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Abstract

We introduce a series representation for stochastic processes in which resetting is driven by a
renewal process. Both memory-erasing (‘complete’) resetting and simple position shifting
(‘incomplete resetting’) are considered. Our approach allows us to calculate the previously
unknown joint two-time probability density function and the autocorrelation function in a
straightforward manner. We also study the associated first-passage problem, reporting general
results for the case of complete resetting. In each case we inspect the scenarios of exponentially
(Poissonian resetting) and mixture-exponentially distributed inter-resetting times, with Brownian
motion and scaled Brownian motion as the parental processes. We also utilise the results obtained
for the mixture-exponential inter-resetting times as an approximation for more general classes of
distributions.

1. Introduction

In one of the most cited papers in the theory of stochastic processes, Smoluchowski derived the diffusion
limit for chemical reactions of two molecules in 1916 [1, 2]. However, even before him the problem of
‘first-passage’ of a stochastic process was anticipated by Bachelier in the context of his 1900 thesis of financial
markets [3], and Lundberg considered such concepts in insurance mathematics in 1903 [4]. Schrodinger
formulated an integral equation approach to first-passage in 1915 [5]. Today, the problem of first-passage has
widespread applications in physics, chemistry, biology, ecology, economics, and beyond [6—8]. We note that
from a mathematical point of view, the first-passage problem is related to the theories on the gambler’s ruin
started by Bernoulli, de Moivre, Lagrange, and Laplace [9, 10].

In typical settings in infinite systems, the probability density function (PDF) of first-passage times (FPT)
has power-law tails such that the mean first-passage time (MFPT) diverges [6, 7]. The MFPT or its global
variant is finite in bounded geometries [11, 12], however, the actual FPTs can be defocused over several
orders of magnitude [13-15]. In both cases, short FPTs correspond to ‘direct’ trajectories, moving more or
less straight from the initial location to the target [13—15]. Conversely, long FPTs are caused by long(er)
excursions away from the target, during which the diffusing particle forgets its initial point of release.

A by-now highly prominent mechanism to enforce finite MFPTs and a stationary PDF (the
‘non-equilibrium steady state’ (NESS)) even in infinite domains is ‘stochastic resetting’ (SR) [16—19]. In its
simplest version, SR considers a particle performing a Brownian motion, that is interrupted by repeated
restarts, resetting the particle to its starting position; this can occur at fixed periods in time or stochastically,
with a fixed rate [16—18, 20-22]. In such an SR scenario the MFPT to a certain distance from its starting
point can be minimised for a specific resetting frequency [16—18, 20]. This minimum represents a tradeoft
between the fact that SR avoids long departures away from the target while too frequent SR events do not
allow the particle to move sufficiently far to actually reach the target [16-18, 20].
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It has been shown that quite generic statements can be made concerning the SR-rate for minimal MFPTs,
the coefficient of variation of FPT fluctuations, and extremes of SR [23-25]. It was shown that SR can be
phrased as a renewal process [26], and the linear response behaviour and fluctuation-dissipation relations for
SR were established [26, 27]. Recently, the concept was also extended to quantum systems [28, 29].
Applications of SR have been discussed, inter alia, in the modelling of animal foraging [30], population
dynamics in the case of sudden population catastrophes [31], stochastic optimisation in computational
sampling [18, 32, 33], ecology [34] or enzymatic reactions [35], see also [18]. SR also found applications in
reaction-diffusion systems, see, for instance, reference [36], in which binary models of aggregation with
constant kernel are subjected to SR; or reference [37], in which the statistical mechanics of the
coagulation-diffusion process with SR are studied. In particular, the effect of SR was demonstrated
experimentally directly in different settings [20, 38—40].

SR models with both Markovian and non-Markovian resetting have been studied in literature. Resetting
guided by a Poisson process, with possible inhomogeneity in space or time, has been extensively studied [18].
We previously considered Brownian motion undergoing incomplete resetting, for which the process guiding
the resetting was an inhomogeneous Poisson process rather than a renewal process [41]. In some cases SR
was considered on a countable subset of the time domain for which a geometric distribution was used to
maintain Markovianity [42]. Inhomogeneity was considered in both time and space [18, 41].
Non-Markovian systems were considered using a renewal process guiding the resetting in, e.g. [43]. Scaled
Brownian Motion (SBM) was considered with complete [44] as well as incomplete resetting [45]—note that
the second case was called ‘non-renewal resetting), as the process does not lose its memory after the resetting
event, but the underlying mechanism rests on a renewal process. Incomplete resetting models are processes
that randomly shift to the origin, but their dynamics is influenced by temporally inhomogeneous media:
imagine a resetting particle in an environment with time-varying temperature or a redenomination process,
changing the face value of banknotes and coins in circulation, when the inflation rate is growing. This kind of
process was also studies in the context of so-called velocity resetting [46].

SR in fractional Brownian motion and heterogeneous diffusion were analysed [47, 48] along with the
associated ergodic properties. Continuous time random walks with SR and related ergodic properties were
studied [49, 50]. Geometric Brownian motion with SR was analysed in [51, 52] and studied in the context of
income inequality and mobility [53]. Heavy-tailed processes under complete Poissonian resetting were
investigated [54] and shown to assume a Linnik distribution in the NESS [55]. Diffusion with SR on lattices
and graphs and the associated MFPT were analysed in [56, 57], and SR in an electromagnetic field was
considered in [58]. In [59] resetting of rotational diffusion was used in the description of polar molecules.
[60] considered the interplay between noise induced stability and SR. Cost functions for SR were also studied
[61]. Finally, the search for multiple targets by a diffusing particle with SR was studied [62]. Finally we
mention the analysis of two competing searchers under subsystem restarts [63].

The De Vylder approximation is a method often used in financial or actuarial science and risk theory to
approximate the distribution of aggregate claims in an insurance portfolio [64]. This technique simplifies
complex distribution problems by fitting a mixture of exponential distributions to match the mean, variance,
and skewness of the original distribution. It is particularly useful for providing quick and reasonably accurate
estimates in situations in which exact calculations are infeasible due to the intricacy of the underlying
models. This technique is also viable for a variety of uses in other disciplines, and we will employ it in the
subsequent analysis in order to approximate certain parameters of resetting processes with complicated
waiting-time distributions.

In the following we consider a new, alternative stochastic representation of the renewal resetting process,
incorporating and generalising many previously obtained results for large classes of processes in a new
framework, such as the autocorrelation function of Brownian motion and scaled Brownian motion
undergoing Poissonian resetting, see [65]. The main advantages of the approach presented here are: the
straightforward interpretability of the definitions and the possibility to use classical probability theory to
obtain new results. In particular, using our framework we will obtain two-point distributions of the process
under complete resetting and subsequently calculate the corresponding autocorrelation function. We will
also utilise the mixture-exponential distributions to derive approximate results for more general classes of
distributions. Already known results will be verified. Combining analytical and numerical tools we will check
the effects of different types of resetting on the underlying system, in particular, the scenarios of complete
and incomplete resetting. Among the properties of interest are the NESS, two-dimensional distributions,
autocorrelations, and FPTs. The discussion covers a wide class of stopping times, for which only certain local
properties of the process are measured.

The paper is organised as follows. We introduce our series representation approach in section 2. In
section 3 we consider the PDFs and associated moments under resetting. First-passage problems will then be
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addressed in section 4, where we also derive a new MFPT approximation tool based on mixture-exponential
distributions. We draw our conclusions in section 5.

2. Series representation of stochastic processes under resetting

In this section we introduce the series representation of stochastic processes under SR guided by a renewal
process. Furthermore, we discuss the intuition behind the definition and visualise necessary concepts.

To this end, let us consider a sequence {X;}, j € N, of identically distributed (IID) copies of a stochastic
process X(t) and an independent renewal process N(t). We define the process under complete SR in terms of
the series representation in the following way,

Xc (1) ZZX,‘(t—Ti) In(n)=is x=Xc(0)=0. (1)
i=0

Moreover, we denote by 7; the time instant of the ith resetting event, with 75 = 0. Recall that the renewal
process is a counting process in which the interarrival times are independent and IID random variables. A
typical example of a renewal process is the standard Poisson process for which the interarrival times are I[ID
exponentially distributed random variables. We can then write that N(#) = max {i € N|7; < t}. Note that
since the X;(¢) are IID, after each resetting event the memory of the process is completely lost. More precisely,
the definition (1) is based on a sequence of IID processes (X;(#)) with the same law as the original process
X(t). On each interval [7;,7;41) the process takes the form

Xe(0)|(t € [11,7i41)) = Xi(t — ) |(t € [73,Ti41)), 2)

where we use the notation A|B as A conditioned on B. This process behaves as the original process restarted
anew at its origin, see figure 1. Putting together the successive inter-resetting intervals yields the final
form (1).

For the case of incomplete resetting, the series representation of the resetting process assumes the form

oo

Xp(t) =X(t) - ZX(Ti) In()=i- (3)

i=1

Here the process is simply shifted during a resetting event by the value of the process at r = 7;. Note that in
this case X(t) is not replaced by its IID copy after the resetting event, as it was the case in (1), see the
illustration in figure 2. When X has independent and stationary increments, the processes X¢ and Xp are
equivalent and both definitions (1) and (3) are interchangeable.

In the above, for simplicity we chose the resetting position x, = 0, any other case x, 7 0 can be simplified
via the shift X’ = X — x,—we empbhasise the importance of this transformation. The condition x, = 0 is also
given through the assumption that the system is already in the resetting phase, albeit not necessarily in its
stationary form. This assumption is relevant for processes such as geometric Brownian motion which can
take only strictly positive values. In the case of incomplete resetting the situation is different. Namely, for
models with inherent temporal or spatial inhomogeneities the properties of the processes will be significantly
altered by this SR strategy. Looking again at geometric Brownian motion, we can see that incomplete
resetting may allow the process to reach negative values even with a positive resetting point—which is not
possible in the original process.

We recall another useful representation of a SR process. Assume that the underlying process X(¢) is given
in terms of the stochastic differential Equation [66]

dX(8) = p (6 X (1)) de+ o (£,X (1)) dE (1), X(0) = xo (4)

with the driving noise £(¢) and the drift and diffusion parameters 1 and 0. Now the process with incomplete
resetting can be defined as [41]

dXp (1) = pu (1, Xp (1)) dt + o (£, Xp (1)) dE (1) + (x, — Xp (1)) AN (2) . (5)

Here the resetting mechanism is introduced by the term (x, — Xp(#))dN(¢). In this formalism the simple case
of Brownian motion under resetting can be introduced as

dXp (1) = dB(t) + (x, — Xp (1)) AN (1), (6)

3
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7'0=0

clarity.

Figure 1. Visualisation of the definition of the series representation of SR. Here, we chose constant inter-resetting intervals for

:
—incomplete case
—complete case

0 T T,

Figure 2. Comparison of the behaviour of SBM with complete and incomplete resetting in the subdiffusive (left panel, o < 1) and
superdiffusive (right panel, o > 1) regimes. We used the same Gaussian increments for the simulations to underline the
differences, thus on the first inter-resetting interval the processes are equal. In the subdiffusive regime we can see that the process
with complete resetting achieves higher volatilities, while in the superdiffusive it is reversed, as expected.

7'3 T4 T5

where B(t) represents Brownian motion. This approach can also be used to define complete resetting in a

similar, but slightly more complicated manner,

dXc (1)

ingk

—

x—Xc(1))dN(¥).

[Ingy=i (1 (t =73, Xc () dt + 0 (1 — 73, X (1) d&; (¢ — 73))]

(7)

Here we used a sequence of independent copies &;(t) of the noise process. The main difference between
formulations (7) and (5) can be seen in the noise term. The single driving noise £(#) in equation (5) is
replaced by a sequence of IID noises &;(¢) to reflect the memory loss of the driving force at each reset. The
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particular case of SBM* under incomplete resetting takes the form
D =va Y Inwei(t—) "2 dBi (1) + (x — Xc (1) dN(1). (8)
i=0

Here B;(¢) are IID copies of Brownian motion B(#). We used the fact that B(¢) has independent and

stationary increments, allowing us to use the identity dB;(t — 7;) 2 dB;(t)°. For other examples of this
approach see [41].

3. Characterisation of the resetting process by distributions and moments

In this section we calculate the PDF of stochastic process under SR in the complete and incomplete cases
using the series representation introduce above. Moreover, we derive the two-dimensional distribution for
complete resetting and obtain the autocorrelation function. We check the results by comparing to known
cases as well as derive new results for SBM and mixed exponentially distributed inter-resetting times.

3.1. Distributions for complete resetting

3.1.1. PDF

For our calculations we use the law of total probability for the PDF px,. of the process X¢(t), splitting the
sample space according to the possible values of N(t). Using the definition (1) of X we start with calculating
the conditional distribution of X¢(t) given that N(¢) = n,

Xe () [(N ZX = 71) Ingy=il (N (1) = n) = X, (1 = 7)) [(N (£) = ). ©)

Here, we applied the independence of X; and N(#). The symbol 1, is the indicator of the set A (i.e.
14 =14(x) =1ifx € Aand 14(x) = 0 if x ¢ A). These definitions lead us to

px. (x,£)dx = P (Xc (t) € (x,x+ dx)) ZIP’ Xe(t) € (x,x+dx) ,N(t) = n), (10)
where we used the law of total probability with respect to N(t) outcomes. Now, using equation (9) we obtain

Pxe (x,t)dx = ZIP (t—1n) € (x,x+dx),N(t) =n). (11)

n=0

We can rewrite the event N(¢) = nas 0 < t — 7, < A7,41, with A7, = 7,41 — 7. We then average over all
possible 7, outcomes using the law of total probability again,

Pxe (x,8)dx = Z/ (t—u) € (x,x+dx),0 <t —u < ATpy1) pr, (u) du (12)

Notice that the random variable A7, is independent from X,,, resulting in

pre(m)dx=3" / px (5,6 — 1) San (— 1) pr, () dudx

=px x t SAT an a (13)

where we denoted f X g=J Ot f(t — u)g(u)du as a convolution with respect to the variable in the superscript,
Sx(x) = P (X > x) as the survival probability of the random variable X, and used the renewal property,
according to which

ATgATn+1 =Ty41— Tn LL 7. (14)

4 SBM is a Gaussian process with correlator (Bq (s)Bo (£)) = min {s®,t*}, following the Langevin equation x(t) = \/2K(¢)£(t) with
K(t) o< t*~! and the zero-mean white Gaussian noise £(t) [67, 68].

. . D ] e
> Here and in the following = means ‘equal in distribution’

5
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Here L1 stands for the statistical independence. In the classical case of Brownian motion under resetting,
px(x,t) would be the Gaussian propagator. Now we utilise the Laplace transformation

240N = [ € *Fnde=Fo) (1)
0
for further calculations. In particular, we will make extensive use of the convolution theorem
LAf(1) xg(1)}(s) =f(5)§(s), (16)
where the convolution operator  is defined as f{t) fo Ndr'.

Denoting the resetting intensity as r(t) = ano an( 1), we obtaln in Laplace space that

7(s) X{an } Zz{p(ﬁf’ } ZpAT ﬁ;(s) (17)

n=0

for s > 0. Here f*") is the n-fold convolution of f with itself. When N(t) is a Poisson process this simplifies to
r(t) = 6(t) + r, a sum of a Dirac-6 and a constant r, which correspond to the fact that the process starts at
t = 0 and that the intensity of N(¢) is equal to . The PDF of the process X¢(#) thus takes on the form

P (1) = r(1) % Sar (1)px (x.1). (18)
with the Laplace image

Zipx (%,1) Sar (D)} (x,5)

1—par(s) (19)

Pxc (X, S) =

Any space-average of the process of the form (f(X¢(#))) can then be easily obtained using equation (18),
namely,

(F(Xc (1)) = (1) % Sar () (X (1)), (20)
while for an appropriately smooth monotonic function f the distribution of f(X¢(#)) has the form
( * SAT PX ( )
o) (X%t . (21)
P (50 = 7 ]

3.1.2. Two-dimensional PDF

We now focus on the important case of the joint two-time probability of the process at times #; and t,, with
f, > f. Again splitting the sample space according to all possible (N(#;),N(t,)) outcomes (n,n + k), where
n,k € N, we obtain

(XC (tl) ,Xc (tz)) ’ (N(tl) aN(tZ) = (11,1’1 + k))
= (X, (t1 — Tn) Xtk (2 — Tutk)) ’ (N(t1),N(r) = (n,n+k)). (22)

The PDF of the process X¢ at the two time points #1, t; can now be calculated as
pxc (x1,%2, 11, ) dxidey = P(Xc (1) € (x1,%+ dx1) , Xc () € (%2, + dx2))

Z P tl — Tn (X] X+dX1) n+k(t2 7Tn+k) S (X27X2 +dX2),

n,k=0

N(t;) =n,N(t) =n+k). (23)

For the special case k=0, equation (23) simplifies to

o0

Z]P(Xn(tl*Tn)G(xlaxl“i’dxl) (277‘,,)6(962,X2+d)€2),

n=0

0<t1*7n<t2*7n<ATn+1), (24)

6
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where we used the fact, that the events {N(t;) =n, N(;) =n+k},and {0 <t — 7, < t — 7y < ATy} are
equivalent. Now, let us use the law of total probability with respect to all the possible 7, outcomes to get

Z/ tl—u (Xl,X1+dX1) (tz—M)E(Xz,Xz—FdXz),

0<th—ush—u< AT,H_l)an(u)du

3]

= /p)( (xl,xz,tl — U, — M) SAT (tz — U)T(M) dudxldxz, (25)
0

where we interchanged the summation and integration and used definition (17) for r(¢). Now for k > 0 we
know that

{(N(©)),N(&))=nn+k)}={m <t < Tnp1 < Turk < b < Tytht1}- (26)

For the renewal times we also have

Togl = Tn + ATy,
k
Ttk = Tn + ATpp1 + ZATn+ja
j=2
k

Tntk+1 :Tn+ATn+l+ZATn+j+ATn+k+lv (27)
i—

D . e . .
where > A7, = 74_1. Using the above and conditioning on independent random variables
j=2
k
Ty ATut1, > ATk, AT,y k11, we get for the terms under the sum (23) that
j=2

P(Xu(ty — 7u) € (x1,%+ dx1), Xugi(f2 — Tusk) € (%2,%2 + dxz),
N(t1) =n,N(z) =n+k)

bHh—u—w
/du/dw / / dypr, () par (W) pr_, (2)
h—u h—u—w—z
X pPAr Q/)px(xl,tl—u)px(xz,tz—u—w—z)dxldxz, (28)

where the one-dimensional PDF replaces the two-dimensional PDF due to the independence of the processes
X;, X for i # j. Now we can evaluate the sum (23). Note that the only n-dependent term is p,, (), summing

up to r(u). Moreover the only k-dependent term is p,,_, (z), summing up to r(z). The terms k> 0 in
equation (23) are now equal to

th—u—w
ZZ/du/dw / b [ Opipar a0
n=0 k=1 b—t—w—z
XpAT(y)pX(xl,tl—u)px(xz,tz—u—w—z)dxldxz
f tHh—u bh—u—w
= [rwpstnn=w [ pacn) [
0 th—u 0
X px (%2,tp —u—w—2) X Sar (t, — u— w — z) dzdwdudx; dx, . (29)
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Putting together the results (25) for k=0 and (29) for k > 0 we obtain the final result

t

Pxe (X1,%0,11,1) = /Px(x1,x27f1 —u,ty —u)Sa- (t —u) r(u)du
0

+/Otlr(u)px(x1,t1—u)/tlt:MPAr (w)/otz_u_wr(z)

X px (%2, —u—w—2) X Sar (th — u —w — z) dzdwdu. (30)
3.1.3. Autocorrelation

The autocorrelation cc(f;, 1) = (Xc(f1)Xc(f2)) of the process under complete resetting can now be obtained
from expression (30), via multiplying px.(x1,%2,t1, %) by x1x, and integrating

o0 o0
cc(t,t2) :/ / xX1%2Px (%1,%2, 11, 1) dx1dxy
—oo J —o0

f
:/ ex(h —u,tp —u)Sar (t — u) r(u) du
0

#[ o= [ s [T e

X (X(ty —u—w—2)) X Sar (t, —u—w—z) dzdwdu. (31)

Here cx is the autocorrelation function of the driving process X(¢). Under the assumption of zero mean
(X(#)) = 0, the formula simplifies conveniently, resulting in

cc(h,t) = / 1 cx (th —u,ty — u) Sa, (tp — u)r(u) du. (32)
0

3.2. Complete resetting—examples
3.2.1. Poissonian resetting
For the case of Poissonian resetting, pa-(t) =re™", i.e. 7(s) = r/s+ 1, and r(t) = &(t) + r, so that we have

P (5,5) = Px (54 1) = = (s +1) + S (s 1), (3)
Inverting the Laplace transform we get
t
Pxc (X, t) = einpx (X, t) + 7‘/ eimpx (X, u) dua (34)
0

thus retrieving the classical result from [18]. The stationary PDF is thus given by the Laplace transformed
PDF of the original process via the relation

Px (x) = Tﬁ{px (x, t)}(x» r). (35)

Using formula (35), the PDF of f{X{(¢)) for differentiable, monotonic f can again be represented as a Laplace
transform,

~rZdpx (T (), 1)} ()
Py ) = Fol

(36)

its mean value being

(xe) = rZ{AXO) D (7). (37)

For a zero-mean processes, the autocorrelation takes on the form

5]
cc(ti, ) =cx(ti,)e ™ + re*m/ ex (b —u,tp — u)e™du. (38)
0

8
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3.2.2. (a) Brownian motion
This classical case was extensively summarised in [18]. For Brownian motion B(t) with MSD ot we have
pa(x,t) = (0271 t) "/ ? exp(—x%/[2021]). Taking the Laplace transform and using equation (35) leads us to

the stationary PDF
V(Y
ppe (x) = U—ﬁexp —7|x| ; (39)

i.e. a Laplace distribution with mean 0 and scale parameter o /+/2r, in accordance with the classical results.
The autocorrelation function of B¢ is now

5]

cc(tith) = / (6 (u) 4+ r)min{t; — u,t — u} e " dy

0
5] .
e —1 9

=te e ™ / (h—u)edu=e"—n 51, (40)
r
0

as expected. When t, > #; > 1 we have
1
cc (tl, l’z) ~ 7e—r(t2—t1). (41)
r

3.2.3. (¢) Lévy and a-stable processes

In general, we can claim a much stronger result for all Lévy processes (i.e. processes with stationary and
independent increments) [69]. Using the well known result that the characteristic function of a Lévy process
X(t) has the form

ISX (k, t) _ <eikX(t)> _ et\I/(k), (42)

where U (k) is the so-called characteristic exponent [69], we now get the stationary PDF in terms of the
characteristic function of such a process under Poissonian resetting,

P () = 12O} () = r(r—w (k)" (43)
For a-stable processes where a € (0,2) we have ¥ (k) = —|k|, and we have

k[, [k[ = oo,

44
1—|k|*, k—0. (44)

g (R)=r(r+ 1K)~ ~ {
Using the Abelian theorem we can deduce that

x—0 A*B‘X|, o> la
t (X)) ~ 45
Pz (%) {A|x|a_1, a<l (45)

and

|x| =00

Pxe (%) T T (46)
The tail behaviour does not change after introducing the resetting mechanism. Inverting this formula yields

r

Py (x) = —/ e ® (rp k)T dk = 1/ cos (kx) (r+k*) "' dk. (47)
¢ 2 J_ o 7 Jo

We can evaluate this formula directly for the case v = 1, obtaining [70]
: 1 1. r :
P 5) = rsin (i) 5 = Zsi (i) | — Z cos (b i (). ()
where Ci and Si are the sine and cosine integral functions defined as
. °° cost . “sint
z 0

In this case, we have the so-called Cauchy process. We can see a comparison of the theoretical result with the
simulations in figure 3.
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Figure 3. Comparison of the theoretical result (48) for the PDF of the stationary distribution of Cauchy process with Poissonian
resetting. Here we used t = 102, r =2 and the Monte-Carlo sample size 5 x 10°. The error bars show the standard deviation as
deduced from the Monte-Carlo estimation for each bar of the histogram. The error bars are relatively small due to high precision
of the simulated result.

3.2.4. (b) SBM
SBM is a Gaussian process with mean 0 and (B, (s)B,(#)) = K, min {s*, t*}. The paths can be simulated
using the Cholesky decomposition or in a stepwise manner using the It6 formulation

dB,, (t) = VKoot~ V/2dB(t) = B, (t) = \/Kaa/s(a_l)/de (s). (50)
0

We have that [44, 67, 68]

(x,1) ! < (51)
xX,t) = ———exp| ——— | .
PEe Varkre P\ Tk e
To calculate the MSD from the stationary PDF under resetting we again need the Laplace transform of
(B2,(1)), i.e.
o . 2K T (a+1
(B)2) = 2Kartifer) () = 2Kl @D, 52
With the knowledge that cp_ (#1,1,) = 2K, (min{#,#,})®, we obtain the autocorrelation function
t
cc(ti,t) = 2K, t5e ™™ + 2K re™ ™ / (1 —u)®e™du
0
rh
= 2K, 1%e ™™ 4 2K pr e (1) / u®e "du
0
= 2K t'e " + 2K, r e Ty (a1, 11), (53)

where ~y is the lower incomplete gamma function. Taking the limit r — 0 and utilising the asymptotic
property of the lower gamma function, v(s,x) ~ x°/s for small x, we see that the autocorrelation simplifies to
the standard SBM case. Asymptotically for t, > t; > 1 we have

2K T (a+1)e ") () er(—h)
— .

cc(hi,t) ~ s p (54)
We see that when o =1 the result simplifies to the previous result for standard Brownian motion. To
calculate the stationary PDF we take the Laplace transform of pg_ (x, 1),
1 oo
ZLAps, (x,r) = \/TiKa/o /% exp <_4Kata - rt) de. (55)

10
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Figure 4. Comparison of the stationary PDFs (57) of SBM under Poissonian resetting, with K = 1/2 and r = 1. We notice a

difference in the tail behaviour of the PDFs, shown on the right panel in which we present it using a log-linear scale with green
straight lines for reference. For v >> 1 the PDF behaves exponentially, while for ov < 1 it has clearly lighter tails.

After appropriate substitutions we identify equation (55) as the Kritzel Z-function [71, 72],
oo o /
_ —1_ —t"—x/t
74 (x) = /0 P le dr. (56)

Consequently, we get

xz 1/a . XZ 1/a
PBS(;C (X) =r <4K) (\/ﬂxD 23/271 r <4K) . (57)

We show a comparison of the stationary PDFs in figure 4. Notice the behaviour of the PDF at x =0. In
this subdiffusive case, the process tends to drift very quickly before slowing down its movement. This is the
reason why we see a smooth PDF at the resetting point x = 0—the trajectories do not cluster together with
the ones just after the reset. For o > 1 the normal or super-diffusive trajectories do not leave the resetting
point quickly enough and mix together with the ones just after the reset. This creates a substantial probability
mass at the origin that creates a non-differentiability of the PDE.

A change of the behaviour of the process at & =1 can also be seen in the tail behaviour of the PDE For
the subdiffusive case, the tail behaves sub-exponentially, for the normal one exponentially, while for the
superdiffusive case it decays super-exponentially. This is in line with results from https://arxiv.org/abs/2112.
02928, where we see, that

1
70121 (g) 7790 VAT st pott e (142) (2) T (58)
o a1
This gives us, that
1
|x] =00 | 1za K e 1 —axT
Pas_ (x) "~ |x|=FT exp (— [4Ka:| [aa T+ o¢+l:| (59)

where B(r,a) =C (r)aﬁ + o~ 4, Alternatively, a standard Laplace method can be utilised to approximate
the integral in (55) as in [44], resulting in

ﬁ l—a o ﬁ 1 o
o () R — L2 <a> |x“‘“eXP<_{xzr] [““‘*0‘_”]})' (60)

ala+1) \4Kar 4K,

This approach has the benefit of simplicity, but it generates some inaccuracies in further calculations. As it
uses a Gaussian approximation, this method is best when « is close to 1. It recovers the tail behaviour of the
function very well.

11


https://arxiv.org/abs/2112.02928
https://arxiv.org/abs/2112.02928

I0P Publishing

New J. Phys. 27 (2025) 074603 K Tazbierski et al

3.2.5. Mixture of exponentially distributed resetting times
Now let us choose A7 as a mixture of exponentials, i.e. A7 has the PDF pa . (t fo re""dFg(r), where Fy
is some cumulative density function (CDF). It can be interpreted as an exponent1a1 distribution 5 (R) with
random parameter R having the distribution function Fg. Such distributions have found a number of
important applications in physics and related sciences. Mixtures of exponential distributions are used in
physics in the modelling of systems exhibiting multiple processes with different characteristic time scales or
rates, especially when phenomena involve multiple decay rates, heterogeneous processes, or composite
systems. They often appear when simple single-exponential models fail to capture the observed behaviour,
e.g. in complex, stochastic, or disordered systems. Examples of areas in physics, where mixtures of
exponential distributions are applied include: time delay of electrical breakdown along with the generalised
relation for the effective electron yield [73]; climatology, in the modelling of rainfall processes, highlighting
the effectiveness of mixed models in capturing rainfall variability [74]; and the study of human behaviour,
where mixtures of exponential distributions have been employed to model inter-event times more accurately,
capturing the variability in human activity patterns [75]. Sums of exponentials were also used in [76] to
accurately approximate the fractional Langevin equation in the framework of Markovian embedding
techniques. In [77] these distributions were used to retrieve the fraction of ground lightning flashes in a set
of flashes observed from a satellite lightning image. In [78] a mixed exponential distribution was used to
evaluate extreme-value rainfall. In [79] the authors introduced a jump diffusion model with mixed
exponential jumps and applied it to option pricing. In [80] it was used to describe temperature fluctuations
for heavy ion collisions. Finally, in [81] the authors modelled rainfall arrivals for different rainfall depth
distributions, in particular for mixed exponentials. We also underline the practical importance of these
distributions, as such mixture-exponential distributions are well suited for calculations. Moreover, they can
be used to approximate other, possibly more complicated distributions of A7, see section 4.2.4 and also [82].
Let us now calculate the PDF px,. corresponding to mixture-exponential resetting times. Due to the
linearity of the Laplace transform and the exponential form of the summands, the calculations can be
conducted in a similar manner, yielding

Jy" (o541 dFe () _ B(py (s R)) _ E(px(x5+R))

PTG  s() | E(e) o

R+s R+s

We see that if R is degenerate and equal to a deterministic constant value, the result reduces to the previous
Poissonian case.

Now let us consider a special case and assume that pr(r) = >_;_, p;id(r —r;), with p;,r; > 0, n € N, and
>t pi =1, 1i.e. we choose a discrete distribution of R. In this case our PDF takes on the form

D i Pibx (x5 + i)
s Z?:l r,'lls

Px. (x,5) = (62)

This formula can be inverted in Laplace space in the limit t — 0o, yielding a weighted combination of the
terms from the standard Poissonian resetting. Using standard Abelian and Tauberian theorems we can
investigate the limiting behaviour of px..(x, ) for large ¢ by studying the behaviour of px,.(x,s) for small s [83].
We can thus expand the sum in the denominator of (62) using the first term of its Maclaurin expansion,

n -1 n -1
pi _ pi
(5) -(5%) voo

After plugging approximation (63) into equation (62) and inverting the transform, for large ¢ the PDF
behaves as

n ) -1 4 t
P (.1 H~°°< p) >p / & pu (x,u) du. (64)
X i . 0

Letting t — oo we arrive at the stationary PDF

(Z P’) S P px (x.0} (1), (65)

i=1

12
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Figure 5. Comparison of MC simulations (N = 10*) with analytical results for the stationary PDF (65) for SBM with
mixed-exponential resetting with r = (1/2,1/5,1), p = (1/2,1/4,1/4). We again notice that for & < 1 the non-differentiability
at x = 0 appears to disappear.

When X is a Brownian motion the above stationary PDF reads

n -1 4
: 1
stCt (X) = ( . 11) Zplﬁ exp (—\/ 21‘,‘|X|) . (66)

We notice that this does not yield a simple convex combination of random variables with Laplace
distribution, as the scaling factors are now non-linearly intertwined via the first sum. In the case n =1 it does
simplify to the previous Poissonian case.

The numerical results in the long time limit when X represents an SBM are shown in figure 5. The
simulations confirm our calculations, as the histograms of the trajectories is near-perfectly estimated by the
derived stationary PDFs in the sub- and superdiffusive cases. The explicit form of the PDF can be simply
derived using equations (65) and (57).

3.3. PDF for incomplete resetting
We now calculate the PDF corresponding to the process X with incomplete resetting. We start with the
process Xp(t) conditioned on N(#). We then have

Xp(8)[(N(1) = n) = X (1) — ZX(Ti) In(=il (N () = n)
=X(t) =X () | (N() =n). (67)

We again use the law of total probability for the PDF py, (x, t),

:iP(X(t) — X(r,) € (x,x+dx),N(t) = n). (68)

13
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Again using the fact that the events N(¢) = nand 0 < t — 7,, < A7,4 are equivalent, we obtain

px, (x,)dx =D P (X(£) = X (7)) € (x,x+ dx) ,0 < t— 7, < ATyp)
n=0
0o t
- Z/]P’(X(t) ~ X (1) € (x4 dx),0 < t— 1 < Am 1) pr, (1) du
n:OO
t

= /P(X(t) —X(u) € (x,x+dx))Sar (t—u) r(u) du. (69)

0

Here, we used the law of total probability with respect to the 7, and used the definition (17) of r(t).
Let us now define the PDF py, (x,u, t) of the process Ix(u,t) = X(t) — X(u) for t > u. If the process has

stationary increments, then Ix(u, 1) 2 X(t — u) and the PDF simplifies to the complete resetting case. We
then have

t
px, (x,8) = / r(u) pr, (%, u,£) Sar (t — 1) du, (70)
0
or
t
P (5 = [ r()py (=) Sar (1 )
0
t
= / r(“)PX (x, t— 1/[) Sar (t_ Ll) du = r(t) >'EPX (x, t) Sar (t) ) (71)
0
in the case of stationary increments, where we used py, (x, u,t) = pr, (x,t — u) = px(x,t — u).
3.4. Incomplete resetting—examples

3.4.1. Poissonian resetting
We employ R(¢) = e~ " with r(¢) = 0(t) + r. Using (70) we then have

t
DPxp (X, t) = eirth (X, t) + reirt/ emplx (x’ u, t) du. (72)
0

After a change of variables we see that

t
Px, (1) = e px (x,t) + r/ e "pr, (x,t —u,t)du. (73)
0

To calculate the MSD of this process we use the definition

t

(B (1) =" (1) + 1 / e (B (t— u,))du (74)

0

Assuming that the MSD of the underlying process displays at most algebraic growth, we can see that this
formula can be asymptotically approximated as

(X2(t)) iy r/te_"‘@((t— u, t))du. (75)
0

3.4.2. SBM
The PDF of I, is well known and given by

big, (x’ u, t) =

! €ex] (_x2> (76)
47 Ky, (1% — u®) P 4K, (1 —u™) )

The variance of Iy (t — u,t) is 2K, (+* — (t — u)®). Substituting this expression into (75) we get

t—00 2Ko<ta71
; .

(77)
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Figure 6. Comparison of Monte-Carlo simulations based on 10° samples for the MSD of SBM under incomplete resetting with
the theoretical asymptotical result for the case v = 1/2. The MSD behaves as t*~!, as predicted by the analytical result (77).

Consequently, this process can achieve a stationary state only in the case o = 1, which is exactly the case of
Brownian motion®. Subdiffusive SBM will converge to a degenerate stochastic process B, 5 = 0, SBM in the
superdiffusive case « € (1,2) with resetting will behave subdiffusively at long times. This result is expected,
as the scaling exponent « controls the volatility of the increments. For a < 1 the volatility increases slower
than linearly, while the rate of resetting is always constant and the number of resets in time grows linearly.
For ae =1 both mechanisms behave linearly and their impact complements each other, thus achieving a
non-degenerate stationary state. The case ae > 1 displays a super-linear growth in the volatility that the
resetting mechanism cannot compensate. This behaviour is in sharp contrast to the complete resetting case,
where the stationary states are more common, as the memory is erased and the displacement volatility
returns to its initial state. In figure 6 we can see a numerical confirmation of the result. The theoretical result
>~ for the long-time behaviour of the MSD exactly matches the simulations. We see an initial increase of
the MSD estimated from Monte-Carlo simulations, before the subdiffusive behaviour of the trajectories is
suppressed by the resetting mechanism.

4. First-passage behaviour

We now consider the first-passage dynamics of the process for the different resetting scenarios based on our
series representation approach. Concretely, we derive the first-passage time density (FPTD) in Laplace space
and its mean. We explicitly derive results for the first-passage dynamics for specific cases and also
demonstrate that these reduce to already known special cases. Finally, we introduce an approximation tool
for the case when the PDF of inter-resetting times is only partially known. A typical trajectory of a process
under SR with highlighted first-passage event is shown in figure 7.

4.1. Complete resetting—FPTD

In this section we will derive the FPT PDF for the case of complete resetting. Consider the FPT

T, = inf{# > 0|Xc(#) > a > 0}, the first time the process with complete resetting hits or surpasses a certain
level a. We use the auxiliary random variable I, = min {i |3 Xi(t— Ti) In(y=i = a}, the index of the time
interval during which the first-passage event takes place, i.e. {I, =i} = {7; < T, < 7i4,}. From this
definition we see that 7;, < T, < 77,4,. We denote the probability that the driving process X will hit or
surpass the level a on an inter-resetting interval A7 as

p=P(T,<AT)= /OOIP’(TE’, <u)par (u)dt= /OOFTH/ () par (u) du. (78)
0 0

The probability that the process will not hit or surpass the level a thenis g =1—p = [ St/ (u)par (u)du.
Here, par is the PDF of A7, T; = inf{t|X(t) > a}; Fr; is the CDF of T, and S7; = 1 — Fr/ is the survival

6 A similar case is found for confined SBM in an external potential: the MSD of subdiffusive SBM decays as function of time, and vice
versa for superdiffusive SBM. Only the normal-diffusive case o =1 assumes a stationary plateau [68].
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Figure 7. Visualisation of the first-passage event at x = a for a stochastic process with complete resetting. We introduce a
partitioning of the time axis with respect to the resetting times. This allows us to use properties of the FPT of the underlying
parental process, see text for details.

probability. We assume that P (T, < co) > 0 to avoid degenerate cases. The mean of T/, may be infinite, as it

- . ) . D
is in the case of Brownian motion. We also notice that T, = 7, + T}| T, < AT.
Now we calculate the PDF of 77, using IID copies T of TJ,

pr, (0 dt=> P(r, € (t,t+dt), L, =k). (79)
k=0

We denote the terms in the sum (79) as Py(#). Analysing them separately we obtain

P(t)=P(m € (t,t4+dt), e < Ty < Ti41)
P(ri€ (t,t+de),0< Ty — 7, To — Tk < ATgy1) - (80)

Here we used the definition of I, and the definition of 73, as the sum of inter-resetting times. The event
I, = k can be expressed in terms of the independent T!' variables. Note that T!' > Ar; for i < k, as on these

intervals the processes has not crossed the barrier a. Meanwhile, on the (k + 1)th interval we have

Tc’,kJrl < ATy, since on the last interval the process reached the barrier a within a time period that is

shorter than the corresponding inter-resetting time. Therefore

k
Pk(t):P ZATiG(t,t+dt), \ T:QAT,',T‘;](JF1<AT]<+1 . (81)

P 1<i<k

This allows us to extract A7y, and use the law of total expectation to get
t k—1
Pi(t) = /pAT(u)IP’ > Ane(t—ut—u+ds,
0

i=1

vV TV AR T >0 T < Any | du (82)
1<i<k—1

We note that the event T;k > u is independent from all other events in the expression above, resulting in

t k-1
Pu(t) = / par(@Sr (WP X A€ (t—ut—u+di),
0

i=1

V1<i<k71 T;i 2 ATI‘, T;k < ATk du. (83)

16
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The probability in the integral is in fact Py (¢). After recognising the form of the integral as a convolution
we rephrase it in the form

t
:/PAT (”)STJ (M)P(T[ﬂ c (t—u,t—u—&-dt),l,l:k— l)du
0

= par (1) St (t) ¥P(ry, € (tt+dt), [,=k—1)
= par (1) St (£) % Py (1). (84)

Comparing the first and the last lines above we conclude that

Y par (1) St () % Py () = pas (£) Srr (1) * Py (1) (85)

This implies that for all k € N, Pi(#) is a convolution of

Py(t) =P(m € (t,t+dt), I, =0)

0€ (tt+dt),I,=0)

NP, =0)dt=6()P (T, <m)dt
P

H)P(T, < Ar)dt = pd (t)dt (86)

(
(
(
(

P
P
)
1

with a k-fold convolution of pa - ()St/ (1), i.e.

Pe(t) =p (par (S (1) dr. (87)

Plugging this result back into equation (79) we obtain

o (=03 (par (1)1 (1) . (88)
k=0

For further calculations we switch to Laplace space to get

© k P
T T . - ' 8
p l“ P; Z{pA ST )) 1 _Z{pATSTa/}(S) ( 9)

With this result for the PDF of 7;, we can now use the aforementioned property T, 2 1, + Th (T, < AT) to
calculate the PDF of this sum via multiplication in Laplace space. The distribution of T,| (T, < A7) can then
be easily obtained using the law of total probability,

primi<ar () dt=P (T, € (£,t+dt)|T, < A7)

1
N M/Pm ()P (T, € (r,t+dr) , Ty < ) du
¢ 0

1 [ 1
= I;/ par (u)pr: (1) dudt = ESAT () pr: (t)dt, (90)
t

resulting in pr/ 1< a7(t) = (1/p)Sa-()pr: (1). We can now explicitly express pr, in Laplace space as

~ g S T 4 S
fr, (9 = —ZASarpr) ) o)
1 — Z{pa-Sr; }(s)
The mean of T, can be obtained via differentiation of expression (91), i.e.
Qg Sarpry AN TPT! chﬂ +S1/
pr (s) = ds t{ APy }(S> + f{ ATPT] }(5) & t{PA T! }(s) )

1 _Z{pATSTa,}(S) (1 —.,%{PATST;}(SDZ

17
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Calculating every component separately, we first have

d d [~ .
&%{SATPT; }(5) = a/0 e ISAT (t)pTu, (t) dt
= —/ te_StSAT (l‘)pTa/ (t) dt

0

530 — /OO Sar (t)pTa/ (t) dt. (93)
0

For the next term, we get

d d [~ _
T 2dSnpss, }o) = 5 /O e St (1) par (1)dt

= /0 h 11 (1) par (1) dt. (94)
We also have
1= Z{parSrH(s) 21— OOOPAT (t) Sty () dt
— [Teartwar [“pa s oa
= OOOPAT () (1= S1; (1) de
= oopAT (t) Fr-dt, (95)

0

where we used the property St (t) = 1 — Fr/(t). Lastly, we have
Z{PT;SAT}@) 530 / pTa’ (t) SAr (t) dt= / SAar (t) dFTa’ (t)
0 0

= SAT (t)FT“/ (t) ‘:o — /OO FTu’ (t) dSAT (t)

= / Fr: (t)par () dt, (96)
0
where we used the property SA . (t) = —pa- () and the fact that the integration limits vanish due to the
boundedness of Fr/,Sa, and conditions tl_i}m Sar(t) = Fr:(0) = 0. Combining the results (93)-(96) we
obtain
o] = o t(Sar () pry () + Sty (1) par (1)) dt (97)
0 % par (0 Fr (1) de '

Again using the properties pr/(t) = S7, (t) and pa, (1) = Sx . (t) we get

I (sAT (1)Sh, (1) + 51, (1) Sh, (t)) dt

P2, () G0 1S par (O Fr (1)dt
[ t(Sar (St (1) de
Jo par (0)Fry (ndr
Jo7" Sar (1) S (1) dt
I3 par () Fry (D dr

provided that the integral in the numerator exists. The MFPT (T,) thus reads

- fooo Sar (t) STa/ (t) dt
T 1 par P () 0
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If we consider a deterministic A7 and let this quantity go to infinity we see that this result will in fact
approach the moment (T"). Setting pa - (t) = 6(¢ — 7) for some constant 7 > 0, we get

TSr (1) dt TSr (DAt ;e [
fo T/ (1) fo T/ (1) - / S (1) d
0

<Ta> = =

foooé(t— T) Fr, (t)dt Fr, (1) = <T/>. (99)

a

This also shows that for sharp resetting (deterministic, positive A7) the mean will always be finite.

4.2. Complete resetting—examples
4.2.1. Poissonian resetting
Using expression (91) we find

- pri (s+7) pre (s+7) (s+7)pr (s47) rpo -
— a_ — a — = & — ’ s 100
pr, (5) 1 —rSTa/ (s—|—r) 1 _r($ _PT[;E;JrT)) S+ rprs (S+r) pr: (5) ( )

where we used the property of the Laplace transform of the survival probability, ST“/ (s) = (1 —pr:(s))/s. This
confirms the convergence to the original FPT PDF in the absence of resetting (r | 0). Then the MFPT is equal
to

-1

(pry () —1

dr .
(Ta) = —qiePr S 40)| =" —— (101)
Setting f(r) = (p7(r)) " we aim at determining the optimal resetting rate r, by minimising (T,) as a
function of r, i.e.
7
— 1
(1 (n="TOSOTL o ) ) —1=0. (102)

r2

If it exists, solutions to this equation will be the optimal resetting rates for the first-passage problem.

4.2.2. Brownian motion
Setting pr. (s) = exp(—ay/2s) we obtain (T,)(r) = [exp(av/2r) — 1]/r, and the optimum resetting rate is a
solution of the condition

ay/r, —e WV =1, (103)

which is consistent with classical results [18].

4.2.3. SBM
For SBM we have [44]
ac a* —1-a/2
pr: (t) = Wexp ik )t . (104)
« «
In Laplace space this PDF has the form
i 2
- aa - a
pr:(s) = — /t 1-a/2 exp <_4K o —st> dr. (105)
« «
0

Using the definition of the Kritzel function we again rewrite expression (105) as

o 2 11/
pr:(s) = ?ZE <r[4?< } ) . (106)

After substituting this result into equation (101) we obtain the formula for the MFPT. It is shown in figure 9
as a function of «, while in figure 8 we show a favourable comparison with numerical simulations. In [44] a

2 .
1% 5= — stleads to a maximum at
o

ty = (a® /[4K s])"/(@*+1) and thus to the Laplace approximation of the form

s () oy | et (14 L) (22N (107)
Pri ) BT &P o) 4K, '

19

Laplace approximation of (105) was used. Maximising the function ¢ — —
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MFPT

Figure 8. Comparison of the MFPT for different o for SBM under complete Poissonian resetting as a function of resetting rate.
The lines represent the analytical result (106), the dots are results from Monte-Carlo simulations.
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Figure 9. Comparison of the MFPT for SBM as a function of « obtained from the Laplace method (108) (blue line), with
numerical evaluation of the Kritzel function (106) (red line) and with results from Monte-Carlo simulations (black dots,
N =10%).

Substitution of this result into equation (101) yields

1
1 14+« o 1 aa?\ e w1 eV ]
T,) ~ - exp|ris (14— ) —pyest e 108
(Ta) r ple! P ( +a> <4Ka) r (108)

thus correctly reducing to the Brownian case. However, this Laplace approach is again burdened with a
certain error, especially for smaller v values, as can be seen in figure 9. Moreover, in formula (108) the
approximated PDF of T lacks a proper normalisation. The explicit expression in terms of the Kritzel
function therefore has a clear advantage.

4.2.4. Mixture-exponentially distributed resetting times
We now consider the important case of mixture-exponentially distributed waiting times. Due to the relative
simplicity of the calculations for mixture-exponential distributions, this case can be used to approximate any
Par, see also [82]. This will allow us to calculate the FPTD by applying the so-called De Vylder
approximation technique, which is well known in insurance mathematics [64]. It will also allow us to use
results derived for mixture-exponential distributions to approximate results for other classes of distributions.
The general procedure is as follows: suppose that we want to approximate the FPTD or MFPT
corresponding to some distribution of A7, for which exact analytical results are unknown. Applying the De
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Figure 10. Approximating a I'( 1, 5) distribution with a mixture-exponential distribution with 2N parameters using the method
of moments described in the text. The method is time-consuming, yet the fit keeps improving.

Vylder approximation technique, we find the parameters of the corresponding mixture-exponential
distribution, such that it robustly approximates the law of A7. Next, using equation (91) we calculate the
FPTD and MFPT corresponding to the resetting process with the above determined mixture-exponential
waiting times.

Taking, for instance, Gamma-distributed waiting times A7 ~ I'(k, ), where k and ¢} are the shape and
scale parameters, respectively, we approximate it using mixture-exponentially distributed waiting times A7
with appropriately chosen parameters. More precisely, we choose A7 to be the mixture of N exponential

random variables with parameters 11,1, ...,y and weights p;, p,, ..., pn. The PDF of A7 is then given by
1
(k) = etV 109
pa ( » Y ) F(k)’ﬁk € ) ( )

for t > 0. We assume for simplicity k < 1, then the density of A7 is monotone. We know that [84]

((aryy = o LA

W’ (110)

and that

(arym = [ T ipan(ndi=S"p, / Tt ans(idr

i=1

N N
:Zpi<(A7_N,i)n>:n!Z(f;m (111)
i=1 V!

i=1

where we denoted by AN+ ~ Exp(r;) the ith random exponential component of the mixture-exponential
distribution with rate r;. Now we have to choose the parameters ry,r,,...,ry and py,p,,...,pn in such a way
that the PDF of A7Y will robustly approximate the PDF of A7. This is done by solving an appropriate set of
2N Equations. The first equation is Zf\[: i = 1. The remaining 2N — 1 Equations will be set such that the
first 2N — 1 moments of both PDF are equal. We can see the approximation results for different N in

figure 10, demonstrating that the approximation improves with increasing N. Other methods to find the
parameters of A7V can also be applied; for instance, one may minimise the so-called Lévy—Prokhorov metric
[85] or the 1-Wasserstein metric [86] between CDFs of the distributions.

We thus have a tool to approximate different classes of PDFs in terms of the mixture-exponential
distribution. We will now derive FPT results for these mixture-exponential distribution of waiting times,
before using these results to approximate FPTs in more complicated settings. From equation (91) we obtain
that

1 (s) = fo‘x’pTu, (s+7)dtFr (r) B E(pTu/ (s+R))
Pr )= 1— [rSys (s+r)dtFr(r)  1—E(RSr/ (s+R))’

(112)
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Figure 11. Comparison of the Monte-Carlo approximated MFPT (black dashed lines) for SBM under resetting with generalised
gamma inter-resetting times and the mixture-exponential approximation with N components (coloured lines) obtained via the
method of moments (stars) and minimising the L2-distance between the PDFs (circles). We observe the convergence of the
theoretical values to values slightly lower than those obtained from Monte-Carlo simulations; this is caused by the temporal
discretisation in the simulations.

Choosing a discrete distribution for R as in (62), we have

> pipry (s +1i) > pipry (s+1i)
ﬁTu (S) = l:]fll - = l:]h 171;7_/(54»7.1)
1= piriSty(s+m) 1= piri—5—

i=1 i=1

ZPiﬁT; (s+7i)

=1
= . (113)
piri bi tPT’ (s+1i)
= s+r; + Z s+r;
Calculating the MFPT as before, we find
= (> B (- () / S i () ). (114)
Ti

i=1 i=1

We see that for n =1 this result correctly reduces to the Poissonian resetting case.

Going beyond the search for the optimal resetting rate for Poissonian resetting, we address the
approximation of a PDF minimising the MFPT based on general mixture-exponential distribution. Consider
a function (r,p) — (T,)(r,p), with the parametersr = (ry,...,r,) and p = (p1,...,p,) of a
mixture-exponential distribution. We then define a linearly constrained multivariate nonlinear
programming problem of finding r,, p, that minimise the MFPT (T,)(r, p) with the value (T,),. Note that
we can also treat the n € N parameters as a variable of the problem with optimal #,, expecting (T,), to
decay with increasing n. The problem of choosing # in that case reduces to the problem of finding #, which
satisfies W — 1 < ¢ for a given £ > 0. This is solvable by simple iteration of the aforementioned
nonlinear programming problems for a constant n. This algorithm should return an optimal result under the
mixed exponential regime.

4.2.5. SBM
We use the mixture-exponential approximation of the MFPT (114) to check the quality of the estimation for
SBM with generalised gamma-distributed inter-resetting times. The PDF of A7 is now

par (Ek0,p) = — L ple (/) (115)
I‘(p

k)ﬂk
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Table 1. Relative errors of the mixture-exponential approximation technique for the case of SBM with generalised gamma-distributed

inter-resetting times (115), obtained from the method of moments and minimising the L2-distance between the corresponding PDFs.

The mean of the inter-resetting time is different in each case for clarity. We observe the instability in the convergence of the method of
moments as the error should decrease as p — 1, when the PDF simplifies to the exponential case.

Method / p 0.7 0.8 0.9
Method of moments 0.13% 0.12% 0.46%
L? distance minimisation 0.34% 0.3% 0.24%

for t > 0, where we chose k = 1. This time we also use the minimisation of the L?-error between the
mixture-exponential and generalised gamma PDF as fitting technique. Selecting v = 2/3,a=0.1,

p =0.7,0.8,9 we obtain results closer to the Monte-Carlo simulations results as N increases, as seen in
figure 11. The method of moments appears to be more unstable in this case, but the results still approach the
correct values. The errors between Monte-Carlo simulations and theoretical values for N = 8 can be seen in
table 1.

5. Conclusions

We introduced a series representation approach for stochastic processes with resetting in which the resetting
dynamic is triggered by a renewal process. We considered the two scenarios of complete resetting, in which
the memory of the parental process is erased, and incomplete resetting, which corresponds to a simple
shifting of the position. Both definitions are equivalent for processes with stationary and independent
increments. We calculated the PDF, the joint PDF at two points in time, and the autocorrelation function. We
also studied the associated first-passage problems, for which we derived general formula for the PDF of the
FPTs and the MFPT. The series representation offers a new and helpful method to obtain these quantities.
Apart from the general results we obtained explicit results for exponentially (Poissonian resetting) and
mixture-exponentially distributed inter-resetting times: the process PDF, autocorrelation function, FPTD
and MFPT. The parental considered processes are Brownian motion and SBM. Finally, we devised a scheme
for approximating the MFPT of a process with renewal resetting events by approximating its PDF using
mixture-exponential distributions. We studied the quality of this approximation for SBM with generalised
gamma-distributed inter-resetting times. All results were obtained using purely probabilistic methods.

We showed that the series representation technique offers an attractive and flexible alternative
formulation for the analysis of SR. It should be of interest to expand the current analysis to different
stochastic processes, such as fractional Brownian motion with long-ranged, power-law correlations of
increments [87], continuous time random walks with different versions of waiting time and jump length
PDFs [88], and others. The statistic of FPTs for processes with incomplete resetting has not been fully
covered and needs further research. In figure 12 we show the comparison of the MFPTs for SBM as a
function of resetting rate with exponential renewal times for both complete and incomplete resetting cases.
We observe an interesting difference in the impact of the resetting type on the behaviour of the MFPT.

Overall, the series expansion of a stochastic process serves as a powerful tool in both theoretical studies
and practical applications, offering efficiency, clarity, and analytical convenience. A striking example of such
an approach is the Karhunen-Loeéve expansion of Brownian motion (see [89] and references therein), which
can also be applied to Brownian motion with resetting, and is the subject of our current research. One of its
primary benefits is the dimensionality reduction. This allows for an accurate approximation of the process
using a finite number of components, which reduces computational demands and simplifies storage.
Moreover it results in the spectral decomposition of the process with minimum representation entropy
property. Another advantage is the simplification of mathematical and statistical analysis. It transforms the
process into a series in which the random coefficients are uncorrelated. This diagonalisation of the
covariance structure makes it easier to analyse and manipulate the process, particularly in applications such
as prediction, estimation, Bayesian inference and filtering. The expansion provides insight into the structure
of the process as well. The basis functions used in the expansion reflect dominant patterns or frequencies
within the process, which can aid in understanding the underlying dynamics, detecting anomalies, or
extracting features for further analysis. Finally, series expansions enhance mathematical tractability. When
analysing systems governed by differential or integral equations, representing the random process in an
appropriate basis often simplifies the equations, enabling analytical or semi-analytical solutions and
facilitating stability and sensitivity analysis.

It should also be interesting to extend this framework to so-called partial stochastic resetting (PSR), in
which the particle is not reset to its origin but to some value, a fixed or random fraction, in between the
current state and the initial value. PSR was studied in mathematical [90, 91], financial and actuarial [92-96]
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Figure 12. Comparison of the behaviour of the SBM-MFPT as function of the resetting rate for the cases of complete and
incomplete Poissonian resetting from Monte-Carlo simulation. The blue lines are the theoretical results for the MFPT in the
complete resetting case, the red stars are Monte-Carlo estimated MFPTs in the incomplete resetting case for N = 10° simulations.

literature, as well as in queueing theory [97]. Similar models are used in population dynamics [98-102]. PSR
is also relevant for other observables, such as the amount of traffic over the internet, the size of a population,
or the income of an insurance company. PSR can follow scenarios of independent or dependent resetting
[103]. The case of dependent resetting, when the quantity cannot be negative, was analysed in [103-106],
and the time-dependent solution was reported in [107].

We end with some remarks on the fact that our approach can be extended to various other processes. Let
us denote

Y(r) = ZF ({5} N.w] (1) Iny=i = Engy [{ X5} N.w] (1), (116)

where F; are random operators acting on the trajectories of all X; copies as well as on N. We see that the
process Y can carry memory and ‘look into the future’ in the sense that F; acts on the whole (global)
trajectories of N(t),Xo(t),X;(¢)... for t > 0. This is a general representation that can be used for the
definition of a wide class of processes, e.g.

(i) sign switching, F = (—1)N®X,(¢),
(ii) randomised exponential decay, F; = e (=7 X, (),
(ili) regime switching, F; = o, X;(t — 7,) + E;;:) 0 Xi(Tit1 — 79)s
(iv) run and tumble under resetting [108], F; = Y;(X;—1)Xi(t — 73), Yi(Z) = sgn (Z(7; — 7i—1)) with
probability n, —sgn (Z(7; — 7;,—1)) with probability 1 — 7, Yo =1 a.s. X;(¢) = vt.

This approach thus allows us to construct and analyse various stochastic processes. The usual
methodology to study processes with resetting immediately turns to renewal equations [18, 44, 109]. There,
one uses the descriptive definition of the process to derive equations for some finite-dimensional
distribution. For instance, consider example (i), i.e. the sign switching process in which N(t) is a Poisson
process. Using this approach for the one-dimensional distributions we get the last-renewal equation

t

py(x,t) = px (x,t) e ™ + refﬁ//py (2, 1) pxx(0)=— (%, t — u) dzdu, (117)
R

0

or, alternatively, the first-renewal equation

t
pr(x,t) =px(x,t)e "+ r/ e "My (—x,t—u)du. (118)
0
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In the last-renewal equation (117) the first term corresponds to the probability that there was no jump. The
second term averages possible routes the process may undergo since the last reset from an arbitrary point z
up to time ¢ using the transition PDF py. The first-renewal equation (118) is indeed much simpler; while the
first term is the same as in equation (117), the second term introduces a sign-flipping mechanic. Without the
microscopic picture we could not even be sure if this probability corresponds to a stochastic process in the
standard sense—or a generalised stochastic process without more context. The way shown here more directly
reveals insights but lacks a certain rigour, and it does not allow a more general approach to solving other
problems than the one stated previously—for instance, every equation for different finite-dimensional
distributions has to be derived separately using different descriptions of the process. The series
representation approach may have the same level of computational complexity, but it does not require any
heuristic descriptions of the macroscopic properties of a process by considering the underlying probability
flows. Meanwhile, it allows us to formally define a microscopic picture and analyse this object. Furthermore,
by using it we can calculate properties of the process simply by definition. Our reasoning is that this
approach has value due to automatisation of calculations.
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