(0))2, (2)

where N denotes the total number of trajectories.
The MSI, qualifying the displacement-increments during

the lag time � starting at the physical time t , is defined as the
mean-squared of the increment in the form [77]〈

x2
�(t )

〉 = 〈[x(t + �) − x(t )]2〉. (3)

For processes with stationary increments, the MSI equals the
MSD 〈x2(�)〉 [77]. The MSI is equivalent to the structure
function originally introduced by Kolmogorov and Yaglom in
their studies on locally homogeneous and isotropic turbulence
[78–81].

The correlation of increments along an ensemble of time
traces x(t ) can be probed in terms of the ACVF

Cδ (t,�) = δ−2〈xδ (t + �)xδ (t )〉, (4)

with the increment xδ (t ) = x(t + δ) − x(t ). This ACVF is
useful to analyze the nature of the anomalous diffusion in the
unconfined space [7,26].
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III. FBM-GENERALIZED DD MODEL

A. Representations of FBM

In this section, we introduce the three alternative forms of
FBM. They all encode the identical power-law scaling (1) of
the MSD in their original formulation with constant parame-
ters in unconfined space. We then proceed to generalize these
FBM processes by incorporating the DD dynamics of their
diffusivity, modeled as the square of an Ornstein-Uhlenbeck
process.

1. Mandelbrot and van-Ness definition of FBM

The most widely used representation of FBM, introduced
by Mandelbrot and van-Ness (MN-FBM) [37] and often re-
ferred to as "FBM I” in literature [82], is defined for the Hurst
exponent 0 < H < 1 in the form

xMN(t ) =
√

2DHVH

{ ∫ t

0
(t − s)H−1/2dB(s)

+
∫ 0

−∞
[(t − s)H−1/2 − (−s)H−1/2]dB(s)

}
, (5)

where B(t ) denotes a standard Brownian motion and VH is a
constant given by [37,83]

VH =
[

(2H )−1 +
∫ +∞

0
((1 + z)H−1/2 − zH−1/2)2dz

]−1

= �(2H + 1) sin(πH )

�(H + 1/2)2
. (6)

2. Langevin equation formulation of FBM

An alternative formulation of MN-FBM, especially widely
used in physics literature, is defined through the overdamped
Langevin equation, a process we refer to as LE-FBM [37,84],

dxLE(t )

dt
=

√
2DHξH (t ), (7)

for 0 < H � 1. Here, the driving fractional Gaussian noise
has zero mean and ACVF〈

ξ 2
H

〉
�

= 〈ξH (t + �)ξH (t )〉

= 1

2δ2
(|� + δ|2H + |� − δ|2H − 2�2H ). (8)

MN-FBM and LE-FBM are equivalent in the sense that
they exhibiting the same MSD and stationary MSI

〈x2(�)〉LE,MN = 〈
x2
�(t )

〉
LE,MN = 2DH�2H (9)

as well as the same stationary ACVF

Cδ
LE,MN(�) = 2DH

〈
ξ 2

H

〉
�
. (10)

In particular, when � 	 δ, the ACVF has the power-law
decay

Cδ
LE,MN(�) ∼ 2DH H (2H − 1)�2H−2. (11)

3. Riemann-Liouville formulation of FBM

Recently, growing attention has been paid to an alternative
definition of FBM introduced by Lévy [37,85], which is based

on the Riemann-Liouville fractional integral (RL-FBM) and
referred to as the "FBM II” [82]. It is expressed as

x(t ) =
∫ t

0

√
4DH H (t − s)H−1/2dB(s), (12)

for H > 0.
RL-FBM shares the same MSD with MN-FBM and LE-

FBM,

〈x2(�)〉RL = 2DH�2H . (13)

However, the MSI of RL-FBM is nonstationary [77,86]

〈
x2
�(t )

〉
RL = 4DH H�2H

[
IH

(
t

�

)
+ 1

2H

]
, (14)

where the integral IH (z) is given by

IH (z) =
∫ z

0
[(1 + s)H−1/2 − sH−1/2]2ds. (15)

At short times t 
 �, the MSI (14) is approximately identical
to the MSD,

〈x2(�)〉RL ∼ 2DH�2H . (16)

At long times, t 	 �, the value of the integral (14) is
given by

IH

(
t

�

)
+ 1

2H
≈ 1

VH
, (17)

and the MSI becomes approximately stationary in this long-
time limit,

〈
x2
�(t )

〉
RL ∼ 2DH�(H + 1/2)2

�(2H ) sin(πH )
�2H . (18)

It is worthwhile noting that the MSI of RL-FBM exhibits the
same long-time scaling behavior ��2H as the MSD but differs
in its prefactor.

The ACVF of RL-FBM is also nonstationary with the exact
expression [49,77]

Cδ
RL(t,�) = 2DH H (2H − 1)

×
{

3 − 2H

2
�2H−2

∫ t/�

0
qH−1/2(1 + q)H−5/2dq

+ δ−1�2H−1
∫ (t+δ)/�

t/�
qH−1/2(1 + q)H−3/2dq

}
.

(19)

In particular for t = 0 the ACVF reads [77]

Cδ
RL(t,�) ∼ 4DH H (2H − 1)δH−1/2

2H + 1
�H−3/2 (20)

in the limit � 	 δ, and for long times t → ∞, it becomes
stationary with

Cδ
RL(t,�) ∼ 2DH H (2H − 1)�(H + 1/2)2

�(2H )sin(πH )
�2H−2. (21)

For all three models discussed here, when H = 1/2, the
processes reduce to standard BM. As indicated above, the
three definitions are valid for different ranges of the Hurst ex-
ponent H . Namely, for MN-FBM, the Hurst exponent needs to
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be given by 0 < H < 1, ensuring a positive prefactor VH > 0.
For LE-FBM, the Hurst exponent satisfies 0 < H � 1. In the
case of RL-FBM, there are no strict constraints on H > 0. In
this study, we specifically focus on the range 0 < H < 1.

B. Diffusing diffusivity

The random diffusivity D(t ) in the following is assumed to
follow the square of an Ornstein-Uhlenbeck process Y (t ) [61],

D(t ) = Y 2(t ), (22a)

d

dt
Y (t ) = −Y

τ
+ ση(t ), (22b)

where η(t ) is a zero-mean white Gaussian noise with ACVF
〈η(t )η(t ′)〉 = δ(t − t ′), D(t ), and Y (t ) have physical units
[D] = length2/time2H and [Y ] = length/timeH . Moreover, τ

is the correlation or characteristic time of the Ornstein-
Uhlenbeck process, and σ is the noise intensity for D(t ) with
units [σ ] = length/timeH+1/2.

We assume equilibrium initial conditions for Y (t ), i.e.,
Y (0) is taken randomly from the equilibrium distribution

feq(Y ) = 1√
πσ 2τ

exp

(
− Y 2

σ 2τ

)
. (23)

Thus, the process Y (t ) is stationary with the effective diffusiv-
ity [61]

〈D〉 = 〈Y 2〉 = σ 2τ

2
. (24)

The second significant characteristic of the process D(t ) is
the correlation function of the square root of D(t ) given by
[72]

K (�) = 〈
√

D(t )D(t + �)〉

= σ 2τ

π

[√
1 − e−2�/τ

+ e−�/τ arctan

(
e−�/τ

√
1 − e−2�/τ

)]
. (25)

When time is much shorter than the characteristic time, � 

τ , the diffusivity does not vary much and thus we have

〈D〉 = lim
�→0

K (�) = σ 2τ

2
. (26)

When time is much longer than the characteristic time � 	 τ ,
the correlations of the diffusivity decay exponentially. For this
approximate independence, we then have

Keff = lim
�→∞

K (�) = 〈|Y (t )|〉2 = σ 2τ

π
. (27)

1. Diffusing-diffusivity-generalized FBM

We are now ready to define the three DD-generalized FBM
models via introducing the DD dynamics (22) based on the
three FBM representations.

MN-FBM-DD. Combining the definition (5) of MN-FBM
with the DD dynamics (22), we obtain the MN-FBM-DD

model:

xMN(t ) =
∫ t

0

√
2VH D(s)(t − s)H−1/2dB(s) +

∫ 0

−∞

√
2VH D(s)

× [(t − s)H−1/2 − (−s)H−1/2]dB(s). (28)

In this case, the dynamics of the DD D(t ) is assumed to be at
equilibrium at all times t , including t � 0.

LE-FBM-DD. Adding the DD dynamics to the LE-FBM
model (7) leads us to the LE-FBM-DD model

dxLE(t )

dt
=

√
2D(t )ξH (t ). (29)

RL-FBM-DD. Finally, from the definition (9) of RL-FBM
together with the DD dynamics, we find the RL-FBM-DD
process

xRL(t ) =
∫ t

0

√
4HD(s)(t − s)H−1/2dB(s). (30)

IV. SIMULATIONS SETUP

The discrete-time diffusivity D(tn) = Y 2(tn) at time tn =
n × δt , where δt is the time step, can be generated from the
discretized Ornstein-Uhlenbeck process (22b),

Y (tn) − Y (tn−1) = − 1

τ
Y (tn−1)δt + ση(tn−1)δt, (31)

where η(tn) = ηn/
√

δt and ηn is a normally distributed ran-
dom variable with zero mean and unit variance. In practice,
the discretized form (31) serves as an approximate method to
simulate the Ornstein-Uhlenbeck process (22b) for small time
steps. For any time step, an exact formula exists, as detailed
in [87,88], given by

Y (tn) = Y (tn−1)e−δt/τ + ηn

[
σ 2τ

2
(1 − e−2δt/τ )

]1/2

. (32)

It can be shown that when δt 
 τ , Eq. (32) reduces, to
first order in δt , to the approximate update formula (31). It
is important to highlight that our study focuses on systems
characterized by a well-defined characteristic timescale, i.e.,
τ 	 δt , implying that the first-order approximation in δt for
simulating the Ornstein-Uhlenbeck process (22b) is sufficient
to accurately reproduce the statistical properties of the diffu-
sivity (22a) and ensures full consistency with our theoretical
predictions.

LE-FBM-DD. For the LE-FBM-DD model, we discretize
the Langevin equation (29) such that

xLE(tn) − xLE(tn−1) =
√

2D(tn−1)ξH (tn−1)δt, (33)

where ξH (tn) = ξH,n/(δt )1−H and ξH,n is the discrete sequence
of fractional Gaussian noise with zero mean and unit variance,
which can be generated from standard approaches [89–91]. In
this paper, we employ the Wood-Chan method [92] due to its
rapid simulation times achieved by using the discrete Fourier
transformation.

RL-FBM-DD. For the RL-FBM-DD model, a direct ap-
proach to discretize the stochastic integral may be adopted in
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the form

xRL(tn) =
n−1∑
i=0

√
4HD(ti )η(ti )δt × (tn − ti )

H−1/2. (34)

Typically, this direct approach is not very accurate for unveil-
ing the scaling of statistical quantities when H < 1/2 as the
weight w(tn − ti ) = (tn − ti )H−1/2 becomes excessively large
when tn − ti is small.

Instead, we discretize the stochastic integral in the form

xRL(tn) =
n−1∑
i=0

∫ ti+1

ti

√
4HD(s)(tn − s)H−1/2η(s)ds. (35)

A simple approach can be applied when D(s) ≈ D(ti ) and
η(s) ≈ η(ti ) within the short-time interval [ti, ti+1]. In this
case, we get

xRL(tn) =
n−1∑
i=0

√
4HD(ti )η(ti )

∫ ti+1

ti

(tn − s)H−1/2ds

=
n−1∑
i=0

√
4HD(ti )η(ti )δt

× (tn − ti )H+1/2 − (tn − ti+1)H+1/2

(H + 1/2)δt
. (36)

This form ensures that the power-law weight does not have
any singularity. Alternatively, the weight function

w(tn − ti ) =
[

(tn − ti )2H − (tn − ti+1)2H

2Hδt

]1/2

(37)

can be applied [93] to improve the prediction of the variance
scaling properties; in our simulations, we adopt this protocol.

MN-FBM-DD. In analogy to the RL-FBM-DD model, for
the MN-FBM-DD model, the discrete strategy can be formu-
lated as

xMN(tn) =
n−1∑

i=−na

√
2VH D(ti )η(ti )δt × w(tn − ti )

−
0∑

j=−na

√
2VH D(t j )η(t j )δt × w(−t j ). (38)

In practice, choosing na = (T/δt )3/2 is sufficient [90,91].

V. STATISTICAL PROPERTIES OF THE
DD-GENERALIZED FBM MODELS

A. MSD

LE-FBM-DD. The MSD of LE-FBM-DD model (29) was
analyzed in [72], finding

〈x2(t )〉LE = 4
∫ t

0
(t − s)K (s)

〈
ξ 2

H

〉
sds. (39)

Here K (s) and 〈ξ 2
H 〉s are given by Eqs. (25) and (8). Expres-

sion (39) reveals an intriguing crossover behavior: at short
times t 
 τ , the MSD reads

〈x2(t )〉LE ∼ 4K (0)
∫ t

0
(t − s)

〈
ξ 2

H

〉
s
ds ∼ 2〈D〉t2H . (40)

However, at long times t 	 τ , different behaviors are emerg-
ing. For superdiffusion (H > 1/2), the MSD the scaling is
identical to the short-time scaling, but with a different pref-
actor,

〈x2(t )〉LE ∼ 2Kefft
2H . (41)

In contrast, for subdiffusion (H < 1/2), the MSD crosses over
to normal diffusion

〈x2(t )〉LE ∼ 2Defft . (42)

Here, the effective diffusion coefficient Keff is given by
Eq. (27), and Deff corresponds to the form

Deff = 2
∫ ∞

0
K (s)

〈
ξ 2

H

〉
sds. (43)

Analytically determining the exact diffusion coefficient Deff is
not feasible, but it was proved that they possess a finite value
for H < 1/2 [72].

MN-FBM-DD. The MSD of the MN-FBM-DD (28) can be
expressed as

〈x2(t )〉MN = 2VH 〈D〉
{ ∫ t

0
(t − s)2H−1ds

+
∫ 0

−∞
[(t − s)H−1/2 − (−s)H−1/2]2ds

}
.

(44)

The variable transform z = −s/t in Eq. (44) then yields

〈x2(t )〉MN = 2VH 〈D〉t2H

{ ∫ 1

0
(1 − z)2H−1dz

+
∫ +∞

0
[(1 + z)H−1/2 − zH−1/2]2dz

}

= 2〈D〉t2H . (45)

RL-FBM-DD. Similarly, we obtain the MSD of the RL-
FBM-DD model (30),

〈x2(t )〉RL = 4H〈D〉
∫ t

0
(t − s)2H−1ds

= 2〈D〉t2H , (46)

which is identical to result (45) for MN-FBM-DD.
Although the classic FBM based on the three representa-

tions analyzed here has the same MSD, the DD-generalized
FBM models exhibit significantly different behaviors: the
MSDs of the MN-FBM-DD and RL-FBM-DD models con-
tinuously evolve with a power-law scaling of t2H for all Hurst
exponents, with an effective generalized diffusion coefficient
equal to the mean diffusivity; in contrast, for the LE-FBM-
DD model the MSD exhibits a crossover from the short-time
scaling �t2H to the long-time behavior �t for subdiffusion.
The simulations of the MSD for all three models are presented
in Fig. 1 and show excellent agreement with the theoretical
results.
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(a)

(b)

FIG. 1. Simulations (circles, triangles, and rectangles) for the
MSD of the three DD-generalized FBM models with (a) H = 0.8
and (b) H = 0.2. The numerical evaluation of the MSD (39) of the
LE-FBM-DD model (29) is depicted by the red solid curve. The gen-
eralized diffusion coefficients are displayed in the inset. In panel (a),
the MSD of all models shows the same scaling, and the generalized
diffusion coefficient 〈x2(t )〉/t2H of the LE-FBM-DD has a crossover
from 2〈D〉 = 1 to 2Keff = 2/π , represented by dash-dotted lines.
In panel (b), the MSD of the LE-FBM-DD model switches from
2〈D〉t2H at short times to normal diffusion, 2Deff t at long times, while
the MSD of the MN-FBM-DD and RL-FBM-DD models scale �t2H

at all times. Simulation parameters: τ = 1, σ = 1, dt = 0.1, and
T = 100. These parameters are consistently kept across all figures,
unless stated otherwise.

B. MSI

LE-FBM-DD. The MSI of the LE-FBM-DD (29) model,

〈
x2
�(t )

〉
LE = 4

∫ �

0
(� − s)K (s)

〈
ξ 2

H

〉
s
ds, (47)

has the same expression as the MSD (39) and is stationary, i.e.,
solely depending on the lag time �. At short times, � 
 τ ,
the MSD behaves as 〈

x2
�(t )

〉 ∼ 2〈D〉�2H . (48)

At long times we find

〈
x2
�(t )

〉
LE =

{
2Deff�, H < 1/2
2Keff�

2H , H > 1/2
. (49)

The effective diffusion coefficients Keff for superdiffusive and
Deff for subdiffusive H are given by expressions (27) and (43),
respectively.

MN-FBM-DD. The MSI of the MN-FBM-DD (28) model
reads〈

x2
�(t )

〉
MN = 2VH 〈D〉

{ ∫ t+�

t
(t + � − s)2H−1ds +

∫ t

−∞

×[(t + � − s)H−1/2 − (t − s)H−1/2]2ds

}
.

(50)

With the variable transform z = s − t , the same expression as
(45) for the MSD of MN-FBM-DD can be obtained,

〈
x2
�(t )

〉
MN = 2VH 〈D〉

{ ∫ �

0
(� − z)2H−1dz

+
∫ 0

−∞
[(� − z)H−1/2 − (−z)H−1/2]2dz

}
,

(51)

which leads to the stationary MSI〈
x2
�(t )

〉
MN = 2〈D〉�2H . (52)

RL-FBM-DD. The MSI of RL-FBM (14) was analyzed in
[77,86]. Here, we obtain the MSI of the RL-FBM-DD model
in the form

〈
x2
�(t )

〉
RL = 4H〈D〉�2H

{
IH

(
t

�

)
+ 1

2H

}
. (53)

At short times t 
 �, the MSI of RL-FBM-DD is identical to
the MSD (46), 〈

x2
�(t )

〉
RL ∼ 2〈D〉�2H . (54)

At long times t 	 �, the MSI reads

〈
x2
�(t )

〉
RL ∼ 2〈D〉�(H + 1/2)2

�(2H ) sin(πH )
�2H . (55)

From the MSIs of MN-FBM-DD and RL-FBM-DD,
Eqs. (52) and (53), respectively, we find that the random
diffusivity for MN-FBM-DD and RL-FBM-DD effects an
effective diffusion coefficient. A crossover behavior similar to
that observed in the MSD also appears in the MSI of the LE-
FBM-DD model given by (47). We also note that the MSI is
stationary in the LE-FBM-DD and MN-FBM-DD models but
nonstationary in the RL-FBM-DD model. Figure 2 compares
the results from simulations with the theoretical results for the
MSI.

C. ACVF

LE-FBM-DD. The stationary ACVF of the LE-FBM-DD
model (29) is given by

Cδ
LE(t,�) = 2〈

√
D(t )

√
D(t + �)〉〈ξH (t )ξH (t + �)〉

= 2K (�)
〈
ξ 2

H

〉
�
. (56)
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(a)

(b)

FIG. 2. Simulations (circles, triangles, and rectangles) for the
MSIs with starting time t = 10 of the three DD-generalized FBM
models with (a) H = 0.8 and (b) H = 0.2. The numerical evaluations
of the MSIs (47) and (53) of LE-FBM-DD (29) and RL-FBM-DD
(30) are represented by red and green curves, respectively. The gen-
eralized diffusion coefficients 〈x2(t )〉/t2H are displayed in the inset.
In panel (a) for the superdiffusive case, the MSIs of all models have
the same scaling; the LE-FBM-DD-MSI has a crossover behavior in
the prefactor of the MSI from 2〈D〉 = 1 to 2Keff = 2/π , while for
RL-FBM-DD it crosses over from 2〈D〉�(H+1/2)2

�(2H ) sin(πH ) to 2〈D〉 = 1. In panel
(b) for the subdiffusive case, the MSI of the LE-FBM-DD switches
from 2〈D〉�2H at short times to normal diffusion 2Deff� at long
times.

The correlation K (�) in Eq. (25) can be expanded at large lag
times � 	 τ up to second order, leading to

K (�) ∼ σ 2τ (π−1 + e−2�/τ ), (57)

from which the ACVF reads

Cδ
LE(�) ∼ 2σ 2τ

[
π−1〈ξ 2

H 〉� + e−2�/τ
〈
ξ 2

H

〉
�

]
. (58)

This expression elucidates nicely the a priori unexpected
crossover behavior in the MSD: The first part, proportional
to the correlations of the fractional Gaussian noise, leads to
anomalous diffusion characterized by the scaling �t2H in
the MSD at long times whereas the second part, governed

by the truncated power-law noise correlation, contributes the
normal-diffusive scaling �t1 at long times [84]. Especially,
when H < 1/2, the linear MSD component dominates.

MN-FBM-DD. To obtain the ACVF of the MN-FBM-DD
model (28), the correlation of the displacement must be con-
sidered, given by

〈xMN(t + �)xMN(t )〉 = 〈D〉((t + �)2H + t2H − �2H ). (59)

Substituting the correlation of the displacement into expres-
sion (4), one obtains the stationary ACVF

Cδ
MN(t,�) = 2〈D〉〈ξ 2

H

〉
�
. (60)

In comparison with the ACVF of MN-FBM (10), the ACVF
of the MN-FBM-DD model directly reflects an effective dif-
fusion coefficient equal to the mean diffusivity.

RL-FBM-DD. Analogously, the ACVF of the RL-FBM-
DD model (30) turns out to be equal to that of RL-FBM with
an effective diffusion coefficient,

Cδ
RL(t,�) = 2〈D〉H (2H − 1)

×
{

3 − 2H

2
�2H−1

∫ t/�

0
qH−1/2(1 + q)H−5/2dq

+ δ−1�2H−1
∫ (t+δ)/�

t/�
qH−1/2(1 + q)H−3/2dq

}
.

(61)

Specifically, when t = 0, the approximate ACVF with � 	 δ

of RL-FBM-DD is

Cδ
RL(t,�) ∼ 4〈D〉H (2H − 1)δH−1/2

2H + 1
�H−3/2. (62)

When t → ∞, we find

Cδ
RL(t,�) ∼ 2〈D〉H (2H − 1)�(H + 1/2)2

�(2H )sin(πH )
�2H−2. (63)

To conclude this part, the correlations (25) of the random
diffusivity emerges in the ACVF (56) of LE-FBM-DD, af-
fecting the unexpected crossover behavior in the MSD and
MSI. In contrast, the ACVF reflects the effective diffusion co-
efficient 〈D〉 for MN-FBM-DD and RL-FBM-DD, Eqs. (60),
(62), and (63). Moreover, the ACVF is stationary for both LE-
FBM-DD and MN-FBM-DD models, while it is nonstationary
in the RL-FBM-DD model. The simulations for the ACVF are
shown in Fig. 3.

D. PDF

Given that at short times t 
 τ the diffusivity following
the Ornstein-Uhlenbeck dynamics changes little over time,
single trajectories of all the three models behave as the cor-
responding FBM with constant diffusivity, and the PDFs can
be described by a superstatistical approach [94], i.e., can be
obtained as the average of a single Gaussian, with a given
diffusivity, over the stationary diffusivity distribution. Using
the same technique as in [61,72] the PDF of all three models
at short times yields in the form

P(x, t ) = 1

π
√
M(t )ST

K0

( |x|√
M(t )ST

)
, (64)
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(a)

(b)

FIG. 3. Simulations (circles, triangles, rectangles) for the ACVF
with H = 0.8 and starting times (a) t = 0 and (b) t = 100 for the
three DD-generalized FBM models. In panel (a), the ACVF of LE-
FBM-DD and MN-FBM-DD decay as ��2H−2, while the ACVF of
the RL-FBM-DD model has the scaling ��H−3/2 when t = 0. In
panel (b), the ACVF of all models has the same scaling ��2H−2 at
long times, t = 100.

where M(t )ST is the MSD of the three DD-generalized FBM
models (39), (45), and (46) at short times. Moreover, K0

denotes the modified Bessel function of the second kind.
In particular, for the relevant large displacements ensuring
z = |x|/√M(t )ST 	 1, the Bessel function has the expansion
K0 ∼ √

π/(2z)e−z, and thus the PDF can be approximated as

P(x, t ) ∼ 1√
2π |x|M(t )1/2

ST

exp

(
− |x|√

M(t )ST

)
. (65)

At long times, the Gaussian limit is recovered due to the
central limit theorem for all three models,

P(x, t ) ∼ 1√
2πM(t )LT

exp

(
− x2

2M(t )LT

)
, (66)

where M(t )LT is the MSD of the three DD-generalized FBM
models (39), (45), and (46).

(a)

(b)

FIG. 4. Simulations (circles, triangles, and rectangles) for the
PDF of three DD-generalized FBM models with (a) H = 0.8 and
(b) H = 0.2. The theoretical results (65) and (66) for the PDF at short
and long times, respectively, are represented by the colored solid and
dashed curves.

The comparison of simulations and theoretical results for
the PDFs are shown in Fig. 4. We note that when evaluating
the short-time exponential PDF (65) for H = 0.2 [solid curve
in Fig. 4(b)], the numerical result at t = 0.5 appears to diverge
from the theoretical prediction, in particular around x = 0.
This discrepancy is not observed for H = 0.8, as illustrated
in Fig. 4(a). The reason for this lies in the validity range of the
short-time exponential tail approximation (65), i.e.,

|x| 	
√

2〈D〉tH , (67)

which holds for times t 
 1. This approximation at short
times is based on the asymptotic form of the modi-
fied Bessel function of the second kind K0(z) for large
z = |x|/√M(t )ST = |x|/

√
2〈D〉t2H 	 1 in Eq. (64). Conse-

quently, for a fixed short time t , the condition (67) for the
validity of the approximation is better satisfied for H > 1/2
than for H < 1/2, making deviations from simulations neg-
ligible in the former case. However, when t 	 1, there is no
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TABLE I. Comparison of the statistical properties of the three FBM-generalized DD models: LE-FBM-DD, MN-FBM-DD, and RL-FBM-
DD.

LE-FBM-DD MN-FBM-DD RL-FBM-DD

〈x2(t )〉 Short time: ∼2〈D〉t2H , Eq. (40) 2〈D〉t2H , Eq. (45) 2〈D〉t2H , Eq. (46)

Long time (H > 1/2): ∼2Kefft2H , Eq.(41)

Long time (H < 1/2): ∼2Deff t , Eq. (42)

〈x2
�(t )〉 Stationary: Stationary: Nonstationary:

Short lag time: ∼2〈D〉�2H , Eq. (48) 2〈D〉�2H , Eq. (52) 4H〈D〉[IH ( t
�

) + 1
2H ]�2H , Eq. (53)

Long lag time (H > 1/2): ∼2Keff�
2H , Eq. (49) Short time: ∼2〈D〉�2H , Eq. (54)

Long lag time (H < 1/2): ∼2Deff�, Eq. (49) Long time: ∼ 2〈D〉�(H+1/2)2

�(2H ) sin(πH ) �2H , Eq. (55)

Cδ (t,�) Stationary: Stationary: Nonstationary: Eq. (61)

2K (�)〈ξ 2
H 〉�, Eq. (56) 2〈D〉〈ξ 2

H 〉�, Eq. (60) t = 0: ∼ 4〈D〉H (2H−1)δH−1/2

2H+1 �H−3/2, Eq. (62)

t → ∞: ∼ 2〈D〉H (2H−1)�(H+1/2)2

�(2H )sin(πH ) �2H−2, Eq. (63)

obvious deviation between the long-time asymptotic PDF (66)
and the simulations when varying H .

VI. DISCUSSION AND CONCLUSIONS

We examined the statistical properties of the DD-
generalizations based on the three representations of FBM:
LE-FBM, MN-FBM, and RL-FBM. The main results are sum-
marized in Table I. With constant coefficients, both LE-FBM
and MN-FBM are equivalent, with stationary increments,
whereas RL-FBM has nonstationary increments. However,
when introducing the DD dynamics, the affected dynamics
of the DD-generalized FBM processes differ significantly.
The MN-FBM-DD and RL-FBM-DD models share the same
MSD, MSI, and ACVF with their corresponding FBM mod-
els, scaled by an effective diffusivity equal to the mean
value. In contrast, the LE-FBM-DD model is influenced more
severely by the diffusivity correlations, leading to a priori
unexpected crossovers in the scaling behaviors of the MSD
and MSI. Additionally, both MN-FBM-DD and LE-FBM-DD
exhibit stationary properties, whereas RL-FBM-DD does not.
All DD-generalized FBM models demonstrate a crossover in
the PDF, crossing over from a short-time non-Gaussian to a
long-time Gaussian shape.

The crossover behavior in the scaling of both MSD and
MSI observed for the LE-FBM-DD model can be generally
predicted by the correlation of the DD dynamics following
the squared OU process,

K (� = |t1 − t2|) = 〈
√

D(t1)
√

D(t2)〉 ∼ c1 + c2e−�/τ ,(68)

where c1, c2 > 0. A similar behavior was also observed when
the random diffusivity follows a Markovian switching behav-
ior ("two-state model”) between the two values D1, D2 with
rate k1 and k2 [72]. This model is also in equilibrium and has
correlations with c1, c2 > 0. Moreover, for other protocols of
the diffusivity, no crossover behavior will be observed when
c1 > 0 and c2 = 0, e.g., the diffusivity is considered to be a
random variable, while the crossover behavior from anoma-
lous to normal diffusion occurs for all H when c1 = 0 and
c2 > 0, e.g., in the Tyagi-Cherayil model [64] defined by the
Langevin dynamics dx/dt = √

2Y (t )ξH (t ) [72].

Over the recent years, extensive data from modern sin-
gle particle tracking and supercomputing studies in complex
systems, e.g., bio-relevant systems, demonstrated that the ob-
served dynamics is often more complicated and can no longer
be described by individual (anomalous) diffusion processes.
Classical statistical observables [95–98], Bayesian statistics
[99–101], or deep learning-based analyses [102–109] provide
quite reliable means to decipher the (anomalous) diffusive
process(es) underlying the data. To provide an ever bet-
ter body of models for such analyses, the DD-generalized
FBM models discussed here should be added to these
algorithms.

We anticipate that our results will prompt research on a
deeper understanding of how heterogeneity influences diffu-
sion transport phenomena. Several intriguing issues warrant
further exploration. For instance, FBM with DD considered to
be non-Markovian state-switching has been recently studied
in [110], and the system remains non-Gaussian across all
time scales, underscoring the role of heavy-tailed distributions
in shaping the statistical properties of diffusion processes.
Similar persistent non-Gaussian behavior was also found for
particles with DD in a confined harmonic potential [111].
Recent single-particle-tracking experiments revealed that in-
tracellular transport of endo- and exogenous tracers of various
sizes is often not only anomalous, but also heterogeneous in
time and space. This implies that a single diffusion expo-
nent of standard anomalous-diffusion models is insufficient
to describe the underlying physical phenomena. The DD-
generalized FBM model, for which the anomalous diffusion
exponent depends on time or space, deserves to be investi-
gated. Additional aspects, such as the first passage dynamics
[112,113] and resetting dynamics [114,115] should also be
explored. Finally, another intriguing direction of the research
could be to study universal singularities of the three models
with random diffusion exponents along the concepts devel-
oped in [116,117].
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[51] J. Ślęzak and R. Metzler, Minimal model of diffusion with
time changing Hurst exponent, J. Phys. A 56, 35LT01
(2023).

[52] T. A. Waigh and N. Korabel, Heterogeneous anomalous trans-
port in cellular and molecular biology, Rep. Prog. Phys. 86,
126601 (2023).

[53] B. Wang, J. Kuo, S. C. Bae, and S. Granick, When Brownian
diffusion is not Gaussian, Nat. Mater. 11, 481 (2012).

[54] B. Wang, S. M. Anthony, S. C. Bae, and S. Granick, Anoma-
lous yet Brownian, Proc. Natl. Acad. Sci. USA 106, 15160
(2009).

[55] J. M. Miotto, S. Pigolotti, A. V. Chechkin, and S. Roldán-
Vargas, Length scales in Brownian yet non-Gaussian dynam-
ics, Phys. Rev. X 11, 031002 (2021).

[56] A. Alexandre, M. Lavaud, N. Fares, E. Millan, Y. Louyer,
T. Salez, Y. Amarouchene, T. Guérin, and D. S. Dean, Non-
Gaussian diffusion near surfaces, Phys. Rev. Lett. 130, 077101
(2023).

[57] F. Rusciano, R. Pastore, and F. Greco, Fickian Non-Gaussian
diffusion in glass-forming liquids, Phys. Rev. Lett. 128,
168001 (2022).

[58] I. Chakraborty and Y. Roichman, Disorder-induced Fickian yet
non-Gaussian diffusion in heterogeneous media, Phys. Rev.
Res. 2, 022020(R) (2020).

[59] S. Nampoothiri, E. Orlandini, F. Seno, and F. Baldovin, Brow-
nian non-Gaussian polymer diffusion and queuing theory in
the mean-field limit, New J. Phys. 24, 023003 (2022).

[60] M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: A
model for anomalous, yet Brownian, diffusion, Phys. Rev.
Lett. 113, 098302 (2014).

[61] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,
Brownian yet non-Gaussian diffusion: From superstatistics
to subordination of diffusing diffusivities, Phys. Rev. X 7,
021002 (2017).

[62] V. Sposini, A. V. Chechkin, F. Seno, G. Pagnini, and
R. Metzler, Random diffusivity from stochastic equations:
comparison of two models for Brownian yet non-Gaussian
diffusion, New J. Phys. 20, 043044 (2018).

[63] V. Sposini, D. S. Grebenkov, R. Metzler, G. Oshanin, and
F. Seno, Universal spectral features of different classes of
random diffusivity processes, New J. Phys. 22, 063056
(2020).

[64] N. Tyagi and B. J. Cherayil, Non-Gaussian Brownian diffu-
sion in dynamically disordered thermal environments, J. Phys.
Chem. B 121, 7204 (2017).

[65] R. Jain and K. L. Sebastian, Lévy flight with absorption: A
model for diffusing diffusivity with long tails, Phys. Rev. E
95, 032135 (2017).

[66] R. Jain and K. L. Sebastian, Diffusion in a crowded, rearrang-
ing environment, J. Phys. Chem. B 120, 3988 (2016).

[67] T. J. Lampo, S. Stylianidou, M. P. Backlund, P. A. Wiggins,
and A. J. Spakowitz, Cytoplasmic RNA-protein particles ex-
hibit non-Gaussian subdiffusive behavior, Biophys. J. 112, 532
(2017).

[68] W. He, H. Song, Y. Su, L. Geng, B. J. Ackerson, H. B. Peng,
and P. Tong, Dynamic heterogeneity and non-Gaussian statis-
tics for acetylcholine receptors on live cell membrane, Nat.
Commun. 7, 11701 (2016).

[69] S. Thapa, N. Lukat, C. Selhuber-Unkel, A. G. Cherstvy, and
R. Metzler, Transient superdiffusion of polydisperse vacuoles
in highly motile amoeboid cells, J. Chem. Phys. 150, 144901
(2019).

[70] A. G. Cherstvy, O. Nagel, C. Beta, and R. Metzler, Non-
Gaussianity, population heterogeneity, and transient superdif-
fusion in the spreading dynamics of amoeboid cells, Phys.
Chem. Chem. Phys. 20, 23034 (2018).

014108-11

https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1137/1010093
https://doi.org/10.1529/biophysj.106.099267
https://doi.org/10.1103/PhysRevLett.104.238102
https://doi.org/10.3389/fncom.2020.00056
https://doi.org/10.3389/fncom.2023.1189853
https://doi.org/10.1080/14697688.2017.1393551
https://doi.org/10.1088/1367-2630/ab075f
https://doi.org/10.1103/PhysRevE.97.020102
https://doi.org/10.1103/PhysRevE.102.032108
https://doi.org/10.1088/1751-8121/ac019b
https://doi.org/10.1088/1367-2630/ac7b3c
https://doi.org/10.1103/PhysRevE.110.014105
https://doi.org/10.1103/PhysRevResearch.5.L032025
https://doi.org/10.1088/1367-2630/ad00d7
https://doi.org/10.1088/1751-8121/acecc7
https://doi.org/10.1088/1361-6633/ad058f
https://doi.org/10.1038/nmat3308
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1103/PhysRevX.11.031002
https://doi.org/10.1103/PhysRevLett.130.077101
https://doi.org/10.1103/PhysRevLett.128.168001
https://doi.org/10.1103/PhysRevResearch.2.022020
https://doi.org/10.1088/1367-2630/ac4924
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/ab9200
https://doi.org/10.1021/acs.jpcb.7b03870
https://doi.org/10.1103/PhysRevE.95.032135
https://doi.org/10.1021/acs.jpcb.6b01527
https://doi.org/10.1016/j.bpj.2016.11.3208
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1063/1.5086269
https://doi.org/10.1039/C8CP04254C


WANG, WEI, CHECHKIN, AND METZLER PHYSICAL REVIEW E 112, 014108 (2025)

[71] A. Díez Fernández, P. Charchar, A. G. Cherstvy, R. Metzler,
and M. W. Finnis, The diffusion of doxorubicin drug
molecules in silica nanochannels is non-Gaussian and inter-
mittent, Phys. Chem. Chem. Phys. 22, 27955 (2020).

[72] W. Wang, F. Seno, I. M. Sokolov, A. V. Chechkin, and
R. Metzler, Unexpected crossovers in correlated random-
diffusivity processes, New J. Phys. 22, 083041 (2020).

[73] W. Wang, A. G. Cherstvy, A. V. Chechkin, S. Thapa, F. Seno,
X. Liu, and R. Metzler, Fractional Brownian motion with
random diffusivity: emerging residual nonergodicity below the
correlation time, J. Phys. A: Math. Theor. 53, 474001 (2020).

[74] L. Luo and M. Yi, Non-Gaussian diffusion in static disordered
media, Phys. Rev. E 97, 042122 (2018).

[75] L. Luo and M. Yi, Quenched trap model on the extreme land-
scape: The rise of subdiffusion and non-Gaussian diffusion,
Phys. Rev. E 100, 042136 (2019).

[76] S. Park, X. Durang, R. Metzler, and J.-H. Jeon, Fickian yet
non-Gaussian diffusion in an annealed heterogeneous environ-
ment, arXiv:2503.15366.

[77] Q. Wei, W. Wang, Y. Tang, R. Metzler, and A. Chechkin,
Fractional Langevin equation far from equilibrium: Riemann-
Liouville fractional Brownian motion, spurious nonergodicity,
and aging, Phys. Rev. E 111, 014128 (2025).

[78] A. N. Kolmogorov, The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers, Dokl.
Akad. Nauk. SSSR 30, 301 (1941).

[79] A. N. Kolmogorov, Dissipation of energy in locally isotropic
turbulence, Dokl. Akad. Nauk. SSSR 32, 19 (1941).

[80] A. M. Yaglom, and M. S. Pinsker, Random process with sta-
tionary increments of order n, Dokl. Akad. Nauk. SSSR 90,
731 (1953).

[81] A. M. Yaglom, Correlation Theory of Stationary and Related
Random Functions, Vol. 1, Basic Results, Vol. 2, Supplemen-
tary Notes and References (Springer, New York, 1987).

[82] D. Marinucci and P. M. Robinson, Alternative forms of
fractional Brownian motion, J. Statist. Plan. Infer. 80, 111
(1999).

[83] M. Balcerek, K. Burnecki, S. Thapa, A. Wyłomańska, and
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[103] H. Seckler, J. Szwabiński, and R. Metzler, Machine-learning
solutions for the analysis of single-particle diffusion trajecto-
ries, J. Phys. Chem. Lett. 14, 7910 (2023).

[104] C. Manzo, Extreme learning machine for the characterization
of anomalous diffusion from single trajectories (AnDi-ELM),
J. Phys. A: Math. Theor. 54, 334002 (2021).

[105] H. Seckler and R. Metzler, Bayesian deep learning for error es-
timation in the analysis of anomalous diffusion, Nat. Commun.
13, 6717 (2022).

[106] P. Kowalek, H. Loch-Olszewska, and J. Szwabiński, Classi-
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