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I. Derivation of the ACVF Eq. (2)

Let us start with the spectral representation of FBM given by Eq. (1) in the main text with H(t) = H = constant.
The MSD is then given as
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∫ ∞

−∞

(
eiωt − 1

) (
e−iωt − 1

)
|ω|2H+1

dω = 4C2(H)

∫ ∞

0

1 − cosωt

ω2H+1
dω

=
π

HΓ(2H) sin(πH)
C2(H)t2H =

2π

Γ(2H + 1) sin(πH)
C2(H)t2H . (1)

Thus, imposing ⟨B2
H(t)⟩ = t2H gives the expression for C(H) as
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. (2)

The autocovariance function (ACVF) for FBM calculated from the spectral representation thus takes the form

⟨BH(t1)BH(t2)⟩ = C2(H)
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Let us consider Eq. (1) of the main text and calculate the ACVF conditional on H(t):

⟨BH(t1)(t1)BH(t2)(t2)⟩ = C(H(t1))C(H(t2))
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Now let’s fix t1 and t2, and introduce H = (H(t1) + H(t2))/2. Then we can write (see Eq. (3))∫ ∞
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where C(H) is given by Eq. (2). After plugging Eq. (5) into Eq. (4) we get

⟨BH(t1)(t1)BH(t2)(t2)⟩ =
C(H(t1))C(H(t2))
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×
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]
. (6)

Thus we arrive at Eq. (2) in the main text.

∗ thapa@pks.mpg.de



2

II. Beta distribution as the stationary PDF for smoothed telegraph process

Let us obtain the stationary PDF of the process governed by the Langevin equation

dx

dt
= f(x) + ξ(t), (7)

where f is a deterministic function and ξ(t) is a telegraph process, i.e. a stationary dichotomic Markov process that
jumps between two values c1 and c2, c1 < c2, with mean rates λ(c1 → c2) = λ12 and λ(c2 → c1) = λ21. The mean
and the ACVF of ξ are given respectively by

⟨ξ⟩ =
1

2λ
(λ12c2 + λ21c1) (8)

and

⟨ξ(t)ξ(t′)⟩ = ⟨ξ⟩2 +
λ12λ21(c2 − c1)2

4λ2
exp (−2λ|t− t′|), (9)

where λ = (λ12 + λ21)/2.
Here we employ the approach and notations used in [1]. Let’s introduce the “microscopic density”,

ρ(x, t) = δ(x− x(t)), (10)

which obeys the equation

∂ρ

∂t
+

∂

∂x
[(f(x) + ξ(t))ρ] = 0. (11)

Introducing p(x, t) = ⟨δ(x− x(t))⟩ and averaging Eq. (11) one gets

∂p
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∂
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∂p1
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= 0, (12)

where p1(x, t) = ⟨ξ(t)ρ⟩. Following [1] and using the “formula of differentiation” [2], we arrive at
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Now we consider f(x) = −γx where γ is constant, and after some transformations of Eqs. (12) and (13) we arrive
at the following closed equation for p
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We are looking for the stationary solution of Eq. (14). Putting ∂p
∂t = 0, and then integrating with respect to x we

obtain the particular solution as

p(x) = N
(
x− c1

γ

)λ12
γ −1 (

c2
γ

− x

)λ21
γ −1

,
c1
γ

< x <
c2
γ
, (15)

where N is the normalization constant. To go back to our notations in the main text, we change c1,2/γ → H1,2,
γ → τ−1 and arrive at the beta distribution presented in Eq. (6) of the main text.

Fig. 1 shows how the flexibility of beta distribution can be leveraged to realize different shapes depending on the
choice of parameters.

III. Derivation of the ACVF of smoothed telegraph process

A simple derivation of Eqs. (7) and (8) in the main text is specified in [3]. Because of stationarity, ⟨H(t)⟩ = ⟨HTP (t)⟩,
and in notations of [3] it is given by

µx1 = q0a0 + q1a1, (16)

while ACVF is given by Eq.(12) in [3]. To establish the correspondence with Eq. (8) in the main text, one changes

q0 = ν1/ν → λ21/(2λ), q1 = ν0/ν → λ12/(2λ), a0 → H1, a1 → H2. (17)
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IV. Alternative models of H(t)

The Ornstein-Uhlenbeck process (OUP) given as a stationary solution of the stochastic differential equation

dXt = θ(µ−Xt)dt + σdBt (18)

and the square of the OUP are good alternatives to model H(t). Similarly to the smoothed telegraph process, they
can model the time-varying nature of H(t), with the advantage of being mean-reverting and having well-understood
stochastic properties. On top of that, we know that the OUP is a continuous-time Gaussian process with an expo-
nentially decaying autocorrelation function. When squared, it provides non-negative values important for considering
the range of H(t). Naturally, such models have to be treated with greater care than the smoothed telegraph process,
since their possible values span all reals (for OUP) and non-negative reals (for its square). One alternative is to utilize
the OUP reflected at the origin [4–6].

In Fig. 2 we present the behavior of sample realizations of H(t), where the left panel corresponds to the OUP with
parameters θ = 0.08, µ = 0.5, σ = 0.06 and time-step 0.01, and the right panel corresponds to its square. In Fig. 3
we present trajectories of MBM that correspond to the chosen model of H(t) – the left panel utilizes the OUP model
for H(t), the right panel corresponds to its square. In Fig. 4 we show sample ACVFs as functions of lag time ∆ for
the estimated Hurst exponents of the two processes considered here. They both exhibit an exponential-like decay
similarly to the ACVF of the smoothed telegraph process.

V. Simulation algorithm

In this part we describe in details the simulation algorithm for telegraphic multifractional Brownian motion
BH(t) in times t1 < t2 < . . . < tn. For the sake of simplicity let’s consider equally spaced tk’s, i.e. tk = k · ∆, k =
1, 2, . . . , n. Then the algorithm to simulate TeMBM is as follows:

1. Simulate the trajectory of the process H(t) in times t1, t2, . . . , tn. The algorithm depends on the type of the
process. Below we present how to simulate the sample trajectory of the smoothed telegraph process.

2. Given H(tk) for k = 1, 2, . . . , n construct the autocovariance matrix of vector
[BH(t1), BH(t2), . . . , BH(tn)]′, that is

Σ = [⟨BH(ti)BH(tj)⟩]1≤i,j≤n,

where ⟨BH(ti)BH(tj)⟩ is the ACVF of the MBM given in Eq. (2) in the main text.

3. Use Cholesky algorithm, i.e. decompose matrix Σ to find the lower triangular matrix L, and then
BH(t1)
BH(t2)

...
BH(tn)

 = L ·


Z1

Z2

...
Zn


where Z1, Z2, . . . , Zn are independent identically distributed standard normal random variables. For example, it
can be done using a built-in function chol(Σ, ’lower’) in Matlab; np.linalg.cholesky(Σ) in Python using
numpy library; or cholesky(Σ).L from LinearAlgebra library in Julia.

Simulation algorithm for smoothed telegraph process H(t) in times t1 < t2 < . . . < tn is as follows:

1. First, generate telegraph process HTP (t) in the same times t1, t2, . . . , tn:

(a) Set current state state = rand(0,1), i.e. a random number 0 or 1. If a stationary version of the telegraph
process is required, choose 0 with probability λ12

λ12+λ21
, and 1 with probability λ21

λ12+λ21
.

(b) Set ind = 1

(c) If state == 0 then set len = ⌈rand(E0)⌉, a random number from exponential distribution with rate
∆ · λ12, otherwise len = ⌈rand(E1)⌉, a random number from exponential distribution with rate ∆ · λ21.

(d) Set HTP (tind),HTP (tind+1), . . . ,HTP (tind+len-1) to state.

(e) state = 1 - state
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(f) ind = ind + len

(g) If ind < n then go back to (c).

(h) Rescale the values of HTP to H1 and H2 instead of 0 and 1: HTP (tk) = HTP (tk) · (H2 − H1) + H1 for
k = 1, 2, . . . , n.

2. To obtain smoothed telegraph process:

(a) Set H(t1) = rand(B), a random number from stationary STP distribution given by beta distribution in
Eq. (4) in the main text.

(b) For k = 2, 3, . . . , n− 1 set H(tk+1) = H(tk) + ∆ · HTP (tk)−H(tk)
τ .

VI. Estimation algorithm

Let us consider M random samples of length N

Xi
N = {Xi(t1), Xi(t2), . . . , Xi(tN )}, i = 1, 2, . . . ,M. (19)

The estimation algorithm for the Hurst exponent is as follows:

1. We select a segment length w and an overlapping length o.

2. Each sample trajectory Xi
N , i = 1, 2 . . . ,M is divided into segments of length w with the overlapping length of

o points. We denote them as Xi,1
N ,Xi,2

N , . . . ,Xi,m
N , where m is the total number of segments constructed from the

i-th trajectory.

3. For each segment Xi,j
N we use TAMSD-based approach to estimate the Hurst exponent. The estimated values

are denoted as Hi,j , i = 1, 2, . . . ,M , j = 1, 2, . . . ,m.

VII. Distinguishing algorithm

We consider M random samples of length N , see Eq. (19) for the notation. To discern whether the sample
trajectories correspond to FBM, FBMRE or TeMBM we proceed as follows:

1. For each sample trajectory Xi
N , i = 1, 2 . . . ,M we estimate the Hurst exponents Hi,j , i = 1, 2, . . . ,M , j =

1, 2, . . . ,m, according to the estimation algorithm presented above.

2. For each j, k = 1, 2, . . . ,m we estimate the sample ACVF

γ(j, k) =

M∑
i=1

(
Hi,j −Hj

)(
Hi,k −Hk

)
, (20)

where Hj = 1
M

∑M
i=1 H

i,j .

3. For fixed j we analyze the function γ(j, k). More precisely, if for large values of k γ(j, k) stabilizes at zero
level, then the sample trajectories correspond to FBM. On the other hand, if γ(j, k) stabilizes at some non-zero
level, then the sample trajectories correspond to FBMRE. Finally, if we observe a decay of γ(j, k), the sample
trajectories can be attributed to TeMBM.

Let us note, that in the above-described distinguishing algorithm, we do not take into account the diffusion coefficient.
This can be done only under certain conditions which we discuss here. The Hurst index H is estimated from the
slope of the log-log plot of TAMSD vs. ∆ after selecting a window size, w. The diffusion-coefficient appears only
as the y-intercept in the log-log plot, and therefore should not significantly effect the estimation of H. Fig. 2 in the
main text shows that our estimates of H are reasonable and results in the same distribution as the original stationary
distribution of H that underlay the generation of TeMBM trajectories.

The Python source code for the simulations and estimations is available on GitHub [7].
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VIII. Description of the real-world datasets

Dataset 1: This dataset consists of the time series of mean daily temperature data, from 01.01.1955 to 31.12.2020,
collected at 10 different meteorological stations in Germany [8, 9]. The stations were chosen such that there are
no missing data points. Exact details of the stations are provided in the Table I. We consider the time series of
temperature anomalies, namely, the deviations of the daily temperature at a given calendar day of the year from the
average daily temperature at that particular calendar day, where the average is over all the years considered. It was
shown previously that the time series of such temperature anomalies could be modelled with fractional Gaussian noise
but with additional short range correlations of 4-5 days [10, 11]. In order to remove the short range correlations we
take a weekly average of the temperature anomalies, and then take a cumulative sum to obtain FBM-like trajectories.
Finally to create a larger ensemble of trajectories, we split each trajectory into 4 trajectories, so that our dataset
consists of 40 trajectories, each with N = 860 data points.

TABLE I. Details of the meteorological stations from which the daily mean temperature data was taken to construct dataset 1.

Location Latitude Longitude Height
(degrees:minutes:seconds) (degrees:minutes:seconds) (meters)

Bamberg +49:52:31 +010:55:18 240
Berlin-Dahlem +52:27:50 +013:18:06 51

Bremen +53:02:47 +008:47:57 4
Frankfurt +50:02:47 +008:35:54 112

Hohenpeissenberg +47:48:06 +011:00:42 977
Jena Sterwarte +50:55:36 +011:35:03 155

Muenchen +48:09:51 +011:32:39 515
Potsdam +52:23:00 +013:03:50 81
Schwerin +53:38:39 +011:23:18 59
Zugspitze +47:25:19 +010:59:12 2964

Dataset 2: This dataset consists of 3834 trajectories—each with N = 100 data points measured with an experi-
mental time resolution of 100 ms—corresponding to quantum dots tracked in the cytoplasm of mammalian cells [12].
It was shown previously that this dataset corresponds to FBMRE with the Hurst exponent beta distributed [13].

Dataset 3: This dataset consists of 532 trajectories—each with N = 300 data points measured with an experimental
time resolution of 33 ms— corresponding to micron-sized beads tracked in mucin hydrogels at acidic conditions
(pH = 2) and with zero salt concentration [14]. It was shown previously that this dataset too corresponds to FBMRE
with the Hurst exponent beta distributed [13, 15].

Dataset 4: This dataset describes day ahead electricity price in the year 2022 from the bidding zone between
Germany and Luxembourg (BZN—DE-LU). The data are quoted every 15 minutes and are publicly available on the
web page [16]. In order to obtain an ensemble of trajectories we split the time series into 51 trajectories corresponding
to week periods (Monday 00:00 – Sunday 23:45). Consequently, each trajectory has 672 observations.

IX. Additional results for electricity price data

In Fig. 5 we demonstrate the results for six different starting time points t used in the distinguishing procedure.
The labels “Monday”, “Tuesday”, etc. mean that the starting point t in sample ACVF γ(t, t + ∆) calculation is the
first observation (hour) on Monday, Tuesday, etc., respectively. All the cases are indicative of TeMBM.
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FIG. 1. Representative shapes of the beta distribution (Eq. (6) in the main text) highlights its flexibility via specific choice of
parameters to potentially describe various experimental observations.
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FIG. 2. Sample paths of the OUP with parameters θ = 0.08, µ = 0.5, σ = 0.06 (left panel) and its square (right panel).
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FIG. 3. Sample paths of MBM with H(t) modelled by the OUP (left panel) and by its square (right panel). The parameters
of the OUP are the same as before, i.e., θ = 0.08, µ = 0.5, σ = 0.06.
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FIG. 4. Sample ACVFs as function of the lag time ∆ for the estimated Hurst exponents from 5,000 trajectories of MBM with
H(t) modelled by the OUP (“OU”) and by its square (“Squared OU”). The parameters of the OUP are the same as before,
i.e., θ = 0.08, µ = 0.5, σ = 0.06.
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FIG. 5. Results of the process-distinguishing procedure for electricity price data for different starting points t. The labels
“Monday”, “Tuesday”, etc. mean that the starting point t in sample ACVF γ(t, t + ∆) calculation is the first observation
(hour) on Monday, Tuesday, etc., respectively.
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