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Abstract. Stability theory plays a central role in the analysis,of the behaviour of a solution of
a real-order differential equations. In the literaturef various stability concepts were introduced
from the application point of view. The most popular ones are the Lyapunov and the Ulam-Hyers
stability. Here, we first we establish a relation between the Byapunov and Ulam-Hyers stability
concepts for a dynamical system and prove that the/concept of Ulam-Hyers is more general than
that of Lyapunov. Second, we present a brief overviewsof‘recent developments in the Ulam-Hyers
stability analysis of fractional-order differential equations (FDEs). These equations include linear
FDEs, non-linear FDEs, delay FDEs, fractional-order boundary value problems and impulsive
FDEs.

1. Introduction

In 1940, Ulam introduced the following problem regarding the stability of the group
homomorphism in a metric group (G, *,d,) [70] where x represents the operation
in the given group G./ For a given function ¢ : G — G and a positive number ¢
satisfying

di(g(e1 xea),g(er1) xg(ex)) <e, Vey,en €G, (1.1)

does theresexist a positive constant L and a homomorphism h : G — G of the group
(i.e., h(ef*eg) =.h(e;) x h(ez)) with the property

d,(g(e1),h(e)) < Le, Ve, € G? (1.2)

Ifisuch a constant L exists that satisfies equation (1.2), then we say that the equation
of the homomorphism
h(ey * e3) = h(e1) * h(es) (1.3)

on the metric group is stable in the Ulam sense. A year later, Hyer provided an
answer to Ulam’s problem for additive functions on Banach spaces as follows [31]:
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For real Banach spaces (X, ||.||x) and (Y, ||.]|y); given a function g : X =5 Y and a
positive number ¢ satisfying

llg(z +y) —g(x) —gW)lly<e Va,yeX, (1°4)

there exists a unique additive function f : X — Y ie., f(z 44) = f(x) + f(y)
satisfying
lg(x) = f(@)lly<e VeeX. (1.5)

Such a type of stability concept is known as Ulam-Hyers Stability\ (also Hyers-Ulam
or Ulam stability). Generally speaking, a functional équation is said to be Ulam-
Hyers stable, if for every solution of the perturbed equation (called approximate
solution), there exists a solution of the equation (exactisolution) near to it. After the
Hyers result on stability many researchers have éxtended the concept of Ulam-Hyers
stability to other functional equations, we refér the reader to [12,13,32,33,55,58|.

In 1978, Rassias [56] generalised the stability. result of Hyers, an approach known
as the Ulam-Hyers-Rassias stability. The stability pesult of Rassias is contained in
the following theorem.

Theorem 1.1. [56/ Consider X, Y to be.two Banach spaces, and let g : X — 'Y
be a mapping such that f(tx) is continuous int for each fived x. Assume that there
exists 0 > 0 and p € [0,1) such that

lg(z +y) #g(@) — gWe< O([=[ 5% +[yl[%), Yo,y € X. (1.6)
Then, there exists a unique linear mapping f : X — Y such that
260
smSialy< (52 ) llell, vo € X (17)

The positive, number L in Ulam’s problem is called a Ulam-Hyers constant
corresponding to the considered equation (1.3). Let us denote Ly, the infimum of
all Ulam-Hyers constants L. In general L;; may not be a Ulam-Hyers constant for
a given functional equation (see [26]). In case when L, is an Ulam-Hyers constant
it is calledsthe,best Ulam-Hyers constant. The best Ulam-Hyers constant has a
major Significance in the analysis of the Ulam-Hyers stability of a given functional
equationy’ This/ds, because one can not only estimate the possible minimum distance
between the approximate and the exact solution of the functional equation, but, at
thesame time, also get away with searching for other possible Ulam-Hyers constants
by different approaches. For instance, Onitsuka and Shoji [52] studied the Ulam-
Hyers stability of the first-order linear differential equation

' (t) —ax(t) =0, VteR, (1.8)

Page 2 of 38



Page 3 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

where a is a non-zero real number and evaluated the best Ulam-Hyers constant
Ly = 1/|a|. Now, there is no interest in studying the Ulam-Hyets stability.of the
above problem (1.8) because whatever different approach we pursue, itwwill always
end up with a Ulam-Hyers constant L. > Lj,; and thus will besa bad estimation
of the bound for the distance between the approximate and the,exaet solution of
equation (1.8). Finding the best Ulam-Hyers constant, if exists; for a given functional
equations is a challenging task, except for some linear functienal.equations—finding
the best Ulam-Hyers constant for non-linear functional /equations is still an open
problem. However, if the given functional equation does not possess the best Ulam-
Hyers constant or one is unable to find the best Ulam-Hyers, constant, then one can
apply different approaches to improve the estimation, for the Ulam-Hyers constant
L.

In a number of practical problems, integral-order derivatives and differential
equations do not convey the full picture of thessituation. In many complex systems,
the use of the concept of fractional-order calculas {15,24,29,36,42,44,47-49,51,54,65]
or fractional Brownian motion [6,9,25,35,43,46, 71| offers new ways to tackle these
problems Fractional-order differintegral,operators incorporate long-range memory
effects in terms of power-law kernels. ‘For instance, fractional-order, linear dynamic
equations can be derived fromUeentinuous time random walk processes based on
scale-free sojourn time densitieshin the hydrodynamic limit [47,48]. Fractional
differential equations (EDEs) of different types (e.g., linear and non-linear) will
be considered in the following.

The study of real-order differential equations is mainly divided into two parts:
quantitative and qualitat{Qfe theory. The qualitative theory is considerably more
effective than the /quantitative theory in the analysis of real-order differential
equations. The analysis of the qualitative properties of such differential equations is
of high interest, since differential equations arise in nearly all disciplines of science,
medicine, engineering;.€conomics, demography, geophysics, and biocenology. The
qualitative, theory ‘deals with diverse topics along with their physical existence,
such as_stability, asymptotic stability, periodic orbit, limit cycles, and chaos.
Stability theory issone of the oldest and most effective concepts to analyse the
dynamies’ of differential equations and to design control in numerous complex
engineering problems. In the literature, depending upon the requirement to handle
thesmathematical difficulty and from an application point of view, various stability
conceptshave been introduced to analyse the behaviour of some of the physical states
connected to the real-order differential equations. As mentioned, these include the
Ulam-Hyers, Ulam-Hyers-Rassias, and Lyapunov stability, inter alia. In the case
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of integer-order dynamical systems the Lyapunov stability theory is a very mature
subject and has a very rich mathematical foundation [34,72|. Howéver, over the last
few decades, a good amount of research has been carried out on the applications,of
Lyapunov stability for fractional-order dynamical systems to morexealistic problems
in science and engineering [7,67,68|. For detailed discussion onduyapunov stability
results for FDEs we refer to the survey paper [40]. In what follows, we present
different methods in a survey on the Ulam-Hyers stability results for various classes
of FDEs. -

The remainder of this paper is organised as follows. Seetion 2 introduces basic
notations, definitions, and preliminary results for FDE stability analysis. Section 3
presents the concept of strong Ulam-Hyers stability and gives its relationship with
Lyapunov stability in dynamical systems. Section 4diseusses Ulam-Hyers stability
results of linear FDEs, while section 5 examines the nonlinear case. Section 6 deals
with the Ulam-Hyers stability conditions ofsEDEs with delay. In section 7, we
present Ulam-Hyers stability conditions of fra¢tionallboundary value problems. In
section 8, we show the Ulam-Hyers stability results of fractional impulsive differential
equations are described. Finally, seetion.9 displays concluding remarks.

2. Preliminaries

In this section, we introduce some ‘definitions and results, which will be used
throughout this work.

Let C,R, N, and R4 denote the set of complex numbers, the set of real numbers,
the set of natural numbers, and the set of positive real numbers, respectively.
Furthermore, let R%(d & N) denote the d-dimensional Euclidean space.

Definition 2.4.4 /54] The £uler gamma function I'(z) is defined by the integral

[(z) = /O e dr, (2.1)

which convergeswin'the right half of the complex plane, Re(z) > 0.

Definition 2.2. [54] The classical Mittag-Leffler function is the generalisation of
the exponential function. The one-parameter Mittag-Leffler function E, and two-

Page 4 of 38



Page 5 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

parameter (generalised) Mittag-Leffler function E, s are defined, respectively, by

o k

z
Ea(Z> = E m, z € C,Re(o&) > 0, (2.2)

k=0

oo k

z
Eop(z) =) ———, z€C,Re(a) > 0,Re(f) > 0. 2.3
0= T (@) > 0, gl (2.3

Lemma 2.1. [75] For any A > 0 and t € [0, 00) -
1

Eo(=MY) <1, Eyol—MY) < —t 2.4
(M1, Eaal-2e%) < 118 (2.4)

Definition 2.3. [54/ The Riemann-Liouville fractional integral r. 15, of order a > 0
of a given function v(t) is defined by

relgv(t) =

1 ' a—1
m/a t NS @ de, t>a. (2.5)

Definition 2.4. [5/] The Riemann=Liouville fractional derivative rp D3, of order

a >0 of a given function v(t) is defined by

1 ar
RLD;tU(t) = F(TL - Oé) dtm
U(n)(t)a o =n,

t
ter) " y(n)dr, n—1<a<n,t>a,
g 0

where n = [a] is a positi% integer; here [-| denotes the ceiling function.

Definition 2.5. [54] The Caputo fractional derivative ¢cDg, of order a > 0 of a
given function(t) isdefined by

1 t
- v t—m) M ()dr, n—1l<a<n, t>a,
gl { Th—a) fe=n ) 27)
vM(t), & ="n.
: o d™v
wheren = [allis a positive integer, and v™ (t) = i

Definition 2.6. [19] For p € (0,1] and o > 0. 0. The generalised proportional
fractional integral 7. of order a > 0 of a given function v(t) is defined by

bt
Tailv(t) = — ! / e 7 =7 (t—7)* (r)dr, t>a. (2.8)
pT(a) Ja
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Definition 2.7. [19] For p € (0,1] and 0 < a < 1. 0. The generalised proportional
fractional derivative of Riemann-Liouville type rLDyf of order a of a given function
v(t) is defined by

1 1 </t p=lp_ _
——D,” e U — ) () defy O a <1, t>a,
rDYfu(t) = ¢ pel(1—a) "\,

DLp ( )7 a=1,
~ (2.9)
where DPPu(t) = (1 — p)u(t) + p'(t).

Integral inequalities play an important role in establishing the stability
conditions for FDEs. In the literature various imtegral inequalities have been
introduced, including the Gronwall inequality, generalised Gronwall inequality,
Henry-Gronwall inequality, etc. Below, we state those integral inequalities which
are essential for obtaining the results on theUlam=Hyers stability.

L
Theorem 2.1. [34] (Gronwall’s Inequality) Suppose that u(t) and v(t) are
continuous real-valued functions défined on 00 <4 < T (T < 400) with u(t) > 0.
Assume that u and v satisfy

u(t) Sk F k‘2/0 v(T)u(T) dr

on 0 <t < T, where ki andiks are constants with ko > 0. Then,

u(t) ékl exp (ko /Otv(r) dr), vtel0,T).

Theorem 2.2. [83[((Henry-Gronwall inequality) Suppose that o > 0, g €
C([0,7),R;) 8 a nonsdécreasing function and a : [0,T) — Ry is a locally
integrable non=decreasing function; moreover, suppose that u(t) is locally integrable
non-negative with

ult) < a(t) + g(t) / (t — ) tu(r) dr
on 0 <t LT. Then,

u(t) < alt)Eo(g(t)D()t*), Vit e [0,T).

Another important element in the analysis of FDEs are fixed point theorems,
without which it is very difficult (actually almost impossible) to study the existence
and uniqueness of non-linear FDEs. Fixed point theorems are nowadays the most



Page 7 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

widely used tool for studying the Ulam-Hyers stability of FDEs. For details on the
application of fixed point theorems to Ulam-Hyers stability of funetional equations
we refer to the survey paper [16] Details on fixed point theorems are describedyin
the monograph [53]. Below, we state those fixed point theorems which are essential
for obtaining the results on the Ulam-Hyers stability.

Theorem 2.3. [53] (Banach Fized Point Theorem) Let (M, dy) be a complete
metric space. Let Y : M — M be a contraction map with the\Lz’pschz’tz constant
L < 1. If there exists a non-negative integer k such that dy (A y, Try) < +o00 for
somey € M, then
(1) the sequence {Y™y} converges to a fixed point x¥ of T,
(ii) =* is the unique fized point of T in M* = {z € Mudp (X y, 2) < oo},
(i11) if z € M*, then dy(z,2%) < 2rdu(Tz, 2)f

For a given FDE, the Banach fixed point theorem is not only helpful to prove

the Ulam-Hyers stability of the problem but it alse help to estimate the Ulam-Hyers
constant.

Theorem 2.4. [53] (Krasnoselskii’s Figed Point Theorem) Let N(# () be a closed,
conver subset of a Banach space M and Y, %9 : M — M be two operators satisfying
(1)T1u + Tov € N, wheneveriu, e,

(12) Y1 is continuous and compact,

(131) Y3 is a contractiondoperator.

Then there exists w* € N_such. that w* = Tiw* + Tow™.

Theorem 2.5. [53] Let X be a Banach space and Y : X — X a completely
continuous operator AIf the set

GM)={z€ X : ©=\Y(x), for some X € [0,1]}

is bounded, them X has @ fixed point.
Now, ave introduce the concept of the Ulam-Hyers stability for FDEs. Consider
the general FDE:
Fgt)yu(t), D u(t),...,D™u(t)) =0, Vtela,b], —oo<a<b<+oo, (2.10)

where, u  [a,b] — X, ((X,|.||x) is a norm linear space), D% i = 1,...n are
fractional-order differential operators with 0 < oy <--- < ay, and ¢ : [a,b] — X is
a given function.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

Given € > 0, and ¢ : [a,b] — R;. Suppose v : [a,b] — X satisfy,one of the
following FDEs:

| F(q(t),v(t), D*v(t),...,D™v(t))|| <e, Vté€E]la,bl (2.11)
| F(q(t),v(t), D*v(t),...,D"v(t))|| < p(t), Vit lab], (2.12)

Definition 2.8. (Ulam-Hyers stability) The FDE (2.10) is. Ulam-Hyers stable if

there exists a positive constant L > 0, such that for each € 20 and_for each solution
~

v of equation (2.11) there exists an exact solution u of (2.10)with

lo(t) — u(t)||< Le, Vte [a,b (2.13)

such L is often called Ulam-Hyers constant, and it isindependent of ¢.

Definition 2.9. (Ulam-Hyers-Rassias stability) The EDE (2.10) is Ulam-Hyers-
Rassias stable, if there exists a positive constant L > 0 such that for each solution v
of inequation (2.12) there exists a solutionfv of (2.10) with}

lo(t) — u(< Lo(t),, Yt € [a,b]. (2.14)

2.1. Useful tools to analyse the Ulam-Hyers stability

As a summary of this section we,list the three main classes of tools to analyse the
Ulam-Hyers stability of FDEs.

(i) Fixed point approach: This approach applies to non-linear problems.
The most frequently used fixed point theorems to establish the Ulam-Hyers stability
for FDEs are the Banach fixed point theorem, the non-linear alternative of the Leray-
Schauder type, Krasfloselskii’gsand Schauder’s fixed point theorems, etc.

(ii) Integral transforms approach: When a given problem is linear, then
integral transform approach will be a good choice to analyse the Ulam-Hyers stability
of the problem. The most commonly used integral transforms are the Laplace,
Mellin, Sumudu, and Fourier transforms, etc.

(iii) Functional inequalities approach: This plays a vital role for estimating
the Ulam-Hyers constant. For some cases this approach helps directly to establish
the Ulam-Hyers stability results but in most cases it is used along with the fixed point
or dntegralitransform approach. The most frequently used functional inequalities
are Gronwall’s inequality, the generalised Gronwall’s inequality, Henry-Gronwall’s
inequality, the comparison theorem of differential equations, integral inequalities,
etc.

IrAndinequation denotes a mathematical relation that is either an inequality or a "not equal to"
relation between two values.

Page 8 of 38
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3. Relation between Lyapunov and Ulam-Hyers stability

In general, the Lyapunov and Ulam-Hyers stabilities are independent eoncepts. For
instance, we can have the notion of Ulam-Hyers stability for any functional equation,
but the concept of Lyapunov stability is confined to an equation representing the
dynamical system. If we turn to dynamic systems, the Lyapunov stability deals in
studying the behaviour of the solutions of a dynamical system near the equilibrium
points of the system, whereas the Ulam-Hyers stability /mainly~applies to finding
an exact solution near an approximate solution of the systém. In this section, we
approach the connection between Lyapunov’s and Ulam-Hyers’sstability concepts in
the case of dynamical systems.
Consider the fractional differential equationdmthe dynamical systems

cD§ tx( )=F(t,x)y t >0,

3.1
x(0) = xq (3.1)

- 4
where 0 < a < 1, xg € 2 C R4, and F : [0,+80) x§2 — R? is a continuous function.

Definition 3.1. A wvector X € §is said to be an equilibrium point of the first
differential equation of the system (3.1), if B(t,X) = 0, for allt > 0. Define the set
E C Q) the collection of all such equalibrium points.

Denote x(t,X¢) as the solutionjef the above differential equation (3.1) starting
at an initial point x(0) =Xg.
Definition 3.2. [37] (Lyapumev stability) The equilibrium point X € E of the
system (3.1) is Lyapunowsstable if for every e > 0 there exists 6 = d(g) > 0 such
that y
Ixo— X|[< 0 = ||x(t,%0) — X||< e, Vt>0, (3.2)
where ||-|| denotessa norm on RY. In other words, X € E is Lyapunov stable, if given

any € > 0 theresexists<a neighbourhood Ns(X) for some & > 0 such that for each
X0 € Ns(X), the solution x(t,x0) satisfies ||x(t,x¢) —X||< e, for allt > 0.

Definition'3.3: (Ulam-Hyers stability) The differential equation (3.1) is said to be
Ulam-Hyers stable if there exists a constant L > 0, such that for every ¢ > 0 and
anyfunction y': [0,00) — R? satisfying

|eDiy) ~Fey)| < vizo (33)

thereexists an exact solution x : [0,00) — R? of the differential equation (3.1) such
that
ly(t) —x(t)||< Le, Vt>0. (3.4)
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Remark 3.1. In Definition 3.3, the existence of at least one solution x : [0,00) — R4
to the differential equation (3.1) that satisfies the inequality (3.4) is sufficient for
Ulam-Hyers stability. One obuvious such solution can be obtained. by ehoosingran
initial value x(0) depending on'y. In the literature, many authors set x(0)= y(0).
However, in some cases, there may exist multiple such solutions orseven a whole
family of solutions in a neighbourhood of y(0). This faét is demonstrated in
the following theorem, established by Onitsuka and Shojiw[52] for/ integer-order

differential equations. -

Theorem 3.1. [52] Consider the homogeneous lineardifferential equation
2(t) =ax(t), tel, (3.5)

where I is a nonempty open interval of R and a is awon-zero real number. Let
e > 0 be a given arbitrary constant. Suppose.that a differentiable functiony : I — R
satisfies IS

ly'(t) —ax(t)| L&, Vitel. (3.6)

Then one of the following holds:

(i) if a > 0 and sup [ exists, then tgﬂoy(t) exists where T = sup I, and any
solution x(t) of (3.5) with [tETn}Oy(t)—x(T)K e/a satisfies that |y(t)—z(t)|< €/a
forallt e I;

(ii) if @ > 0 and sup I doeswnot exist, then tlgl(;lo y(t)e

~ exists, and there exists

exactly one solution x(t) = (tlim y(t)e‘“t>eat of (3.5) such that |y(t) — z(t)|<
—00
e/a for allt € I;

(iii) if @ < 0 and inf'L, érists, then limoy(t) exists where o = inf I, and any solution

t—o+
z(t) of (3.5) with |thn}roy(t> —x(0)|< €/|a| satisfies that |y(t) —x(t)|< /|a| for
—0
allt € I5
(iv) if a <0 _and inf I does not exist, then tlim y(t)e ™ exists, and there exists
——00

ezactly‘one solution x(t) = (tlim y(t)e_at) e™ of (3.5) such that |y(t) — z(t)|<
——00
g/lal for allt € 1.

Moreover{ they show that for a = 0, the differential equation (3.5) is not Ulam-Hyers
stable.

Example 3.1. Consider the simple integer-order differential equation (o = 1) :

' (t) = ax(t), a€R\{0}, t>0, (3.7)

Page 10 of 38
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with the initial condition
z(0) = . (348)

Let ¢ > 0 be a giwen arbitrary number and suppose that the differentiable
function y : [0,00) — R satisfies

/(1) — ay(t)|< e, Vit > 0. (3.9)

—at

Ifa > 0, then by (ii) assertion of Theorem 3.1, tlim y(t)e “sexists. Denote this limit
—00

by b. Then, the IVP with initial condition x(0) = b has a unigue solution z(t) = be™
satisfying

ly(t) — z(t)|< €/a. (3.10)
In other words, the differential equation (3.7) is Ulam-Hyers stable with Ulam-Hyers
constant given by L = 1/a and the solution x(t) whichisatisfied the inequality (3.10)
1S unique.

Inequality (3.9) implies N

Y (t)= ay(t) & h(p), (3.11)
where h : [0,00) — R and |h(t)|< € for-all.t > 0. Therefore, from (3.11) and (3.7),

we obtain
y' ()52 E=aly — z) + h(t).

The solution of the abouve equation isigiven by

y(t) — a0 2y (0) — 2(0))e™ + / B(s)e ds,

which implies ~N
ly(t)— z(#)|< |y(0) — xole™ + 5/t et=9) ds. (3.12)
If a <0, theme™ <1 for allt > 0. Choose an z'?m'tz’al condition xy such that
[y(0) — zo|< €. (3.13)
Using these facts in (3.12), we get
ly(t) — z(t)|< (1 + ﬁ)e (3.14)

where x(t)\is the solution of the IVP (3.7) with initial condition z(0) = xo, and
Xy satisfying the inequality (3.13). In other words, the differential equation (3.7) is
Ulam=Hyers stable with Ulam-Hyers constant L = 1 + ﬁ Moreover, there exists
a_family of solutions to the IVP (3.7) that satisfy the inequality (3.14), where the
initial values xo belong to an e-neighbourhood of y(0) (i.e., zo € N:(y(0))).
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This example motivates to define a special class of Ulam-Hyers stability, in
order to distinguish between two cases:

(i) The discrete case, where the initial value xo of the solutiom x(#)isatisfying
inequality (3.4) is distributed discretely (as in the case of a 0).

(ii) The continuous case, where the initial value x¢ of the solution x(#), satisfying
inequality (3.4) is distributed in some neighbourhood N(y(0)) of y(0) (as in
the case of a < 0). g

A comparison between Ulam-Hyers and Lyapunow, stability /makes sense only
when the initial condition xy lies in a neighbourhood ef,the equilibrium point.
Therefore, we introduce the following definition, which we c¢all strong Ulam-Hyers
stability:.

Definition 3.4. (Strong Ulam-Hyers stability) The fractional differential equation
(3.1) is said to be strongly Ulam-Hyers stable if.there exists a constant L > 0 such
that, for every € > 0 and any vector-valued function’y : [0, 00) — Q satisfying

leDGy (1) — By (1) [ <e, vi=0, (3.15)
there exists § = 6(¢) > 0 suchsthat
%0 —y(O)l[< 0 == [ly(t) —x()l|< Le, V=0, (3.16)
where x(t) is the solutiom ofythe equation (3.1) subject to the initial condition
x(0) = xo, with xg satisfying the first inequality in (3.16).

Now, we proceed tomtEeduce a theorem that connects Lyapunov and strong
Ulam-Hyers stability for the fractional dynamical system (3.1).

Theorem 3.2. For 0 <« < 1, the strong Ulam-Hyers stability of the fractional
differential eguation (31) implies Lyapunov stability of its equilibrium point.

Proof. Let'e > 0 be an arbitrary given number. Suppose X € FE is an equilibrium
point of the fractional differential equation (3.1). Then,

cDg X —F(t,x)=0, Vt=0. (3.17)

Given that the fractional differential equation (3.1) is strongly Ulam-Hyers
stable, there exists a constant L independent of e. If we take ¢’ = ¢/L > 0, then we
observe that

Do, X — g(t,X)[| < g, Vt=0.

Page 12 of 38



Page 13 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

This inequality corresponds to equation (3.15) under the substitution y = X. By
Definition 3.4 (Strong Ulam-Hyers stability), there exists 6 = §(€&') = d(g/L) >0
such that

Ixo —X||[<d = ||x(t) —X||< Le'=¢, V=0, (3.18)
This ends the proof. O

Remark 3.2. The inverse of Theorem 3.2 remains an opemsproblem. While Ulam-
Hyers stability implies Lyapunov stability in the continuous case, the discrete case—
when the existence of a solution x(t) satisfying the Ulam-Hyers finequality (3.4) is
determined by a discrete distribution of the initial conditionxg= presents advantages
over Lyapunov stability. For instance, in the above example for a > 0, the
system (3.7) exhibits Ulam-Hyers stability in disérete Settings, but the system is
not Lyapunov stable for a > 0.

From Theorem 3.2 and Remark 3.2 abovey one can observe that Ulam-Hyers
stability is a more general concept in the stability th’eory of dynamical systems.

4. Ulam-Hyers stability of linear FDEs
In this section, we first consider thessimplest form of a linear FDE,
Dou(t) +au(t) = g(t), € J=[0,T), 0<T < +oo, (4.1)

where A € R, u:J = Rin —h< a <n,neN, 7, is the Caputo or Riemann-
Liouville derivative of order «, and g : J — R is a given function. The following
results addressing the Ular\n—Hyers stability was established by Wang and Xu [79, 80|
using a Laplace transform.

Theorem 4.1. [79] Given € > 0, if a function v : J — R satisfies the inequality
|Z5w(t) + M) —g(t)| <e, Vtel (4.2)
Then, there exists a solution u : J — R of the FDE (4.1) such that
[u(t) — u(t)|< et®Eg a1 (AtY), VEe (4.3)

Corollary 4.1. IfT < 400, then the linear FDE (4.1) is Ulam-Hyers stable with an
Ulam-Hyers constant L = T*E, o1 (|NT). However, if T = +00, no conclusion
can be drawn from Theorem 4.1.
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Theorem 4.2. [80] Consider the linear FDE (4.1) and let G : J — R 'be a given
function. Then, if a function v : J — R satisfies the inequality

|Z8,0(t) + Mo(t) — g(t)| < G(t), Vte (1.4)
there ezists a solution u: J — R of the linear FDE (4.1) such that
[0(t) — u(t)|< t°G(t) Egar1(JA[EY), VL (4.5)

Corollary 4.2. If T < +oo, then the linear FDE (411) is @zm—Hyers—Rassias
stable with an Ulam-Hyers-Rassias constant L = T Bgut1(|NT¥). In contrast, if
T = +o0, Theorem 4.2 yields no conclusion about its Ulam=Hyers-Rassias stability.

Wang and Li [76] established the Ulam-Hyers stability of the linear FDE for
A > 0, by using the Laplace transform and ewvaluated, the simplified value of the
Ulam-Hyers constant. The result is given in next theorem.

Theorem 4.3. [76] Consider the linear FDE (&:l)swith X > 0. Given ¢ > 0, if a
function v : J — R satisfies the inequality
|Z5.0(t) + t) =g(t)| <e, Viel (4.6)
Then, there ezists a solution gimd,— R of the FDE (4.1) such that
ta
t) —ut) S ViteJ 4.7
wt) - Mgy Ve (4.7
Corollary 4.3. If T < 400, then the linear FDE (4.1) with A > 0 is Ulam-Hyers
stable with an Ulam-Hyers constant L = T*/T'(a + 1).
N
In the same paper, ghe authors also analysed the Ulam-Hyers stability of the
linear FDE in a Banach space (X, ||.||) with Caputo derivative of order 0 < a < 1:
abgU(t) + AU(t) = H(t), teJ 0<a<l, (4.8)

where H J — X is a continuous function and —A : D(A) € X — X be the
generatorsef anCo-semigroup {S(t), t > 0}, written as S(t) = e
space X. Dénote M. = sup,,||S(t)||. The result is then

Theorem 4.4, [76] Given € > 0, if a function V : J — R satisfies the inequality

on the Banach

|cDg,V(t) + AV(t) — H(t)| <e, te (4.9)

then ghere ezists a solution U : J — R of the FDE (4.8) such that

Mt~
V) VIS fops Ve (4.10)
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Shen and Chen [62] discussed the Ulam stability of the generalised linear FDE
with constant coefficients involving a Riemann-Liouville fractionaliderivative,by the
Laplace transform method and evaluated the values of the Ulam-Hyersiconstantyin
the integral form. First they considered the following linear FDE

RLD&tu(t) — )\RLngtu(t) — Gu(t) = g(t), te J, (411)

where \,# e R, n—1<a<n(neN), and 0 < § < «, and established the result
Theorem 4.5. [62] Let g(t) be a given function suchsthat

/0 (£ = 7)1 G gr ot — o) dr

exists for any t € J. Suppose that ¢ : J — Rlis a funetion such that the integral

t
| t= 00 g e )] dr
0
exists for any t € J. If a function v J = R satisfies the inequality
)RLngtv(t) — ArdDigu(t) —Bu(t) — g(t)| < o(t), Vte

Then, there exists a solution u : J =R of the linear FDE (4.11) such that

lo(t) —u(t)|< /0 (t— T)a_ltp(T)|Ga75;)\79(t —7)|dr, YteJ, (4.12)

provided that the sefries

Ga,ﬁ;)\,ﬂ(t> - Etak 1\11
k=0

(k+1,1)
(ak + o, — fB)

Ata—ﬁ] (4.13)

is convergent, Here, 1V is the hypergeometric function [63].

For 6 =0, and.)\ < 0, in the above FDE (4.11), using Lemma 2.1 and Theorem
4.5, the Ulam-Hyers stability was studied for the linear FDE

RLD&tu(t) - )\RLDg,tu(t) =g(t), te (4.14)

as a gorollary, which is given below.
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Corollary 4.4. Let \ <0, n—1<a<n(neN),0<f < a. Givene >0, ifa
function v : J — R satisfies the inequality

RLD&{U(T,) — )\RLDgtU(t) — g(t) <eg, Vted

Then there ezists a solution u : J — R of the linear FDE (4.14) such that

tCY
) —ul)|< =——= Vted.
o0 - )< e veedl
Here, we note that if T < o0, then the linear FDE (4:4) dis” Ulam-Hyers stable
with an Ulam-Hyers constant L = T%/T'(a + 1).

Finally, they presented the Ulam-Hyers-Ragsias stability result for the following
generalised linear FDE

3
&

-~ Sy
reDGu(t) — ArcDou(t) — > AgrcDoiul®) = g(t), teJ, (4.15)
0

=~
i

where n —1 <a<nmneN),a>0>a,2>...>a =0, \, A, € R, k =
0,1,...,m—2(m e N\ {1,25)and ¢g :'J — R is a given function. The result is

Theorem 4.6. [62] Let g(t) be angiven function such that

exists for any t € 0 Ifa function v : J — R satisfies the inequality

m—2

R DG = ArLDy w(t) — > AereDiio(t) — g(t)| < o), Vte .

k=0

Then, there erists a solution u : J — R of the generalised linear FDE (4.15) such
that

t
Iv(t)—U(t)\S/(t—T)a‘lw(T)\Gal ..... om 2 Bo(t = T)|dr, VieJ — (4.16)
0
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provided that the series

0o 1 m—2

_ i

Gal,...,amfz,ﬁ,a;k(t) - E E W H (Ap) 4
=0 i0+i1+...Fim—2=I 0: %1 m=2: p=0

O BI+T P (B—on)ip

(1+1,1) ' )
v <<a—5>Z+z;:02<5—apm,a—ﬁdm ] e

18 convergent.

Liu and Li [41] considered the Ulam-Hyers stability of lincar FDEs with variable
coefficients involving both Riemann-Liouville and ‘Caputo fractional derivatives on
a bounded interval I = [0, al,

Dy u(t) +q(t)u(t) =rt), tel, (4.18)

where n—1 < o < n, (n € N) and 7, is the Caputo or Riemann-Liouville derivative
of order a; moreover, r(t), g(t) are given continuous functions on I = [0, a]. By using
Gronwall’s inequality, they established the Ulam-Hyers stability result given below.

Theorem 4.7. [/1] Assumesthere exists a constant K > 0 such that
|(t = 7)*g(r)[< K, ¥ € [0,1], (4.19)
for each 0 <t < a. Given e 0, if a function v: I — R satisfies the inequality

| Zogo(t) + g)o(t) —r(t)|[<e, Viel.
A
Then, there exists @ comstant L > 0 and a solution uw : I — R of the FDE (4.18)

such that
lv(t) —u(t)|< Le, Vit € I, (4.20)

N l” ] o (1?@)”

1s the Ulam-Hyers eonstant.

where

The Ulam-Hyers stability of a general linear functional equation on a Banach
space was studied by Takagi et al. [66]. They also derived an expression for the
best Ulam-Hyers constant. Before we discuss their result, we briefly recall some
definitions concerning the Ulam-Hyers stability of linear functional equations.

Let (X,]]-||x), (Y,||.|ly) be the normed linear spaces and consider a linear map
T:X =Y.
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Definition 4.1. [66]/ We say that the linear map T has Ulam-Hyers stability, if
there exists a constant L > 0 with the following property: For anyth € T(X)y.e >0
and g € X satisfying ||T'g — hl|y < €, there exists a gy € X with T'gy ='h, such that
g = gollx< L-e.

Now, let 7" be the bounded linear map and N (T), R(T') she kernel and range
of T respectively. Define an induced one-to-one map T : X/N(T)— Y, where
X/N(T) is a quotient space as:

T(g+N(T))=Tg, g€ X.
Let T : R(T) — X/N(T) be the inverse of T'.
Theorem 4.8. [66] Let X,Y be Banach spaces and T X — Y be a bounded linear

map. Then, the following statements are equivalent:
(i) T is Ulam-Hyers stable,

(ii) R(T) is bounded,

(iif) 71 is bounded.

Moreover, if one of the conditions (Jp(ii), or (iii) 4s true. Then, the best Ulam-Hyers
I

~

&

constant is giwen Ly = ||T~

Based on Theorem 4.8, we observe that if a linear functional equation involving
bounded linear operators is Ulam-Hyers.stable, then the best Ulam-Hyers constant
for this equation exists. Thus, by ¢hoosing an appropriate functional space and a

norm, one can prove the existence of the best Ulam-Hyers constant for the linear
FDE.

5. Ulam-Hyers stabili@ of non-linear FDEs

In this sectiomy ave present/the Ulam-Hyers stability results for non-linear FDEs.
Wang et al. [78] addressed the Ulam-Hyers stability of non-linear FDEs involving
a Caputo fractional derivative of order a € (0,1) by using the Henry-Gronwall
inequality4They also analysed the dependence of data for non-linear FDEs in the
case 1 << 2.dnfessence, they studied the Ulam stability of the following FDE:

cDfu(t) = f(t,u(t)), telab),a<b< +oo, (5.1)

where 0 < < 1, f : [a,b) x X — X, and (X, ||.||x) is a Banach space. Under the
following assumptions on f:

(A1).f€ C(la,b) x X, X);

(A2) There exists a constant [y > 0 such that

1F (s un) = F(E u)l[x < Upllus — wallx,

Page 18 of 38
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for each t € [a,b) and for all uy,us € X;
(A3) Let ¢ € C([a,b),Ry) be a non-decreasing function and theréexits a constant

Cv > 0 such that

1 ! a—1
@/@ (t— 1) Lo(r) dr < Cp(t),

for each t € [a, b).
Theorem 5.1. [78] Let assumptions (A1), (A2), and{(A3) hold: If a function
v:[a,b) = X satisfies the inequality

leDG o) = (8 0@)lx < @(t), VI layb),
then there exists a solution u : [a,b) — X of the/FDE (5.2) such that
[o(t) = u(®)|[x< C,o(t) Ea(lgt =@)®), Vi€ [a,b). (5.2)

A4
Corollary 5.1. If b < 400, then the FDE (5.1) is Ulam-Hyers-Rassias stable with
L = C,E.((b — a)*ly). However{ifsb = +oozmo conclusion can be drawn from
Theorem 5.1.

They also established the following Ulam-Hyers stability results for 0 < o < 1.
Theorem 5.2. [78] Assume (A1) and (A2) hold. Let € > 0 be a given number
and suppose a function viala,b) — X satisfies the inequality

leDgv(t) <t v@)lx <&, Vtelab),

then there exists o fffutigh O la,b) — X of the FDE (5.1) such that

ey — e < ="

fag Lelit—a), Veelab). (5:3)

Corollary, 5.2. Ifb< +o0, then the FDE (5.1) is Ulam-Hyers stable with

_ (b—a)® a
L= Fagplal-arly).

However, if b= +o0, no conclusion can be drawn from Theorem 5.2.

In [77] Wang et al. also investigated the Ulam stability of the same non-linear
FDE«(5.1) with X = R on a closed and bounded interval by using the Banach fixed
point’ theorem. Further, they improved and simplified the Ulam-Hyers constant.
Their results are given below.
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Theorem 5.3. [77] For X = R, let assumptions (A1) and (A2) hold over the
finite interval [a,b]. Suppose that ¢ : [a,b] — Ry is a continuous function with

1

m/a (t —7)* to(r)dr < Ko(t), (5.4)

for each t € [a,b] and for some K > 0. Let the constants Iy and K satisfy Kl < 1.
If a continuously differentiable function v : [a,b] — R satisfies the inequality

oD () — F(t, o)< (), vt fadll |

then there exists a unique solution u : [a,b] — R of the FDE (5:1) such that

v(t) = u(®)|<

1 _Klfso(t), Yt &nfagb). (5.5)

In other words, the FDE (5.1) is Ulam-Hyers-Rassias stable.

Here, we notice that the solution u of the/ FDE€5.1) satisfying (5.5) is unique.
In the same paper they also established the Ulam-Hyers stability result given below.

Theorem 5.4. [77] For X =R, let.assumptions (A1) and (A2) hold on a finite
interval [a,a+h], h > 0. Let the constant l;satisfy h*ly/T'(a+1) < 1. Givene > 0,
if a continuously differentiable funetion vy [a,a + h] — R satisfies the inequality

leDggv(t) — f(Bal)|< e, Vi e la,at+h],
then there exists a uniquessolution v : [a,a + h] — R of the FDE (5.1) such that
ha

o)l s Ve lwat i) (5.6)

In other words, the FDE (54) is Ulam-Hyers stable.

El-Hady and ©grekei [22] also considered the same non-linear FDE (5.1) with
X =R on aselosedrand bounded interval [0, 7]. They removed the assumption (5.4)
on the fungtion ¢ and studied the Ulam-Hyers-Rassias stability result by using the
Banachfixed point theorem on a generalised metric space. Further, they derived
the Ulam-Hyers comstant with more flexibility on the parameter than in [77]. The
corresponding results are given as follows.

Theorem 5.5. [22] For X = R, assume conditions (A1) and (A2) hold on the
finiteninterval [0,7], r > 0. Suppose that ¢ : [0,r] = Ry is a continuous and non-
decreasing function; if a continuously differentiable function v : [0,r7] — R satisfies
the wnequality

DG () — fE,0@))|< @(t), Viel[0,r],
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then there exists a unique solution u : [0,r] = R of the FDE (5.1) such that

|v(t) — u(t)|<

Co

mg@(z‘), vVt e la, b, (5.7)

where ¢ and ¢y are arbitrary positive constants such that the inequalities

CQlf 1—a « + ]_ cqt
1 1,2 < ! .
(o) <1, max{l, } ( o ) < o€ (5.8)

~
holds for each t € [0,r.] In other words, the FDE (5.1) is Ulam-Hyers-Rassias stable.

Corollary 5.3. For X = R, let the assumptions (A1) and (A2) hold on the
finite interval [0,7], r > 0. Then, the FDE (B:l) is Ulam-Hyers stable with
L = cy/[erl' () — ealy], provided that the inequalities (5.8).Hold.

Hristove and Abbas [30] investigated the existence of the solution and the Ulam-
type stability of an initial value problem (IVP) for non-linear FDEs involving a
generalised proportional fractional derivative of Riemé&nn-Liouville fractional type on
a closed and bounded interval [a, b]. AL'hey established the results by using the Henry-
Growall inequality and applied them to,a fractional generalisation of a biological
population model as an application. They eonsidered the following non-linear FDE
(IVP):

reDGu(t) =Au(t) +f (¢ u(t), t€la,b],
I;;O"pu(a) = Uy,
where 0 < a < 1,0 < p £1,and A, uy are real constants, and f : [a,b] x R — R is
a given continuous function. The solution of the above initial value problem (5.9)
exists on a Banach space ™

Craplfa, b, R) = {m Ma, 055 R |z € C(a, ], R),

(5.9)

i ¢ 7 (% (t —a)' ™ x(t) < —I—oo},

t—ah

1—
p
u € C14 ,(la, blyRY) satisfies the following integral equation

a a—1
w(y=u e ... (A (t . ) ) (t F )
P P

. pa%(a) /at(t — ) Lexp (’%1@ - T)) Ena ()\ (t . T)a) f(ru(r)) dr,
(5.10)

with a nofm ||z(|c,, ,= maxe(qy ‘exp <—”(t - a)) (t — a)l_ax(t)}. The solution

for t > a.
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Theorem 5.6. [30] Let A € R and assume the conditions (A1) and.(A2) hold
with X = R. Let ¢ > 0 be an arbitrary given number and suppose a"function
v € Ci_qp([a, b)) satisfies the inequality

|[ReDEFu(t) = Mo(t) = f(t,v(t)| < e, Vi€ a,b]
then there exists a solution u € Ci_q ,([a,b]) of the IVP (5.9) such that

0(t) — u(t)|< Le, Vi€ [a,0], By (5.11)

L= [m E, (A (b_a)a) - 1‘ +er (b_p“>a_l E. <eng (b;a)a),

t—a\” t—s\?
ep = max E, , <)\ < a4 ) , €= max  F,, <)\ < s) ) ) (5.12)
t€[a,b] P t,s€f@,blst>s P

In other words, the FDE (5.9) is Ulam-Hyers Stabler

For A < 0, they proved the Ulam=Hyers-Rassias stability for the FDE (5.9) and
estimated the simplified value of the Ulam=Hyers constant as follows.

Theorem 5.7. [30] Let A <0'and.assume the assumptions (A1), (A2), and (A3)
hold on bounded interval |a,b] with X =1R. If a function v € Ci_, ,([a,b]) satisfies
the tnequality

where

‘RLDg:tpU(t) - )‘U(t) - f(tav(t))‘ < @(O» Vi e [a’ b]’
then there exists a solutwowu € C)_q ,(|a,b]) of the IVP (5.9) such that

lu(t) — u(t)|< Lo(t), Vtela,b, (5.13)

E. <ezlf (b;“>a), (5.14)

I [18),Cuong presented the Ulam-Hyers stability analysis of multi-order FDEs

where

L =

D, o (52)”

and ey, es are defined in Theorem 5.6.

involving ‘the Riemann-Liouville derivative. They established the Ulam stability
withirespect to a ||.| ¢ -norm on a C, ([0, T],R%) space (0 < v < 1, d € N) followed
by adBielecki type norm. The C, ([0, T],RY) space is defined as

C.([0,T],RY) = {u e C((0,T],RY) | sup [[t"u(t)||ga< o0}, 0<7y<1,

te[0,7
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with a norm

lallc,= sup [[#"u(t)||ga (5.45)
te€[0,T

where ||-||gs is a norm on R?. Basically, they studied the Ulam-typé stability. for the
following initial value FDE (IVP):

reDyu(t) =f£(t,u(t)), te (0,7, (5.16)
with initial condition ~

l 1— Oc1 o l—ay 2

t_1>r(§l+ dlag[t it ]u(t) Up,

where u(t) = (uy(t), -, uq(t)) € R4 & = (ar,.. o), 0 a5 < 1,0 =1,...,d,
and f : [0,7] x R? — R?. The Riemann-Liouville‘multitorder fractional derivative
reDGu(t) is defined by gL D§u(t) = (reDGhualt), - .. REDoGua(t)).

Lemma 5.1. [18] Assume that f is contifious on [0,T] x R%. Then, a function
u e C((0,T],RY) is a solution of the IVP(5.16) if and only if it is a solution of the
Volterra integral equation

u(t) = diag[t™ ", ..., t* ugt mply £(t, u(t)), Ve (0,7, (5.17)

where RLI&t s a multi-order fractional integral operator.

Since the integral equation (5:l7) is an equivalent form of the FDE (5.16).
Cuong studied the Ulam=Hyers stability of the equivalent integral equation (5.17)
instead of the considereddFDEN(5.16). The result is given below.

Theorem 5.8. [18] Assume f is continuous and Lipschitz continuous with respect

to the second variable with @ Lipschitz constant Lg > 0. Let ¢ > 0 be an arbitrary

given number and suppose a function v € Cy_o,([0,T],R?) satisfies the inequality
sup ||t (w(t) — diag[t™ ", ...t vo — roIG E(E, V(¢ H (5.18)
te[0,7

then theregezists a solution u € Cy_o, ([0, T],RY) of the FDE (5.16) such that

66T

o0 (v(t) —
Sup [[£750 () — u@)les < 7

(5.19)

where oy = max{ay,...aq} and 0 > 0 is chosen large enough such that
21—aiTai—a0F(a0) 21—a0
= L <1
0= max { £ < Gl (o) + fo

In the other words, the multi-order FDE (5.16) is Ulam-Hyers stable with respect to
the ||.llc,_,, norm.
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6. Fractional-order delay differential equations

A delay differential equation (DDE) is a general class of differential, equation, in
dynamical systems, occurring naturally when modelling real-world problems. For
instance, any feedback control system inherently includes time delays, as sensing
information and responding to it takes finite time. Integer-order DDEs have a well-
developed theory regarding the existence and stability of solutions [23,39,45,50,59].
In recent decades, fractional delay differential equations (FDDES) have received
considerable attention due to their applications in dynamieal systems and control.
For results on the existence and stability of solutions to EDDES; see [17,69].

Refaai et al. [57| studied the Ulam-type stability of "FDDEs involving a
Riemann-Liouville fractional derivative in a closedrand bounded interval by using the
Banach fix point theorem followed by Henry-Gréwall inequality. However, according
to our analysis their assumptions and derivations are not correct. For a detailed
proof see [57]. Develi and Duman [20] studied the @xistence of solutions and the
Ulam-Hyers stability of FDDEs involving a Caputo fractional derivative by using
the Banach fixed point theorem on a Banach'space C(|—60,0],R) endowed with the
following Bielecki norm.

|v|| p=. maseju(t)|e ™, ~ > 0. (6.1)
te[—0,b]

Concretely, they consider the following delay system:

D3 u(t) = W (t), u(k(t))), t € [0,8], b> 0, (6.2)
u(t)=((t), te[-0,0]

where 0 < a<01,0'< 0/< o0, h € C([0,b0] x RLR), ¢ € C([-0,0],R), and
k € C([0,0], [0, b)) with k(t) < t. Under the following assumptions:

(A4) h € C>(0,0)x RHR), k € C([0,b], [0, b]) with k(t) <t on [0,].

(A5) There exists a constant w > 0 such that

\h(t, z1,11) — h(t,x9,y2)|< w(|z1 — 22|+ |y1 — yol)

forall z;,ypeR (i = 1,2) and ¢t € [0, 0], the following result was established.

Theorem 6.1. [20] Suppose the assumptions (A4) and (AB5) hold. Let € > 0
be an_arbitrary given number and suppose a function v € C([—0,b],R) satisfies the
inequality

|cD§ w(t) — h(t, v(t), v(k(t))| <e, Vtel0,b],

Page 24 of 38



Page 25 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

then there ezists a solution u € C(|—0,b],R) of the delay system (6.2) such that

bae(9+b)'y

() = uls T ra 1

e, Vtel[-6,b] (61)

where v > 0 is an appropriate real number such that p = 2w /v 1.

Recently, Benzarouala and Tunc [10] studied the Ulam-type stability of the
FDDEs involving a Caputo derivative with n-multiple variable timerdelays:

oDg ult) =Y BiF(tult), u(hi(t))), e [ast],
’ i=1 (6.5)
u(t) = C(t)a te [a - eaa]v
where 0 < a < 1, ¢ € C(la — 0,a],R), F€.C([a,b]'x R x R,R), B; € R for
i=1,...,n,and h; € C([a,b], [a—0,b]) with h;(t) <t such that 0 < h;(t) < 6;, 0 =
max{6; : i=1,...,n}. y

The result was established by the utilisation.of the Banach fixed point theorem
on a complete metric space X given by

X ={vel(lasBbR) = f(t)=C((t), ift € [a—0,a]}
endowed with the metrie
d(vy,ve) = Wt{C">0 : |vi(t) —va()|< Cop(t), t € [a,b]},

where ¢ : [a,b] —"RNis, adcontinuous function. Along with the following
assumptions:

(A6) For everypit= 1,:+. . ny F; € C([a,b] x R xR, R) there exists positive constants
w; and @; such‘that

|Fi(tan, y1) — Fi(t, @, 42)| < (wilmn — o |+@i[y1 — o)
for every t € la,bland for all z;,y; € R(i = 1,2).

(A7) Lett o € C(la— 6,b,R;) be a non-decreasing function and there exits a
constant L, 0 such that

/ (t — 1) Yo(r) dr < L, (1),

foreach t € [a,b)].
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Theorem 6.2. [10] Assume that the assumptions (A6) and (A7) hold. If a
function v € C'([a — 0,0],R) satisfies the inequalities

{\CDE‘,tU(t) — i B Fi(t (), v(hi(t)))| < o(t), t € Jab],
v(t) = C(O)] < (1), t eda =4, al,

then there exists a unique solution u € C'([a — 0,0],R) of the FDDE (6.5) such that

~

L

S L ayB A Vgl (66)

provided that | L,(w; +@;)|B;|< T'(«). In other‘words, the FDDE (6.5) is Ulam-
Hyers-Rassias stable.

o) = ul)|< fros

As a corollary of Theorem 6.2, the following Ulam-Hyers stability results were

also established.
&

Corollary 6.1. Assume the conditions of Theorem 6.2 hold, along with assumption
(A6). Let € > 0 be an arbitrarygiven number and suppose a function v €
Cl([a — 0,b],R) satisfies the inequalities

{\ch,tv@) - By Fteld), o(hi(1)| <e. t€ a0,
u(t) - C(B)] £ =, tela—6,d],

then there ezists a unique’solution v € C'([a — 0,0],R) of the FDDE (6.5) such that

~ (b~ a)® e, Vtelab,  (6.7)

o)~ uIS 1 TS b a4 a0 BI

provided that Y21 | (b =@)H(w; + @;)|B;|< T'(a+1). In other words, the FDDE (6.5)
15 Ulam-Hyers.stable.

7. Fractional-order boundary value problem

In the previous section, we discussed the work carried out on the Ulam-type
stability of .the different classes of FDEs subject to given initial conditions. In this
section, some basic Ulam-type stability results of fractional-order boundary value
problems/(BVPs) will be presented. Applying the fractional-oder model to real-
worldiproblems needs a physically interpretable initial /boundary condition which
contains u(0),u (0),...,u(T), v (T),..., etc. There have been multiple studies of the
Ulam-type stability of fractional-order BVPs [2,5,11,27,64,73|. Here we present a
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few of these results on the Ulam-type stability of the fractional-order BV.P involving
Caputo fractional derivatives. For the existence of solutions of the differenticlasses
of a fractional BVP with a Caputo fractional derivative of order 0 <ha < 1"and
1 < ar < 2 see the survey paper by Agarwal et al. [1] and the book by Ali‘etyal. [5].
As in the case of an integer-order BVP, the solution of the fractienalrorder BVP is
expressed with the help of the Green’s function.
Ali et al. [5] analysed the Ulam-type stability of the following fractional-order

BVP: ~

cDgu(t) = f(tu(t), 1<a<?2, t&fo1],

Au(0) + pu(l) = gi(u), (7.1)

At/ (0) + pou' (1) = go(u),
where g; (i = 1,2) : C([0,1],R) — R are non-lo¢al continuous functions, f :
C([0,1] x R,R), and A;, it; € R with A\; + p; #0xfor ¢ =1,2. The result is obtained
by using the Banach fixed point theorem. The solutign of the BVP (7.1) is given by

1
u(t) = 90) 4, 9 (.05, u() s, (7.2
0
where . 1
g AL+ [y Ao + fio
and ¥ (t, s) is the Greer’sifunction of the BVP (7.1) given by

gr ()t (t — p1)g2(u),

(D . s
o) a0 i) 1(a)
12 ( ‘s —t)w 0<s<t<l
G(t5) =9 X kpd M ¥ [Ma—1)" - T
iy s)0 112 ! (1—s)*
n _ 0<t<s<l1.
L ()\1 = ul)F(a) )\2 + H2 ()\1 -+ M1 ) F(Oé — 1)
(7.3)

To established thesesult, they assumed the following property of ¢:
(A8) For uy, ug'e ([0, 1], R), there exists ¢, € [0,1), such that

|9(ur) = g(u2)|< ¢gllur — ualloc; (7.4)

Wherenful] .= sup,co {\u(t)| . e oo, 1],R)}.
Theorem 7.1. [5] Assume the assumption (A8) holds and let f € C([0,1] x R, R)

be Lipschitz-continuous with respect to the second variable with a Lipschitz constant
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Ly. Let ¢ € C([0,1],Ry) be a non-decreasing function and there exists,a constant

Ay > 0 such that F(la) Ji(t =) o(r) ds < App(t) for each t € [0p1]. If a function

v e C([0,1],R) satisfies the inequality

DG () — F(t.v(®)] < olt). Ve (0.1,

then there exists a unique solution u € C([0,1],R) of the fractional-order BVP (7.1)
such that

Ao o(t), VEedo 1]\ (7.5)
[eg + L] 7 ' 4 '
provided that cy + %Ly < 1, where % = maxc)oy f01|§4(t, $)|ds. In other words,
the fractional-order BVP (7.1) is Ulam-Hyers-Rassiasistable.

o(t) - ult)| < —

Next, they also established the Ulam-Hyers stability result:

Theorem 7.2. [5] Given the assumption (A8)pand.f € C([0,1]xR,R) be Lipschitz-
continuous with respect to the second variable with @lipschitz constant Ly. Lete > 0
be an arbitrary given number and suppose a function v € C([0,1],R) satisfies the
inequality

eDg0(t) — FERNS =, Vi e [0.1),

then there exists a unique solution w'e&C(]0, 1], R) of the fractional-order BVP (7.1)

such that
“%

t) —awl)|<
|U() u( )|— ]._[Cg_‘_gOLf]
provided that c,+%y Ly < 1. In other words, the fractional-order BVP (7.1) is Ulam-
Hyers stable. N

e, Vtelo1], (7.6)

Chen et al. [14] investigated the Ulam-Hyers stability of a class of multi-term
non-linear fractional-orderBVPs involving a Caputo fractional derivative:

e jult) — eDgiu(t) + f(t u(t)) =0, t€[0,1],

7.7
w(0) + u(1) = uo, (©7)

where 0 < ds << 1, f € C([0,1] x R, R), and &, ug are given constants such that
€ # 2I'(a4 — ag + 1). The solution of the fractional BVP (7.7) is given by

u(t) :9(t)+/0 H4(t, s)u(s) ds—/o H5(t,8) f(s,u(s))ds, (7.8)

where

. gtal_o@ — F(Ozl — Qg + 1)
bt = ( §—2(a —az+ 1) )“0

Page 28 of 38



Page 29 of 38

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

as well as
( Etor—az _ I‘(al — Qo + 1) (1 . S)al—az—l
2l (g —ap +1) = ¢
S (t 8)—# H(t =)ol XL
LN o F(al — Ozg)
Etor—az _ I‘(al — a9+ 1) (1 )al—az—l 0<t<s<1
( 2l(ar—ap+1) = ¢ ~
and
( toi—x2 T — 1
§ (a1 — s + )(1 S
2l (g —ap +1) = ¢
1 +(t—3)al_1 0<s<t<l
JG(L,s) = 7
2( 78) F(Oél)
=2 —T'(aq — a5 + 1) -1
& ) 0<t<s<l.
[ 2T —ag + 1) £ ( g ’ S

By using the Banach fixed point theorem and the Gronwall inequality, they obtained

the following result.

1
Theorem 7.3. [14] Assume M= tm[(eﬁc]/ |74 (t,s)|ds < 1 and £ # T'(cy —an+1).
€10, 0

Let f € C(]0,1] x R,R)4be Lipschitz eontinuous with respect to second variable with
a Lipschitz constant Ly. Given any € > 0, if a function v € C([0,1],R) satisfies the

imequality
D) siécDaav(t) + f(t,v(t))| < e, Vie[o1],

then there exists a unigue solution u € C([0,1],R) such that

M (37~ exp(37~' QD)

B Vteo,1
|ut),— uft) | =L op 30 — )7 e, Vtelo1],
where T . 1
_ Q1 — Qg 1
o To—arr M@
and

Qr — iy ky

Moreover, p,q € (1,00) such that 1/p+1/¢g=1 and oy — s +1/q > 1.

Doy — ) (1 + (o — oy — 1)q) Y/ - (o) (14 (ar — 1))V

(7.9)
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From the above results, we note that compared to the fractional-order initial
value problem (IVP) the Ulam-type stability for the fractional-order BVP is quite
complex to analyse. One of the reasons is that the IVP utilises different methods'such
as integral transform method, fixed point method and different integral inequalities.
Another reason may be that the solution of the IVP can be written in the form
a simple Volterra integral equation, whereas the solution of the BVPsappears as a
mixed (Volterra and Fredholm) integral equation.

8. Fractional-order impulsive differential equations

An impulsive differential equation is a special class of differential equation used to
describe real-world phenomena more accurately; including evolutionary processes
characterised by abrupt changes of the state at certaimninstants. In the literature
two familiar impulses are found: instantaneoushimpulses and non-instantaneous
impulses. In the case of instantaneous impulses, the time interval of the changes
is relatively short in comparison to the ‘total duration of the process, while in
the non-instantaneous case, an impulsive action starts at an arbitrary point in
time and remains active for a finite timeninterval. For details on the theory of
the impulsive differential equation see the monographs by Lakshmikantham [3§],
Bainov [8] and Wang [74]. In'2013, Hernandez [28] introduced a new class of
impulsive differential equation with mon-instantaneous impulses and studied the
existence of a mild solutionisy Agarwal et al. [3] analysed a Caputo FDE with non-
instantaneous impulses./ For a detailed survey on non-instantaneous impulses on
integer- and FDEs, we refer to the monograph by Agarwal et al. [4].

Wang et al. [81] stlhied the existence of the solution and the Ulam-Hyers
stability of non-linear impulsive FDEs with Caputo derivative on the finite interval
J =10,T7:

Do u(th=f(t u(t)), teJ =J\{t,....,tn}, 0<a<l,
Au(ty) i=u(th) —u(ty) = I(u(ty)), k=1,2,...,m, (8.1)

where f X R — R is jointly continuous, I : R — R and t;, £k = 1,2,...,m,
sabisfy 0 = t9 < t; < to < -+ < bty < tpmy1 = T, u(ty) = lim o+ u(ty + €)
and w(t,) = lim.,o- u(ty + €) represent the right and left limits of u(t) at t = .
Theylestablished the results by using the fixed point theorem on a Banach space
PCUR)={u:J = R:ue€ C((tr,tkra],R), k= 0,1,...,m; u(t]),u(t;) exist
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with u(t;) = u(t; )} endowed with the norm

oNOYTULT D WN =

[ull po= suplu(t)].
teJ

1 Lemma 8.1. [81] Let u € PC(J,R) satisfy the following inequality

14 hwnsmw+@éu—ww*mwnmw—}jemmam

0<tp<t ~

17 where a(t) is non-negative continuous and non-decredsing function on J and b, 0y,
18 are non-negative constants. Then,

()< a(t) (1 + 0B, (b0 ()t*))* B, (bD(EVE), Nfor t € (ty, trsal,

23 where 0 = max{0, : k=1,2,...m}.

25 Definition 8.1. [81] A function u € PJ(J,R) is a'solution of the impulsive FDE
26 (8.1) if u satisfies
28 ( 1 t )
29 up + —/ (t—71)f(r,ulw)) dry  for t €0,t],
I'(a) Jo | )
;; uo + I (u(ty)) + @/0 (t— 1) f(r,u(t))dr, for t € (t1,ts],
(

33 B - B 1 ¢ o1
34 u(t) = § uo + L (u(ty)) + 1 U(tz))Jr@/o (t =) f(r,u(r))dr, for t € (ta,13],

m N 1 t
38 ug + ka(u(t,:)) + —/0 (t —7)f(r,u(r))dr, for t € (tm,T),

— INGY)
40 (8.2)

42 They assumethe following assumptions to establish the main results:

43 (A9) For arbitrary (t,u) € J x R, there exist Cy, My > 0 and ¢, € [0, 1) such that
£t )| Sl

46 (A10) For arbitrary v € R, there exist C;, My > 0 and ¢ € [0,1) such that
47 |Ik(u)|§ C’1|u|q2+M1 k=1,2...,m.

(A11) There exists a constant K}k) > (0 such that |1 (uy) — Ix(u9)|< K}k)|u1 — Us|,
50 forall uj,us € Rand k=1,2,... m.

52 Theorem 8.1. Let the assumptions (A9), (A10), (A11) hold and f € C(J xR, R)
53 be a Lipschitz-continuous function with respect to the second variable with a Lipschitz
constant Lg. Let ¢ € C(J,Ry) be a non-decreasing function and there exists a



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

constant A\, > 0 such that ﬁ [t —7)2 () ds < M\p(t) for each t'€ J. Ifa
function v € PC(J,R,) satisfies the inequalities

|eDg(t) = [t o) <e(t), teT

‘Av(tk) — ]k(v(t,;))‘ <(ty), k=1,2,... m, (8:3)

then there ezists a unique solution uw € PC(J,R) of the impulsive FDE (8.1) such
that .
[0(t) —u()|< (m+A) M p(t), VEed, (8.4)

where M* = Eo(L;T®) (1 + K[ Eo(L;T*)™ and K; =, dax{K" . k =
1,2,...,m}. In other words, the impulsive FDE BVP (8.1) 18 Ulam-Hyers-Rassias
stable.

Ding [21] studied the Ulam-Hyers stability of delay FDEs with instantaneous
impulses by using the Banach fixed point theorem and the abstract Gronwall
inequality:. y

Wang et al. [82] investigated(the existence of the solution and Ulam-type
stability of non-linear FDEs with  nonsinstantaneous impulses with a Caputo
derivative on the finite interval J = [0;1:

cDgu(t) = f(t,u(t)), e (t,sx], k=0,1,...,m, 0 <a <1,
U(t) = gk(t?u(t))a te (Sk—latk]a k= 1a 27 cee, My (85)
u(0) = ugs

where 0 = ty < sg <.z sy <4o <y < sm=1T, f:J xR — R is continuous,
and gx : [sk_1,tk] X R & RS continuous for each k = 1,2,...,m, the so-called
non-instantaneous impulses.

Definition 8.2.[82/ A function u € PC(J,R) is a mild solution of the FDE (8.5)
if u satisfies

(

1 ! a—1
uy + @/0 (t—7) " f(r,u(r))dr, for te]0,so,
ge(tyu(t)), for t € (sp_1,tg), k=1,2,...,m,
u(t) = t
U Yorttnt) - s [0 0 e
1
7)

x+@/0t(t_ (1 u(r))dr, for t € (ty,si], k=1,2,...,m.
(8.6)
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They introduced the concepts of generalised Ulam-Hyers stability for the non-
instantaneous impulsive FDE (8.5).

Let ¢ > 0 and ¢ € PC(J,R.) be non-decreasing. Consider the following
inequalities:

{\CDg,tu(t) — f(to)] < @(t), te (sl k=0,14..,m, &)

|U(t) - gk(tvv(t))| <eg te (Sk—latk]7 k= 1727 RN AL

~
Definition 8.3. [82] The non-instantaneous impulsive dDE (8.5) is said to be
generalised Ulam-Hyers stable with respect to (p, ) if there ezists a constant L > 0
such that, for each solution v € PC(J,R) of thesinequality (8.7) there exists a
solution uw € PC(J,R) of the FDE (8.5) with

(1) — u(t)|< L(p(t)%e), te

They assume the following assumptions t0 establish the main results:
(A12) gy € C([sk-1,tk] xR, R) andshere are positive constants L, , k=1,2,...,m
such that |gx(t,u1) — gr(t, u2)|< Lgpluan— us|, for cach ¢t € (si_1,tx], and for all
U1, ug € R.
(A13) The function ¢ € C(J,R{)uis,a non-decreasing function. There exist ¢, > 0
and 0 < p < a < 1 such that

(/Ot (@ls) """ dg)p <coplt), Yitel

Theorem 8.2. [82]«Assume (A12) and (A13) hold, and let f € C(J x R,R) be
Lipschitz-continuous with respect to the second wvariable with a Lipschitz constant
Ly. If a functiomv € PC(J,R) satisfies the inequality (8.7). Then, there exists a
unique solution w & PC(J,R) of the FDE (8.5) as given in equation (8.6) such that

1-p
2¢ 1- To—
1“(2:) (a— —];) P+ 1)

1-M

)= (t)|< ( [o(t) +e] te (8.8)

provided that &/ = max{M;, M} < 1, and where

Lic, (1—p\'™®
Mlzmax{ / *”( p) (sp P+t ")+ Ly,

k=0,1,2,...
F(Oé) a—p [t b 7m}7

Ly o o
M2 = maX{m(Sk ‘l‘tk) + Lgk

k:1,2,...,m}.
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Similarly, Shankar and Bora [60,61] established the Ulam-Hyers and.generalised
Ulam-Hyers stability of the non-instantaneous impulsive integro-differential' equation
involving a Caputo derivative by using the Banach fixed point theoremrand applied
the obtained results to fractional RLC' circuits as an application,

9. Conclusions

We presented a brief survey and introduced the methods to.deal with the Ulam-
Hyers stability of fractional-order differential equations, (FDEs). The survey covers
recent contributions in this area for various classes of FDEs &uch as linear FDEs,
non-linear FDEs, delay FDEs, fractional-order béundary value problems (BVP),
and impulsive FDEs. We also established a connéction between the Lyapunov and
Ulam-Hyers stability for dynamical systems and pointed out that the Ulam-Hyers
stability is more general than the Lyapunov.stability.

From this survey, one can observe that most ®f the results on Ulam-Hyers
stability for FDEs have been established ‘on a bounded interval, and none of the
authors have tried to estimate the hestyUlam-Hyers constant even for linear FDEs.
As this field has large relevance in practical applications of FDEs, both more work on
the development of the theoretical framework and establishing solutions for concrete
problems are needed.
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