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Abstract. Stability theory plays a central role in the analysis of the behaviour of a solution of
a real-order differential equations. In the literature, various stability concepts were introduced
from the application point of view. The most popular ones are the Lyapunov and the Ulam-Hyers
stability. Here, we first we establish a relation between the Lyapunov and Ulam-Hyers stability
concepts for a dynamical system and prove that the concept of Ulam-Hyers is more general than
that of Lyapunov. Second, we present a brief overview of recent developments in the Ulam-Hyers
stability analysis of fractional-order differential equations (FDEs). These equations include linear
FDEs, non-linear FDEs, delay FDEs, fractional-order boundary value problems and impulsive
FDEs.

1. Introduction

In 1940, Ulam introduced the following problem regarding the stability of the group
homomorphism in a metric group (G, ⋆, d⋆) [70] where ⋆ represents the operation
in the given group G. For a given function g : G → G and a positive number ε

satisfying
d⋆(g(e1 ⋆ e2), g(e1) ⋆ g(e2)) ≤ ε, ∀ e1, e2 ∈ G, (1.1)

does there exist a positive constant L and a homomorphism h : G → G of the group
(i.e., h(e1 ⋆ e2) = h(e1) ⋆ h(e2)) with the property

d⋆(g(e1), h(e1)) ≤ Lε, ∀ e1 ∈ G? (1.2)

If such a constant L exists that satisfies equation (1.2), then we say that the equation
of the homomorphism

h(e1 ⋆ e2) = h(e1) ⋆ h(e2) (1.3)

on the metric group is stable in the Ulam sense. A year later, Hyer provided an
answer to Ulam’s problem for additive functions on Banach spaces as follows [31]:
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For real Banach spaces (X, ||.||X) and (Y, ||.||Y ); given a function g : X → Y and a
positive number ε satisfying

||g(x+ y)− g(x)− g(y)||Y≤ ε ∀ x, y ∈ X, (1.4)

there exists a unique additive function f : X → Y i.e., f(x + y) = f(x) + f(y)

satisfying
||g(x)− f(x)||Y≤ ε ∀ x ∈ X. (1.5)

Such a type of stability concept is known as Ulam-Hyers stability (also Hyers-Ulam
or Ulam stability). Generally speaking, a functional equation is said to be Ulam-
Hyers stable, if for every solution of the perturbed equation (called approximate
solution), there exists a solution of the equation (exact solution) near to it. After the
Hyers result on stability many researchers have extended the concept of Ulam-Hyers
stability to other functional equations, we refer the reader to [12, 13, 32, 33, 55, 58].

In 1978, Rassias [56] generalised the stability result of Hyers, an approach known
as the Ulam-Hyers-Rassias stability. The stability result of Rassias is contained in
the following theorem.

Theorem 1.1. [56] Consider X, Y to be two Banach spaces, and let g : X → Y

be a mapping such that f(tx) is continuous in t for each fixed x. Assume that there

exists θ > 0 and p ∈ [0, 1) such that

||g(x+ y)− g(x)− g(y)||Y≤ θ(||x||pX+||y||pX), ∀ x, y ∈ X. (1.6)

Then, there exists a unique linear mapping f : X → Y such that

||g(x)− f(x)||Y≤

(

2θ

2− 2p

)

||x||pX, ∀ x ∈ X. (1.7)

The positive number L in Ulam’s problem is called a Ulam-Hyers constant
corresponding to the considered equation (1.3). Let us denote LM the infimum of
all Ulam-Hyers constants L. In general LM may not be a Ulam-Hyers constant for
a given functional equation (see [26]). In case when LM is an Ulam-Hyers constant
it is called the best Ulam-Hyers constant. The best Ulam-Hyers constant has a
major significance in the analysis of the Ulam-Hyers stability of a given functional
equation. This is, because one can not only estimate the possible minimum distance
between the approximate and the exact solution of the functional equation, but, at
the same time, also get away with searching for other possible Ulam-Hyers constants
by different approaches. For instance, Onitsuka and Shoji [52] studied the Ulam-
Hyers stability of the first-order linear differential equation

x′(t)− ax(t) = 0, ∀ t ∈ R, (1.8)
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where a is a non-zero real number and evaluated the best Ulam-Hyers constant
LM = 1/|a|. Now, there is no interest in studying the Ulam-Hyers stability of the
above problem (1.8) because whatever different approach we pursue, it will always
end up with a Ulam-Hyers constant L ≥ LM and thus will be a bad estimation
of the bound for the distance between the approximate and the exact solution of
equation (1.8). Finding the best Ulam-Hyers constant, if exists, for a given functional
equations is a challenging task, except for some linear functional equations—finding
the best Ulam-Hyers constant for non-linear functional equations is still an open
problem. However, if the given functional equation does not possess the best Ulam-
Hyers constant or one is unable to find the best Ulam-Hyers constant, then one can
apply different approaches to improve the estimation for the Ulam-Hyers constant
L.

In a number of practical problems, integral-order derivatives and differential
equations do not convey the full picture of the situation. In many complex systems,
the use of the concept of fractional-order calculus [15,24,29,36,42,44,47–49,51,54,65]
or fractional Brownian motion [6,9,25,35,43,46,71] offers new ways to tackle these
problems Fractional-order differintegral operators incorporate long-range memory
effects in terms of power-law kernels. For instance, fractional-order, linear dynamic
equations can be derived from continuous time random walk processes based on
scale-free sojourn time densities in the hydrodynamic limit [47, 48]. Fractional
differential equations (FDEs) of different types (e.g., linear and non-linear) will
be considered in the following.

The study of real-order differential equations is mainly divided into two parts:
quantitative and qualitative theory. The qualitative theory is considerably more
effective than the quantitative theory in the analysis of real-order differential
equations. The analysis of the qualitative properties of such differential equations is
of high interest since differential equations arise in nearly all disciplines of science,
medicine, engineering, economics, demography, geophysics, and biocenology. The
qualitative theory deals with diverse topics along with their physical existence,
such as stability, asymptotic stability, periodic orbit, limit cycles, and chaos.
Stability theory is one of the oldest and most effective concepts to analyse the
dynamics of differential equations and to design control in numerous complex
engineering problems. In the literature, depending upon the requirement to handle
the mathematical difficulty and from an application point of view, various stability
concepts have been introduced to analyse the behaviour of some of the physical states
connected to the real-order differential equations. As mentioned, these include the
Ulam-Hyers, Ulam-Hyers-Rassias, and Lyapunov stability, inter alia. In the case
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of integer-order dynamical systems the Lyapunov stability theory is a very mature
subject and has a very rich mathematical foundation [34,72]. However, over the last
few decades, a good amount of research has been carried out on the applications of
Lyapunov stability for fractional-order dynamical systems to more realistic problems
in science and engineering [7, 67, 68]. For detailed discussion on Lyapunov stability
results for FDEs we refer to the survey paper [40]. In what follows, we present
different methods in a survey on the Ulam-Hyers stability results for various classes
of FDEs.

The remainder of this paper is organised as follows. Section 2 introduces basic
notations, definitions, and preliminary results for FDE stability analysis. Section 3
presents the concept of strong Ulam-Hyers stability and gives its relationship with
Lyapunov stability in dynamical systems. Section 4 discusses Ulam-Hyers stability
results of linear FDEs, while section 5 examines the nonlinear case. Section 6 deals
with the Ulam-Hyers stability conditions of FDEs with delay. In section 7, we
present Ulam-Hyers stability conditions of fractional boundary value problems. In
section 8, we show the Ulam-Hyers stability results of fractional impulsive differential
equations are described. Finally, section 9 displays concluding remarks.

2. Preliminaries

In this section, we introduce some definitions and results, which will be used
throughout this work.

Let C,R,N, and R+, denote the set of complex numbers, the set of real numbers,
the set of natural numbers, and the set of positive real numbers, respectively.
Furthermore, let Rd (d ∈ N) denote the d-dimensional Euclidean space.

Definition 2.1. [54] The Euler gamma function Γ(z) is defined by the integral

Γ(z) =

∫ ∞

0

e−ττ z−1 dτ, (2.1)

which converges in the right half of the complex plane, Re(z) > 0.

Definition 2.2. [54] The classical Mittag-Leffler function is the generalisation of

the exponential function. The one-parameter Mittag-Leffler function Eα and two-
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parameter (generalised) Mittag-Leffler function Eα,β are defined, respectively, by

Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)
, z ∈ C,Re(α) > 0, (2.2)

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
, z ∈ C,Re(α) > 0,Re(β) > 0. (2.3)

Lemma 2.1. [75] For any λ ≥ 0 and t ∈ [0,∞)

Eα(−λtα) ≤ 1, Eα,α(−λtα) ≤
1

Γ(α)
. (2.4)

Definition 2.3. [54] The Riemann-Liouville fractional integral RLI
α
a,t of order α > 0

of a given function v(t) is defined by

RLI
α
a,tv(t) =

1

Γ(α)

∫ t

a

(t− τ)α−1v(τ) dς, t > a. (2.5)

Definition 2.4. [54] The Riemann-Liouville fractional derivative RLD
α
a,t of order

α > 0 of a given function v(t) is defined by

RLD
α
a,tv(t) =











1

Γ(n− α)

dn

dtn

∫ t

a

(t− τ)n−α−1v(τ) dτ, n− 1 < α < n, t > a,

v(n)(t), α = n,

(2.6)

where n = ⌈α⌉ is a positive integer; here ⌈·⌉ denotes the ceiling function.

Definition 2.5. [54] The Caputo fractional derivative CD
α
a,t of order α > 0 of a

given function v(t) is defined by

CD
α
a,tv(t) =











1

Γ(n− α)

∫ t

a

(t− τ)n−α−1v(n)(τ) dτ, n− 1 < α < n, t > a,

v(n)(t), α = n.

(2.7)

where n = ⌈α⌉ is a positive integer, and v(n)(t) =
dnv

dtn
.

Definition 2.6. [19] For ρ ∈ (0, 1] and α > 0. 0. The generalised proportional

fractional integral I
α,ρ
a,t of order α > 0 of a given function v(t) is defined by

I
α,ρ
a,t v(t) =

1

ραΓ(α)

∫ t

a

e
ρ−1

ρ
(t−τ)(t− τ)α−1v(τ) dτ, t > a. (2.8)
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Definition 2.7. [19] For ρ ∈ (0, 1] and 0 < α ≤ 1. 0. The generalised proportional

fractional derivative of Riemann-Liouville type RLD
α,ρ
a,t of order α of a given function

v(t) is defined by

RLD
α,ρ
a,t v(t) =











1

ρ1−αΓ(1− α)
D1,ρ

t

(
∫ t

a

e
ρ−1

ρ
(t−τ)(t− τ)−αv(τ) dτ

)

, 0 < α < 1, t > a,

D1,ρ
t v(t), α = 1,

(2.9)
where D1,ρ

t v(t) = (1− ρ)v(t) + ρv′(t).

Integral inequalities play an important role in establishing the stability
conditions for FDEs. In the literature various integral inequalities have been
introduced, including the Grönwall inequality, generalised Grönwall inequality,
Henry-Grönwall inequality, etc. Below, we state those integral inequalities which
are essential for obtaining the results on the Ulam-Hyers stability.

Theorem 2.1. [34] (Grönwall’s Inequality) Suppose that u(t) and v(t) are

continuous real-valued functions defined on 0 ≤ t < T (T ≤ +∞) with u(t) ≥ 0.

Assume that u and v satisfy

u(t) ≤ k1 + k2

∫ t

0

v(τ)u(τ) dτ

on 0 ≤ t < T, where k1 and k2 are constants with k2 ≥ 0. Then,

u(t) ≤ k1 exp(k2

∫ t

0

v(τ) dτ), ∀t ∈ [0, T ).

Theorem 2.2. [83] (Henry-Grönwall inequality) Suppose that α > 0, g ∈

C([0, T ),R+) is a non-decreasing function and a : [0, T ) → R+ is a locally

integrable non-decreasing function; moreover, suppose that u(t) is locally integrable

non-negative with

u(t) ≤ a(t) + g(t)

∫ t

0

(t− τ)α−1u(τ) dτ

on 0 ≤ t < T. Then,

u(t) ≤ a(t)Eα(g(t)Γ(α)t
α), ∀ t ∈ [0, T ).

Another important element in the analysis of FDEs are fixed point theorems,
without which it is very difficult (actually almost impossible) to study the existence
and uniqueness of non-linear FDEs. Fixed point theorems are nowadays the most
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widely used tool for studying the Ulam-Hyers stability of FDEs. For details on the
application of fixed point theorems to Ulam-Hyers stability of functional equations
we refer to the survey paper [16] Details on fixed point theorems are described in
the monograph [53]. Below, we state those fixed point theorems which are essential
for obtaining the results on the Ulam-Hyers stability.

Theorem 2.3. [53] (Banach Fixed Point Theorem) Let (M, dM) be a complete

metric space. Let Υ : M → M be a contraction map with the Lipschitz constant

L < 1. If there exists a non-negative integer k such that dM(Υk+1y,Υky) < +∞ for

some y ∈ M, then

(i) the sequence {Υny} converges to a fixed point x∗ of Υ,

(ii) x∗ is the unique fixed point of Υ in M∗ = {z ∈ M | dM(Υky, z) < ∞},

(iii) if z ∈ M∗, then dM(z, x∗) ≤ 1
1−L

dM(Υz, z).

For a given FDE, the Banach fixed point theorem is not only helpful to prove
the Ulam-Hyers stability of the problem but it also help to estimate the Ulam-Hyers
constant.

Theorem 2.4. [53] (Krasnoselskii’s Fixed Point Theorem) Let N( 6= ∅) be a closed,

convex subset of a Banach space M and Υ1,Υ2 : M → M be two operators satisfying

(i)Υ1u+Υ2v ∈ N, whenever u, v ∈ N,

(ii)Υ1 is continuous and compact,

(iii)Υ2 is a contraction operator.

Then there exists w∗ ∈ N such that w∗ = Υ1w
∗ +Υ2w

∗.

Theorem 2.5. [53] Let X be a Banach space and Υ : X → X a completely

continuous operator. If the set

G(Υ) = {x ∈ X : x = λΥ(x), for some λ ∈ [0, 1]}

is bounded, then Υ has a fixed point.

Now, we introduce the concept of the Ulam-Hyers stability for FDEs. Consider
the general FDE:

F(q(t), u(t),Dα1u(t), . . . ,Dαnu(t)) = 0, ∀ t ∈ [a, b], −∞ ≤ a < b ≤ +∞, (2.10)

where, u : [a, b] → X, ((X, ‖.‖X) is a norm linear space), Dαi i = 1, . . . n are
fractional-order differential operators with 0 ≤ α1 ≤ · · · ≤ αn, and q : [a, b] → X is
a given function.
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Given ε > 0, and ϕ : [a, b] → R+. Suppose v : [a, b] → X satisfy one of the
following FDEs:

‖F(q(t), v(t),Dα1v(t), . . . ,Dαnv(t))‖ ≤ ε, ∀ t ∈ [a, b], (2.11)

‖F(q(t), v(t),Dα1v(t), . . . ,Dαnv(t))‖ ≤ ϕ(t), ∀ t ∈ [a, b], (2.12)

Definition 2.8. (Ulam-Hyers stability) The FDE (2.10) is Ulam-Hyers stable if

there exists a positive constant L > 0, such that for each ε > 0 and for each solution

v of equation (2.11) there exists an exact solution u of (2.10) with

‖v(t)− u(t)‖≤ Lε, ∀ t ∈ [a, b]. (2.13)

such L is often called Ulam-Hyers constant, and it is independent of ε.

Definition 2.9. (Ulam-Hyers-Rassias stability) The FDE (2.10) is Ulam-Hyers-

Rassias stable, if there exists a positive constant L > 0 such that for each solution v

of inequation (2.12) there exists a solution v of (2.10) with‡

‖v(t)− u(t)‖≤ Lϕ(t), ∀ t ∈ [a, b]. (2.14)

2.1. Useful tools to analyse the Ulam-Hyers stability

As a summary of this section we list the three main classes of tools to analyse the
Ulam-Hyers stability of FDEs.

(i) Fixed point approach: This approach applies to non-linear problems.
The most frequently used fixed point theorems to establish the Ulam-Hyers stability
for FDEs are the Banach fixed point theorem, the non-linear alternative of the Leray-
Schauder type, Krasnoselskii’s and Schauder’s fixed point theorems, etc.

(ii) Integral transforms approach: When a given problem is linear, then
integral transform approach will be a good choice to analyse the Ulam-Hyers stability
of the problem. The most commonly used integral transforms are the Laplace,
Mellin, Sumudu, and Fourier transforms, etc.

(iii) Functional inequalities approach: This plays a vital role for estimating
the Ulam-Hyers constant. For some cases this approach helps directly to establish
the Ulam-Hyers stability results but in most cases it is used along with the fixed point
or integral transform approach. The most frequently used functional inequalities
are Grönwall’s inequality, the generalised Grönwall’s inequality, Henry-Grönwall’s
inequality, the comparison theorem of differential equations, integral inequalities,
etc.

‡ An inequation denotes a mathematical relation that is either an inequality or a "not equal to"
relation between two values.
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3. Relation between Lyapunov and Ulam-Hyers stability

In general, the Lyapunov and Ulam-Hyers stabilities are independent concepts. For
instance, we can have the notion of Ulam-Hyers stability for any functional equation,
but the concept of Lyapunov stability is confined to an equation representing the
dynamical system. If we turn to dynamic systems, the Lyapunov stability deals in
studying the behaviour of the solutions of a dynamical system near the equilibrium
points of the system, whereas the Ulam-Hyers stability mainly applies to finding
an exact solution near an approximate solution of the system. In this section, we
approach the connection between Lyapunov’s and Ulam-Hyers’ stability concepts in
the case of dynamical systems.

Consider the fractional differential equation in the dynamical systems

CD
α
0,tx(t) = F(t,x), t > 0,

x(0) = x0

(3.1)

where 0 < α < 1, x0 ∈ Ω ⊆ Rd, and F : [0,+∞)×Ω → Rd is a continuous function.

Definition 3.1. A vector x ∈ Ω is said to be an equilibrium point of the first

differential equation of the system (3.1) if F(t,x) = 0, for all t ≥ 0. Define the set

E ⊆ Ω the collection of all such equilibrium points.

Denote x(t,x0) as the solution of the above differential equation (3.1) starting
at an initial point x(0) = x0.

Definition 3.2. [37] (Lyapunov stability) The equilibrium point x ∈ E of the

system (3.1) is Lyapunov stable, if for every ε > 0 there exists δ = δ(ε) > 0 such

that

‖x0 − x‖< δ ⇒ ‖x(t,x0)− x‖≤ ε, ∀ t ≥ 0, (3.2)

where ‖·‖ denotes a norm on Rd. In other words, x ∈ E is Lyapunov stable, if given

any ε > 0 there exists a neighbourhood Nδ(x) for some δ > 0 such that for each

x0 ∈ Nδ(x), the solution x(t,x0) satisfies ‖x(t,x0)− x‖≤ ε, for all t ≥ 0.

Definition 3.3. (Ulam-Hyers stability) The differential equation (3.1) is said to be

Ulam-Hyers stable if there exists a constant L > 0, such that for every ε > 0 and

any function y : [0,∞) → Rd satisfying
∥

∥

∥CD
α
0,ty(t)− F(t,y)

∥

∥

∥
≤ ε, ∀ t ≥ 0 (3.3)

there exists an exact solution x : [0,∞) → Rd of the differential equation (3.1) such

that

‖y(t)− x(t)‖≤ Lε, ∀ t ≥ 0. (3.4)
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Remark 3.1. In Definition 3.3, the existence of at least one solution x : [0,∞) → Rd

to the differential equation (3.1) that satisfies the inequality (3.4) is sufficient for

Ulam-Hyers stability. One obvious such solution can be obtained by choosing an

initial value x(0) depending on y. In the literature, many authors set x(0) = y(0).

However, in some cases, there may exist multiple such solutions or even a whole

family of solutions in a neighbourhood of y(0). This fact is demonstrated in

the following theorem, established by Onitsuka and Shoji [52] for integer-order

differential equations.

Theorem 3.1. [52] Consider the homogeneous linear differential equation

x′(t) = ax(t), t ∈ I, (3.5)

where I is a nonempty open interval of R and a is a non-zero real number. Let

ε > 0 be a given arbitrary constant. Suppose that a differentiable function y : I → R

satisfies

|y′(t)− ax(t)| ≤ ε, ∀ t ∈ I. (3.6)

Then one of the following holds:

(i) if a > 0 and sup I exists, then lim
t→τ−0

y(t) exists where τ = sup I, and any

solution x(t) of (3.5) with | lim
t→τ−0

y(t)−x(τ)|< ε/a satisfies that |y(t)−x(t)|< ε/a

for all t ∈ I;

(ii) if a > 0 and sup I does not exist, then lim
t→∞

y(t)e−at exists, and there exists

exactly one solution x(t) =
(

lim
t→∞

y(t)e−at
)

eat of (3.5) such that |y(t)− x(t)|<

ε/a for all t ∈ I;

(iii) if a < 0 and inf I exists, then lim
t→σ+0

y(t) exists where σ = inf I, and any solution

x(t) of (3.5) with | lim
t→σ+0

y(t)−x(σ)|< ε/|a| satisfies that |y(t)−x(t)|< ε/|a| for

all t ∈ I;

(iv) if a < 0 and inf I does not exist, then lim
t→−∞

y(t)e−at exists, and there exists

exactly one solution x(t) =
(

lim
t→−∞

y(t)e−at
)

eat of (3.5) such that |y(t)−x(t)|<

ε/|a| for all t ∈ I.

Moreover, they show that for a = 0, the differential equation (3.5) is not Ulam-Hyers

stable.

Example 3.1. Consider the simple integer-order differential equation (α = 1) :

x′(t) = ax(t), a ∈ R \ {0}, t ≥ 0, (3.7)
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with the initial condition

x(0) = x0. (3.8)

Let ε > 0 be a given arbitrary number and suppose that the differentiable

function y : [0,∞) → R satisfies

|y′(t)− ay(t)|≤ ε, ∀ t ≥ 0. (3.9)

If a > 0, then by (ii) assertion of Theorem 3.1, lim
t→∞

y(t)e−at exists. Denote this limit

by b. Then, the IVP with initial condition x(0) = b has a unique solution x(t) = beat

satisfying

|y(t)− x(t)|< ε/a. (3.10)

In other words, the differential equation (3.7) is Ulam-Hyers stable with Ulam-Hyers

constant given by L = 1/a and the solution x(t) which satisfied the inequality (3.10)

is unique.

Inequality (3.9) implies

y′(t) = ay(t) + h(t), (3.11)

where h : [0,∞) → R and |h(t)|≤ ε for all t ≥ 0. Therefore, from (3.11) and (3.7),

we obtain

y′(t)− x′(t) = a(y − x) + h(t).

The solution of the above equation is given by

y(t)− x(t) = (y(0)− x(0))eat +

∫ t

0

h(s)e(t−s) ds,

which implies

|y(t)− x(t)|≤ |y(0)− x0|e
at + ε

∫ t

0

ea(t−s) ds. (3.12)

If a < 0, then eat ≤ 1 for all t ≥ 0. Choose an initial condition x0 such that

|y(0)− x0|≤ ε. (3.13)

Using these facts in (3.12), we get

|y(t)− x(t)|≤

(

1 +
1

|a|

)

ε (3.14)

where x(t) is the solution of the IVP (3.7) with initial condition x(0) = x0, and

x0 satisfying the inequality (3.13). In other words, the differential equation (3.7) is

Ulam-Hyers stable with Ulam-Hyers constant L = 1 + 1
|a|

. Moreover, there exists

a family of solutions to the IVP (3.7) that satisfy the inequality (3.14), where the

initial values x0 belong to an ε-neighbourhood of y(0) (i.e., x0 ∈ Nε(y(0))).

Page 11 of 38 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



This example motivates to define a special class of Ulam-Hyers stability, in
order to distinguish between two cases:

(i) The discrete case, where the initial value x0 of the solution x(t) satisfying
inequality (3.4) is distributed discretely (as in the case of a > 0).

(ii) The continuous case, where the initial value x0 of the solution x(t) satisfying
inequality (3.4) is distributed in some neighbourhood N(y(0)) of y(0) (as in
the case of a < 0).

A comparison between Ulam-Hyers and Lyapunov stability makes sense only
when the initial condition x0 lies in a neighbourhood of the equilibrium point.
Therefore, we introduce the following definition, which we call strong Ulam-Hyers
stability.

Definition 3.4. (Strong Ulam-Hyers stability) The fractional differential equation

(3.1) is said to be strongly Ulam-Hyers stable if there exists a constant L > 0 such

that, for every ε > 0 and any vector-valued function y : [0,∞) → Ω satisfying

‖CD
α
0,ty(t)− F(t,y(t))‖ 6 ε, ∀ t > 0, (3.15)

there exists δ = δ(ε) > 0 such that

‖x0 − y(0)‖< δ =⇒ ‖y(t)− x(t)‖6 Lε, ∀ t > 0, (3.16)

where x(t) is the solution of the equation (3.1) subject to the initial condition

x(0) = x0, with x0 satisfying the first inequality in (3.16).

Now, we proceed to introduce a theorem that connects Lyapunov and strong
Ulam-Hyers stability for the fractional dynamical system (3.1).

Theorem 3.2. For 0 < α < 1, the strong Ulam-Hyers stability of the fractional

differential equation (3.1) implies Lyapunov stability of its equilibrium point.

Proof. Let ε > 0 be an arbitrary given number. Suppose x ∈ E is an equilibrium
point of the fractional differential equation (3.1). Then,

CD
α
0,tx− F(t,x) = 0, ∀ t > 0. (3.17)

Given that the fractional differential equation (3.1) is strongly Ulam-Hyers
stable, there exists a constant L independent of ε. If we take ε′ = ε/L > 0, then we
observe that

‖CD
α
0,tx− g(t,x)‖ 6 ε′, ∀ t > 0.
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This inequality corresponds to equation (3.15) under the substitution y = x. By
Definition 3.4 (Strong Ulam-Hyers stability), there exists δ = δ(ε′) = δ(ε/L) > 0

such that
‖x0 − x‖< δ =⇒ ‖x(t)− x‖6 Lε′ = ε, ∀ t > 0. (3.18)

This ends the proof.

Remark 3.2. The inverse of Theorem 3.2 remains an open problem. While Ulam-

Hyers stability implies Lyapunov stability in the continuous case, the discrete case−

when the existence of a solution x(t) satisfying the Ulam-Hyers inequality (3.4) is

determined by a discrete distribution of the initial condition x0− presents advantages

over Lyapunov stability. For instance, in the above example for a > 0, the

system (3.7) exhibits Ulam-Hyers stability in discrete settings, but the system is

not Lyapunov stable for a > 0.

From Theorem 3.2 and Remark 3.2 above, one can observe that Ulam-Hyers
stability is a more general concept in the stability theory of dynamical systems.

4. Ulam-Hyers stability of linear FDEs

In this section, we first consider the simplest form of a linear FDE,

D
α
0,tu(t) + λu(t) = g(t), t ∈ J = [0, T ), 0 < T ≤ +∞, (4.1)

where λ ∈ R, u : J → R, n − 1 < α ≤ n, n ∈ N, Dα
0,t is the Caputo or Riemann-

Liouville derivative of order α, and g : J → R is a given function. The following
results addressing the Ulam-Hyers stability was established by Wang and Xu [79,80]
using a Laplace transform.

Theorem 4.1. [79] Given ε > 0, if a function v : J → R satisfies the inequality

∣

∣D
α
0,tv(t) + λv(t)− g(t)

∣

∣ ≤ ε, ∀ t ∈ J. (4.2)

Then, there exists a solution u : J → R of the FDE (4.1) such that

|v(t)− u(t)|≤ εtαEα,α+1(|λ|t
α), ∀ t ∈ J. (4.3)

Corollary 4.1. If T < +∞, then the linear FDE (4.1) is Ulam-Hyers stable with an

Ulam-Hyers constant L = T αEα,α+1(|λ|T
α). However, if T = +∞, no conclusion

can be drawn from Theorem 4.1.
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Theorem 4.2. [80] Consider the linear FDE (4.1) and let G : J → R+ be a given

function. Then, if a function v : J → R satisfies the inequality
∣

∣D
α
0,tv(t) + λv(t)− g(t)

∣

∣ ≤ G(t), ∀ t ∈ J, (4.4)

there exists a solution u : J → R of the linear FDE (4.1) such that

|v(t)− u(t)|≤ tαG(t)Eα,α+1(|λ|t
α), ∀ t ∈ J. (4.5)

Corollary 4.2. If T < +∞, then the linear FDE (4.1) is Ulam-Hyers-Rassias

stable with an Ulam-Hyers-Rassias constant L = T αEα,α+1(|λ|T
α). In contrast, if

T = +∞, Theorem 4.2 yields no conclusion about its Ulam-Hyers-Rassias stability.

Wang and Li [76] established the Ulam-Hyers stability of the linear FDE for
λ ≥ 0, by using the Laplace transform and evaluated the simplified value of the
Ulam-Hyers constant. The result is given in next theorem.

Theorem 4.3. [76] Consider the linear FDE (4.1) with λ ≥ 0. Given ε > 0, if a

function v : J → R satisfies the inequality
∣

∣D
α
0,tv(t) + λv(t)− g(t)

∣

∣ ≤ ε, ∀ t ∈ J. (4.6)

Then, there exists a solution u : J → R of the FDE (4.1) such that

|v(t)− u(t)|≤
tα

Γ(α + 1)
ε, ∀ t ∈ J. (4.7)

Corollary 4.3. If T < +∞, then the linear FDE (4.1) with λ ≥ 0 is Ulam-Hyers

stable with an Ulam-Hyers constant L = T α/Γ(α+ 1).

In the same paper, the authors also analysed the Ulam-Hyers stability of the
linear FDE in a Banach space (X, ||.||) with Caputo derivative of order 0 < α ≤ 1:

CD
α
0,tU(t) + AU(t) = H(t), t ∈ J, 0 < α ≤ 1, (4.8)

where H : J → X is a continuous function and −A : D(A) ⊂ X → X be the
generator of a C0-semigroup {S(t), t ≥ 0}, written as S(t) = eAt on the Banach
space X. Denote M = supt≥0||S(t)||. The result is then

Theorem 4.4. [76] Given ε > 0, if a function V : J → R satisfies the inequality
∣

∣

CD
α
0,tV (t) + AV (t)−H(t)

∣

∣ ≤ ε, t ∈ J, (4.9)

then there exists a solution U : J → R of the FDE (4.8) such that

|V (t)− U(t)|≤
Mtα

Γ(α + 1)
ε, ∀ t ∈ J. (4.10)
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Shen and Chen [62] discussed the Ulam stability of the generalised linear FDE
with constant coefficients involving a Riemann-Liouville fractional derivative by the
Laplace transform method and evaluated the values of the Ulam-Hyers constant in
the integral form. First they considered the following linear FDE

RLD
α
0,tu(t)− λRLD

β
0,tu(t)− θu(t) = g(t), t ∈ J, (4.11)

where λ, θ ∈ R, n− 1 < α ≤ n (n ∈ N), and 0 < β < α, and established the result

Theorem 4.5. [62] Let g(t) be a given function such that

∫ t

0

(t− τ)α−1Gα,β;λ,θ(t− τ)g(τ) dτ

exists for any t ∈ J . Suppose that ϕ : J → R+ is a function such that the integral

∫ t

0

(t− τ)α−1ϕ(τ) |Gα,β;λ,θ(t− τ)| dτ

exists for any t ∈ J . If a function v : J → R satisfies the inequality

∣

∣

∣RLD
α
0,tv(t)− λRLD

β
0,tv(t)− θv(t)− g(t)

∣

∣

∣
≤ ϕ(t), ∀ t ∈ J.

Then, there exists a solution u : J → R of the linear FDE (4.11) such that

|v(t)− u(t)|≤

∫ t

0

(t− τ)α−1ϕ(τ)|Gα,β;λ,θ(t− τ)| dτ, ∀ t ∈ J, (4.12)

provided that the series

Gα,β;λ,θ(t) =

∞
∑

k=0

θk

k!
tαk 1Ψ1

[

(k + 1, 1)

(αk + α, α− β)

∣

∣

∣

∣

∣

λtα−β

]

(4.13)

is convergent. Here, 1Ψ1 is the hypergeometric function [63].

For θ = 0, and λ ≤ 0, in the above FDE (4.11), using Lemma 2.1 and Theorem
4.5, the Ulam-Hyers stability was studied for the linear FDE

RLD
α
0,tu(t)− λRLD

β
0,tu(t) = g(t), t ∈ J, (4.14)

as a corollary, which is given below.
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Corollary 4.4. Let λ ≤ 0, n − 1 < α ≤ n (n ∈ N), 0 < β < α. Given ε > 0, if a

function v : J → R satisfies the inequality

∣

∣

∣RLD
α
0,tv(t)− λRLD

β
0,tv(t)− g(t)

∣

∣

∣
≤ ε, ∀ t ∈ J.

Then there exists a solution u : J → R of the linear FDE (4.14) such that

|v(t)− u(t)|≤
tα

Γ(α + 1)
ε, ∀ t ∈ J.

Here, we note that if T < +∞, then the linear FDE (4.14) is Ulam-Hyers stable

with an Ulam-Hyers constant L = T α/Γ(α+ 1).

Finally, they presented the Ulam-Hyers-Rassias stability result for the following
generalised linear FDE

RLD
α
0,tu(t)− λRLD

β
0,tu(t)−

m−2
∑

k=0

AkRLD
αk

0,tu(t) = g(t), t ∈ J, (4.15)

where n − 1 < α ≤ n (n ∈ N), α > β > αm−2 > . . . > α0 = 0, λ, Ak ∈ R, k =

0, 1, . . . , m− 2 (m ∈ N \ {1, 2}) and g : J → R is a given function. The result is

Theorem 4.6. [62] Let g(t) be a given function such that

∫ t

0

(t− τ)α−1Gα1,...,αm−2,β,α;λ(t− τ)g(τ) dτ

exists for any t ∈ J. Suppose ϕ : J → R+ is a function such that the integral

∫ t

0

(t− τ)α−1ϕ(τ)|Gα1,...,αm−2,β,α;λ(t− τ)| dτ

exists for any t ∈ J. If a function v : J → R satisfies the inequality

∣

∣

∣

∣

∣

RLD
α
0,tv(t)− λRLD

β
0,tv(t)−

m−2
∑

k=0

AkRLD
αk

0,tv(t)− g(t)

∣

∣

∣

∣

∣

≤ ϕ(t), ∀ t ∈ J.

Then, there exists a solution u : J → R of the generalised linear FDE (4.15) such

that

|v(t)− u(t)|≤

∫ t

0

(t− τ)α−1ϕ(τ)|Gα1,...,αm−2,β,α;λ(t− τ)| dτ, ∀ t ∈ J, (4.16)
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provided that the series

Gα1,...,αm−2,β,α;λ(t) =

∞
∑

l=0





∑

i0+i1+...+im−2=l





1

i0! i1! · · · im−2!

[

m−2
∏

p=0

(Ap)
ip

]

× t(α−β)l+
∑m−2

p=0
(β−αp)ip

×1 Ψ1

[

(l + 1, 1)

((α− β)l +
∑m−2

p=0 (β − αp)ip, α− β)

∣

∣

∣

∣

∣

λtα−β

]

(4.17)

is convergent.

Liu and Li [41] considered the Ulam-Hyers stability of linear FDEs with variable
coefficients involving both Riemann-Liouville and Caputo fractional derivatives on
a bounded interval I = [0, a],

D
α
0,tu(t) + q(t)u(t) = r(t), t ∈ I, (4.18)

where n−1 < α ≤ n, (n ∈ N) and Dα
0,t is the Caputo or Riemann-Liouville derivative

of order α; moreover, r(t), q(t) are given continuous functions on I = [0, a]. By using
Grönwall’s inequality, they established the Ulam-Hyers stability result given below.

Theorem 4.7. [41] Assume there exists a constant K > 0 such that

|(t− τ)α−1q(τ)|≤ K, ∀ τ ∈ [0, t], (4.19)

for each 0 < t < a. Given ε > 0, if a function v : I → R satisfies the inequality

|Dα
0,tv(t) + q(t)v(t)− r(t)|≤ ε, ∀ t ∈ I.

Then, there exists a constant L > 0 and a solution u : I → R of the FDE (4.18)

such that

|v(t)− u(t)|≤ Lε, ∀ t ∈ I, (4.20)

where

L =
aα

Γ(α + 1)

[

1 +
aK

Γ(α)
exp

(

aK

Γ(α)

)]

is the Ulam-Hyers constant.

The Ulam-Hyers stability of a general linear functional equation on a Banach
space was studied by Takagi et al. [66]. They also derived an expression for the
best Ulam-Hyers constant. Before we discuss their result, we briefly recall some
definitions concerning the Ulam-Hyers stability of linear functional equations.

Let (X, ||.||X), (Y, ||.||Y ) be the normed linear spaces and consider a linear map
T : X → Y .
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Definition 4.1. [66] We say that the linear map T has Ulam-Hyers stability, if

there exists a constant L > 0 with the following property: For any h ∈ T (X), ε > 0

and g ∈ X satisfying ||Tg − h||Y≤ ε, there exists a g0 ∈ X with Tg0 = h, such that

||g − g0||X≤ L · ε.

Now, let T be the bounded linear map and N (T ),R(T ) the kernel and range
of T respectively. Define an induced one-to-one map T̃ : X/N (T ) → Y , where
X/N (T ) is a quotient space as:

T̃ (g +N (T )) = Tg, g ∈ X.

Let T̃−1 : R(T ) → X/N (T ) be the inverse of T̃ .

Theorem 4.8. [66] Let X, Y be Banach spaces and T : X → Y be a bounded linear

map. Then, the following statements are equivalent:

(i) T is Ulam-Hyers stable,

(ii) R(T ) is bounded,

(iii) T̃−1 is bounded.

Moreover, if one of the conditions (i), (ii), or (iii) is true. Then, the best Ulam-Hyers

constant is given LM = ||T̃−1||.

Based on Theorem 4.8, we observe that if a linear functional equation involving
bounded linear operators is Ulam-Hyers stable, then the best Ulam-Hyers constant
for this equation exists. Thus, by choosing an appropriate functional space and a
norm, one can prove the existence of the best Ulam-Hyers constant for the linear
FDE.

5. Ulam-Hyers stability of non-linear FDEs

In this section, we present the Ulam-Hyers stability results for non-linear FDEs.
Wang et al. [78] addressed the Ulam-Hyers stability of non-linear FDEs involving
a Caputo fractional derivative of order α ∈ (0, 1) by using the Henry-Grönwall
inequality. They also analysed the dependence of data for non-linear FDEs in the
case 1 < α < 2. In essence, they studied the Ulam stability of the following FDE:

CD
α
a,tu(t) = f(t, u(t)), t ∈ [a, b), a < b ≤ +∞, (5.1)

where 0 < α < 1, f : [a, b)×X → X, and (X, ‖.‖X) is a Banach space. Under the
following assumptions on f :
(A1) f ∈ C([a, b)×X,X);
(A2) There exists a constant lf > 0 such that

‖f(t, u1)− f(t, u2)‖X≤ lf‖u1 − u2‖X ,

Page 18 of 38AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



for each t ∈ [a, b) and for all u1, u2 ∈ X;
(A3) Let ϕ ∈ C([a, b),R+) be a non-decreasing function and there exits a constant
C

ϕ
> 0 such that

1

Γ(α)

∫ t

a

(t− τ)α−1ϕ(τ) dτ ≤ C
ϕ
ϕ(t),

for each t ∈ [a, b).

Theorem 5.1. [78] Let assumptions (A1), (A2), and (A3) hold. If a function

v : [a, b) → X satisfies the inequality

‖CD
α
a,tv(t)− f(t, v(t))‖X ≤ ϕ(t), ∀ t ∈ [a, b),

then there exists a solution u : [a, b) → X of the FDE (5.1) such that

‖v(t)− u(t)‖X≤ C
ϕ
ϕ(t)Eα(lf (t− a)α), ∀ t ∈ [a, b). (5.2)

Corollary 5.1. If b < +∞, then the FDE (5.1) is Ulam-Hyers-Rassias stable with

L = CϕEα((b − a)αlf ). However, if b = +∞, no conclusion can be drawn from

Theorem 5.1.

They also established the following Ulam-Hyers stability results for 0 < α < 1.

Theorem 5.2. [78] Assume (A1) and (A2) hold. Let ε > 0 be a given number

and suppose a function v : [a, b) → X satisfies the inequality

‖CD
α
a,tv(t)− f(t, v(t))‖X ≤ ε, ∀ t ∈ [a, b),

then there exists a solution u : [a, b) → X of the FDE (5.1) such that

‖v(t)− u(t)‖X≤
ε(t− a)α

Γ(α + 1)
Eα(lf (t− a)α), ∀ t ∈ [a, b). (5.3)

Corollary 5.2. If b < +∞, then the FDE (5.1) is Ulam-Hyers stable with

L =
(b− a)α

Γ(α + 1)
Eα((b− a)αlf).

However, if b = +∞, no conclusion can be drawn from Theorem 5.2.

In [77] Wang et al. also investigated the Ulam stability of the same non-linear
FDE (5.1) with X = R on a closed and bounded interval by using the Banach fixed
point theorem. Further, they improved and simplified the Ulam-Hyers constant.
Their results are given below.
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Theorem 5.3. [77] For X = R, let assumptions (A1) and (A2) hold over the

finite interval [a, b]. Suppose that ϕ : [a, b] → R+ is a continuous function with

1

Γ(α)

∫ t

a

(t− τ)α−1ϕ(τ) dτ ≤ Kϕ(t), (5.4)

for each t ∈ [a, b] and for some K > 0. Let the constants lf and K satisfy Klf < 1.

If a continuously differentiable function v : [a, b] → R satisfies the inequality

|CD
α
a,tv(t)− f(t, v(t))|≤ ϕ(t), ∀ t ∈ [a, b],

then there exists a unique solution u : [a, b] → R of the FDE (5.1) such that

|v(t)− u(t)|≤
K

1−Klf
ϕ(t), ∀ t ∈ [a, b]. (5.5)

In other words, the FDE (5.1) is Ulam-Hyers-Rassias stable.

Here, we notice that the solution u of the FDE (5.1) satisfying (5.5) is unique.
In the same paper they also established the Ulam-Hyers stability result given below.

Theorem 5.4. [77] For X = R, let assumptions (A1) and (A2) hold on a finite

interval [a, a+h], h > 0. Let the constant lf satisfy hαlf/Γ(α+1) < 1. Given ε > 0,

if a continuously differentiable function v : [a, a + h] → R satisfies the inequality

|CD
α
a,tv(t)− f(t, v(t))|≤ ε, ∀ t ∈ [a, a+ h],

then there exists a unique solution u : [a, a+ h] → R of the FDE (5.1) such that

|v(t)− u(t)|≤
hα

Γ(α + 1)− hαlf
ε, ∀ t ∈ [a, a + h]. (5.6)

In other words, the FDE (5.1) is Ulam-Hyers stable.

El-Hady and Öğrekci [22] also considered the same non-linear FDE (5.1) with
X = R on a closed and bounded interval [0, r]. They removed the assumption (5.4)
on the function ϕ and studied the Ulam-Hyers-Rassias stability result by using the
Banach fixed point theorem on a generalised metric space. Further, they derived
the Ulam-Hyers constant with more flexibility on the parameter than in [77]. The
corresponding results are given as follows.

Theorem 5.5. [22] For X = R, assume conditions (A1) and (A2) hold on the

finite interval [0, r], r > 0. Suppose that ϕ : [0, r] → R+ is a continuous and non-

decreasing function; if a continuously differentiable function v : [0, r] → R satisfies

the inequality

|CD
α
0,tv(t)− f(t, v(t))|≤ ϕ(t), ∀ t ∈ [0, r],
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then there exists a unique solution u : [0, r] → R of the FDE (5.1) such that

|v(t)− u(t)|≤
c2

c1Γ(α)− c2lf
ϕ(t), ∀ t ∈ [a, b], (5.7)

where c1 and c2 are arbitrary positive constants such that the inequalities

c2lf
c1Γ(α)

< 1, max{1, 21−α}

(

α + 1

α

)

≤ c2e
c1t (5.8)

holds for each t ∈ [0, r.] In other words, the FDE (5.1) is Ulam-Hyers-Rassias stable.

Corollary 5.3. For X = R, let the assumptions (A1) and (A2) hold on the

finite interval [0, r], r > 0. Then, the FDE (5.1) is Ulam-Hyers stable with

L = c2/[c1Γ(α)− c2lf ], provided that the inequalities (5.8) hold.

Hristove and Abbas [30] investigated the existence of the solution and the Ulam-
type stability of an initial value problem (IVP) for non-linear FDEs involving a
generalised proportional fractional derivative of Riemann-Liouville fractional type on
a closed and bounded interval [a, b]. They established the results by using the Henry-
Gröwall inequality and applied them to a fractional generalisation of a biological
population model as an application. They considered the following non-linear FDE
(IVP):

RLD
α,ρ
a,t u(t) = λu(t) + f(t, u(t)), t ∈ [a, b],

I1−α,ρ
a,t u(a) = u0,

(5.9)

where 0 < α < 1, 0 < ρ ≤ 1, and λ, u0 are real constants, and f : [a, b] × R → R is
a given continuous function. The solution of the above initial value problem (5.9)
exists on a Banach space

C1−α,ρ([a, b],R) =
{

x : (a, b] → R | x ∈ C((a, b],R),

lim
t→a+

e
1−ρ
ρ

(t−a)(t− a)1−αx(t) < +∞
}

,

with a norm ‖x‖C1−α,ρ
= maxt∈[a,b]

∣

∣

∣exp
(

1−ρ
ρ
(t− a)

)

(t− a)1−αx(t)
∣

∣

∣. The solution

u ∈ C1−α,ρ([a, b],R) satisfies the following integral equation

u(t) =u0e
ρ−1

ρ
(t−a)Eα,α

(

λ

(

t− a

ρ

)α)(

t− a

ρ

)α−1

+
1

ραΓ(α)

∫ t

a

(t− τ)α−1 exp

(

ρ− 1

ρ
(t− τ)

)

Eα,α

(

λ

(

t− τ

ρ

)α)

f(τ, u(τ)) dτ,

(5.10)

for t > a.
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Theorem 5.6. [30] Let λ ∈ R and assume the conditions (A1) and (A2) hold

with X = R. Let ε > 0 be an arbitrary given number and suppose a function

v ∈ C1−α,ρ([a, b]) satisfies the inequality
∣

∣

RLD
α,ρ
a,t v(t)− λv(t)− f(t, v(t))

∣

∣ ≤ ε, ∀ t ∈ [a, b],

then there exists a solution u ∈ C1−α,ρ([a, b]) of the IVP (5.9) such that

|v(t)− u(t)|≤ Lε, ∀ t ∈ [a, b], (5.11)

where

L =

[

1

|λ|Γ(α)

∣

∣

∣

∣

Eα

(

λ

(

b− a

ρ

)α)

− 1

∣

∣

∣

∣

+ e1

(

b− a

ρ

)α−1
]

Eα

(

e2lf

(

b− a

ρ

)α)

,

e1 = max
t∈[a,b]

Eα,α

(

λ

(

t− a

ρ

)α)

, e2 = max
t,s∈[a,b];t≥s

Eα,α

(

λ

(

t− s

ρ

)α)

. (5.12)

In other words, the FDE (5.9) is Ulam-Hyers stable.

For λ < 0, they proved the Ulam-Hyers-Rassias stability for the FDE (5.9) and
estimated the simplified value of the Ulam-Hyers constant as follows.

Theorem 5.7. [30] Let λ < 0 and assume the assumptions (A1), (A2), and (A3)

hold on bounded interval [a, b] with X = R. If a function v ∈ C1−α,ρ([a, b]) satisfies

the inequality
∣

∣

RLD
α,ρ
a,t v(t)− λv(t)− f(t, v(t))

∣

∣ ≤ ϕ(t), ∀ t ∈ [a, b],

then there exists a solution u ∈ C1−α,ρ([a, b]) of the IVP (5.9) such that

|v(t)− u(t)|≤ Lϕ(t), ∀ t ∈ [a, b], (5.13)

where

L =

[

ϕ(b)Cϕ

ραΓ(α)
e2 + e1ϕ(a)

(

b− a

ρ

)α−1
]

Eα

(

e2lf

(

b− a

ρ

)α)

, (5.14)

and e1, e2 are defined in Theorem 5.6.

In [18] Cuong presented the Ulam-Hyers stability analysis of multi-order FDEs
involving the Riemann-Liouville derivative. They established the Ulam stability
with respect to a ‖.‖Cγ

-norm on a Cγ([0, T ],R
d) space (0 ≤ γ < 1, d ∈ N) followed

by a Bielecki type norm. The Cγ([0, T ],R
d) space is defined as

Cγ([0, T ],R
d) = {u ∈ C((0, T ],Rd) | sup

t∈[0,T ]

‖tγu(t)‖Rd< ∞}, 0 ≤ γ < 1,
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with a norm
‖u‖Cγ

= sup
t∈[0,T ]

‖tγu(t)‖Rd. (5.15)

where ‖·‖Rd is a norm on Rd. Basically, they studied the Ulam-type stability for the
following initial value FDE (IVP):

RLD
α̃
0,tu(t) = f(t,u(t)), t ∈ (0, T ], (5.16)

with initial condition

lim
t→0+

diag[t1−α1 , . . . , t1−αd ]u(t) = u0,

where u(t) = (u1(t), · · · , ud(t)) ∈ Rd, α̃ = (α1, . . . , αd), 0 ≤ αi < 1, i = 1, . . . , d,
and f : [0, T ] × Rd → Rd. The Riemann-Liouville multi-order fractional derivative

RLD
α̃
0,tu(t) is defined by RLD

α̃
0,tu(t) = (RLD

α1

0,tu1(t), . . . , RLD
αd

0,tud(t)).

Lemma 5.1. [18] Assume that f is continuous on [0, T ] × Rd. Then, a function

u ∈ C((0, T ],Rd) is a solution of the IVP (5.16) if and only if it is a solution of the

Volterra integral equation

u(t) = diag[tα1−1, . . . , tαd−1]u0 + RLI
α̃
0,tf(t,u(t)), ∀ t ∈ (0, T ], (5.17)

where RLI
α̃
0,t is a multi-order fractional integral operator.

Since the integral equation (5.17) is an equivalent form of the FDE (5.16).
Cuong studied the Ulam-Hyers stability of the equivalent integral equation (5.17)

instead of the considered FDE (5.16). The result is given below.

Theorem 5.8. [18] Assume f is continuous and Lipschitz continuous with respect

to the second variable with a Lipschitz constant Lf > 0. Let ε > 0 be an arbitrary

given number and suppose a function v ∈ C1−α0
([0, T ],Rd) satisfies the inequality

sup
t∈[0,T ]

∥

∥t1−α0
(

v(t)− diag[tα1−1, . . . , tαd−1]v0 − RLI
α̃
0,tf(t,v(t))

)∥

∥

Rd
≤ ε, (5.18)

then there exists a solution u ∈ C1−α0
([0, T ],Rd) of the FDE (5.16) such that

sup
t∈[0,T ]

∥

∥t1−α0 (v(t)− u(t))
∥

∥

Rd ≤
eθT

1− σ
, (5.19)

where α0 = max{α1, . . . αd} and θ > 0 is chosen large enough such that

σ = max
i∈{1,...,d}

{

Lf

(

21−αiT αi−α0Γ(α0)

θα0Γ(αi)
+

21−α0

θαi

)}

< 1.

In the other words, the multi-order FDE (5.16) is Ulam-Hyers stable with respect to

the ‖.‖C1−α0
norm.
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6. Fractional-order delay differential equations

A delay differential equation (DDE) is a general class of differential equation in
dynamical systems, occurring naturally when modelling real-world problems. For
instance, any feedback control system inherently includes time delays, as sensing
information and responding to it takes finite time. Integer-order DDEs have a well-
developed theory regarding the existence and stability of solutions [23,39,45,50,59].
In recent decades, fractional delay differential equations (FDDEs) have received
considerable attention due to their applications in dynamical systems and control.
For results on the existence and stability of solutions to FDDEs, see [17, 69].

Refaai et al. [57] studied the Ulam-type stability of FDDEs involving a
Riemann-Liouville fractional derivative in a closed and bounded interval by using the
Banach fix point theorem followed by Henry-Gröwall inequality. However, according
to our analysis their assumptions and derivations are not correct. For a detailed
proof see [57]. Develi and Duman [20] studied the existence of solutions and the
Ulam-Hyers stability of FDDEs involving a Caputo fractional derivative by using
the Banach fixed point theorem on a Banach space C([−θ, b],R) endowed with the
following Bielecki norm.

‖v‖B= max
t∈[−θ,b]

|v(t)|e−γt, γ > 0. (6.1)

Concretely, they consider the following delay system:

CD
α
0,tu(t) = h(t, u(t), u(k(t))), t ∈ [0, b], b > 0, (6.2)

u(t) = ζ(t), t ∈ [−θ, 0], (6.3)

where 0 < α ≤ 1, 0 < θ < ∞, h ∈ C([0, b] × R2,R), ζ ∈ C([−θ, 0],R), and
k ∈ C([0, b], [−θ, b]) with k(t) ≤ t. Under the following assumptions:
(A4) h ∈ C([0, b]× R2,R), k ∈ C([0, b], [−θ, b]) with k(t) ≤ t on [0, b].
(A5) There exists a constant ω > 0 such that

|h(t, x1, y1)− h(t, x2, y2)|≤ ω(|x1 − x2|+|y1 − y2|)

for all xi, yi ∈ R (i = 1, 2) and t ∈ [0, b], the following result was established.

Theorem 6.1. [20] Suppose the assumptions (A4) and (A5) hold. Let ε > 0

be an arbitrary given number and suppose a function v ∈ C([−θ, b],R) satisfies the

inequality
∣

∣

CD
α
0,tv(t)− h(t, v(t), v(k(t)))

∣

∣ ≤ ε, ∀ t ∈ [0, b],
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then there exists a solution u ∈ C([−θ, b],R) of the delay system (6.2) such that

|v(t)− u(t)|≤
bαe(θ+b)γ

(1− ρ)Γ(α + 1)
ε, ∀ t ∈ [−θ, b], (6.4)

where γ > 0 is an appropriate real number such that ρ = 2ω/γα < 1.

Recently, Benzarouala and Tunc [10] studied the Ulam-type stability of the
FDDEs involving a Caputo derivative with n-multiple variable time delays:

CD
α
a,tu(t) =

n
∑

i=1

BiFi(t, u(t), u(hi(t))), t ∈ [a, b],

u(t) = ζ(t), t ∈ [a− θ, a],

(6.5)

where 0 < α ≤ 1, ζ ∈ C([a − θ, a],R), Fi ∈ C([a, b] × R × R,R), Bi ∈ R for
i = 1, . . . , n, and hi ∈ C([a, b], [a− θ, b]) with hi(t) ≤ t such that 0 ≤ hi(t) ≤ θi, θ =

max{θi : i = 1, . . . , n}.
The result was established by the utilisation of the Banach fixed point theorem

on a complete metric space X given by

X = {v ∈ C([a− θ, b],R) : f(t) = ζ(t), if t ∈ [a− θ, a]}

endowed with the metric

d(v1, v2) = inf{C > 0 : |v1(t)− v2(t)|≤ Cϕ(t), t ∈ [a, b]},

where ϕ : [a, b] → R+ is a continuous function. Along with the following
assumptions:
(A6) For every i = 1, · · · , n, Fi ∈ C([a, b]×R×R,R) there exists positive constants
ωi and ω̃i such that

|Fi(t, x1, y1)− Fi(t, x2, y2)|≤ (ωi|x1 − x2|+ω̃i|y1 − y2|)

for every t ∈ [a, b] and for all xi, yi ∈ R (i = 1, 2).
(A7) Let ϕ ∈ C([a − θ, b],R+) be a non-decreasing function and there exits a
constant Lϕ > 0 such that

∫ t

a

(t− τ)α−1ϕ(τ) dτ ≤ Lϕ ϕ(t),

for each t ∈ [a, b].

Page 25 of 38 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Theorem 6.2. [10] Assume that the assumptions (A6) and (A7) hold. If a

function v ∈ C1([a− θ, b],R) satisfies the inequalities

{

∣

∣

CD
α
a,tv(t)−

∑n
i=1 Bi · Fi(t, v(t), v(hi(t)))

∣

∣ ≤ ϕ(t), t ∈ [a, b],

|v(t)− ζ(t)| ≤ ϕ(t), t ∈ [a− θ, a],

then there exists a unique solution u ∈ C([a− θ, b],R) of the FDDE (6.5) such that

|v(t)− u(t)|≤
Lϕ

Γ(α)−
∑n

i=1 Lϕ(ωi + ω̃i)|Bi|
ϕ(t), ∀ t ∈ [a, b], (6.6)

provided that
∑n

i=1 Lϕ(ωi+ ω̃i)|Bi|≤ Γ(α). In other words, the FDDE (6.5) is Ulam-

Hyers-Rassias stable.

As a corollary of Theorem 6.2, the following Ulam-Hyers stability results were
also established.

Corollary 6.1. Assume the conditions of Theorem 6.2 hold, along with assumption

(A6). Let ε > 0 be an arbitrary given number and suppose a function v ∈

C1([a− θ, b],R) satisfies the inequalities

{

∣

∣

CD
α
a,tv(t)−

∑n
i=1 Bi · Fi(t, v(t), v(hi(t)))

∣

∣ ≤ ε, t ∈ [a, b],

|v(t)− ζ(t)| ≤ ε, t ∈ [a− θ, a],

then there exists a unique solution u ∈ C([a− θ, b],R) of the FDDE (6.5) such that

|v(t)− u(t)|≤
(b− a)α

Γ(α + 1)−
∑n

i=1(b− a)α(ωi + ω̃i)|Bi|
ε, ∀ t ∈ [a, b], (6.7)

provided that
∑n

i=1(b− a)α(ωi + ω̃i)|Bi|< Γ(α+1). In other words, the FDDE (6.5)

is Ulam-Hyers stable.

7. Fractional-order boundary value problem

In the previous section, we discussed the work carried out on the Ulam-type
stability of the different classes of FDEs subject to given initial conditions. In this
section, some basic Ulam-type stability results of fractional-order boundary value
problems (BVPs) will be presented. Applying the fractional-oder model to real-
world problems needs a physically interpretable initial/boundary condition which
contains u(0), u′(0), . . . , u(T ), u′(T ), . . . , etc. There have been multiple studies of the
Ulam-type stability of fractional-order BVPs [2, 5, 11, 27, 64, 73]. Here we present a
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few of these results on the Ulam-type stability of the fractional-order BVP involving
Caputo fractional derivatives. For the existence of solutions of the different classes
of a fractional BVP with a Caputo fractional derivative of order 0 < α ≤ 1 and
1 < α ≤ 2 see the survey paper by Agarwal et al. [1] and the book by Ali et al. [5].
As in the case of an integer-order BVP, the solution of the fractional-order BVP is
expressed with the help of the Green’s function.

Ali et al. [5] analysed the Ulam-type stability of the following fractional-order
BVP:

CD
α
0,tu(t) = f(t, u(t)), 1 < α < 2, t ∈ [0, 1],

λ1u(0) + µ1u(1) = g1(u),

λ2u
′(0) + µ2u

′(1) = g2(u),

(7.1)

where gi (i = 1, 2) : C([0, 1],R) → R are non-local continuous functions, f :

C([0, 1]× R,R), and λi, µi ∈ R with λi + µi 6= 0 for i = 1, 2. The result is obtained
by using the Banach fixed point theorem. The solution of the BVP (7.1) is given by

u(t) = g(t) +

∫ 1

0

G (t, s)f(s, u(s)) ds, (7.2)

where
g(t) =

1

λ1 + µ1

g1(u) +
1

λ2 + µ2

(t− µ1)g2(u),

and G (t, s) is the Green’s function of the BVP (7.1) given by

G (t, s) =







































(t− s)α−1

Γ(α)
+

µ1(1− s)α−1

(λ1 + µ1)Γ(α)

+
µ2

λ2 + µ2

( µ1

λ1 + µ1

− t
)(1− s)α−2

Γ(α− 1)
, 0 ≤ s ≤ t ≤ 1

µ1(1− s)α−1

(λ1 + µ1)Γ(α)
+

µ2

λ2 + µ2

( µ1

λ1 + µ1
− t

)(1− s)α−2

Γ(α− 1)
, 0 ≤ t ≤ s ≤ 1.

(7.3)
To established the result, they assumed the following property of g:
(A8) For u1, u2 ∈ C([0, 1],R), there exists cg ∈ [0, 1), such that

|g(u1)− g(u2)|≤ cg‖u1 − u2‖∞; (7.4)

where ‖u‖∞= supt∈[0,1]

{

|u(t)| : u ∈ C([0, 1],R)
}

.

Theorem 7.1. [5] Assume the assumption (A8) holds and let f ∈ C([0, 1]×R,R)

be Lipschitz-continuous with respect to the second variable with a Lipschitz constant
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Lf . Let ϕ ∈ C([0, 1],R+) be a non-decreasing function and there exists a constant

λϕ > 0 such that 1
Γ(α)

∫ t

0
(t− τ)α−1ϕ(τ) ds ≤ λϕϕ(t) for each t ∈ [0, 1]. If a function

v ∈ C([0, 1],R) satisfies the inequality

∣

∣

CD
α
0,tv(t)− f(t, v(t))

∣

∣ ≤ ϕ(t), ∀ t ∈ [0, 1],

then there exists a unique solution u ∈ C([0, 1],R) of the fractional-order BVP (7.1)

such that

|v(t)− u(t)|≤
λϕ

1− [cg + G0Lf ]
ϕ(t), ∀ t ∈ [0, 1], (7.5)

provided that cg + G0Lf < 1, where G0 = maxt∈[0,1]
∫ 1

0
|G (t, s)| ds. In other words,

the fractional-order BVP (7.1) is Ulam-Hyers-Rassias stable.

Next, they also established the Ulam-Hyers stability result:

Theorem 7.2. [5] Given the assumption (A8) and f ∈ C([0, 1]×R,R) be Lipschitz-

continuous with respect to the second variable with a Lipschitz constant Lf . Let ε > 0

be an arbitrary given number and suppose a function v ∈ C([0, 1],R) satisfies the

inequality
∣

∣

CD
α
0,tv(t)− f(t, v(t))

∣

∣ ≤ ε, ∀ t ∈ [0, 1],

then there exists a unique solution u ∈ C([0, 1],R) of the fractional-order BVP (7.1)

such that

|v(t)− u(t)|≤
G0

1− [cg + G0Lf ]
ε, ∀ t ∈ [0, 1], (7.6)

provided that cg+G0Lf < 1. In other words, the fractional-order BVP (7.1) is Ulam-

Hyers stable.

Chen et al. [14] investigated the Ulam-Hyers stability of a class of multi-term
non-linear fractional-order BVPs involving a Caputo fractional derivative:

CD
α1

0,tu(t)− ξCD
α2

0,tu(t) + f(t, u(t)) = 0, t ∈ [0, 1],

u(0) + u(1) = u0,
(7.7)

where 0 < α2 < α1 ≤ 1, f ∈ C([0, 1]×R,R), and ξ, u0 are given constants such that
ξ 6= 2Γ(α1 − α2 + 1). The solution of the fractional BVP (7.7) is given by

u(t) = θ(t) +

∫ 1

0

H1(t, s)u(s) ds−

∫ 1

0

H2(t, s)f(s, u(s)) ds, (7.8)

where

θ(t) =

(

ξtα1−α2 − Γ(α1 − α2 + 1)

ξ − 2Γ(α1 − α2 + 1)

)

u0
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as well as

H1(t, s) =
ξ

Γ(α1 − α2)



































ξtα1−α2 − Γ(α1 − α2 + 1)

2Γ(α1 − α2 + 1)− ξ
(1− s)α1−α2−1

+(t− s)α1−α2−1, 0 ≤ s ≤ t ≤ 1,

ξtα1−α2 − Γ(α1 − α2 + 1)

2Γ(α1 − α2 + 1)− ξ
(1− s)α1−α2−1, 0 ≤ t ≤ s ≤ 1

and

H2(t, s) =
1

Γ(α1)



































ξtα1−α2 − Γ(α1 − α2 + 1)

2Γ(α1 − α2 + 1)− ξ
(1− s)α1−1

+(t− s)α1−1, 0 ≤ s ≤ t ≤ 1,

ξtα1−α2 − Γ(α1 − α2 + 1)

2Γ(α1 − α2 + 1)− ξ
(1− s)α1−1, 0 ≤ t ≤ s ≤ 1.

By using the Banach fixed point theorem and the Grönwall inequality, they obtained
the following result.

Theorem 7.3. [14] Assume M0 = max
t∈[0,1]

∫ 1

0

|H1(t, s)| ds < 1 and ξ 6= Γ(α1−α2+1).

Let f ∈ C([0, 1]×R,R) be Lipschitz continuous with respect to second variable with

a Lipschitz constant Lf . Given any ε > 0, if a function v ∈ C([0, 1],R) satisfies the

inequality
∣

∣

CD
α1

0,tv(t)− ξCD
α2

0,tv(t) + f(t, v(t))
∣

∣ ≤ ε, ∀ t ∈ [0, 1],

then there exists a unique solution u ∈ C([0, 1],R) such that

|v(t)− u(t)|≤
M (3p−1 exp(3p−1Qp

1))
1/p

(1− Lp
0 [exp (3

p−1Qp
1)− 1])1/p

ε, ∀ t ∈ [0, 1], (7.9)

where

L0 =
|ξ|+Γ(α1 − α2 + 1)

|ξ − Γ(α1 − α2 + 1)|
, M =

1

Γ(α1 + 1)
(1 + |ξ|L0)

and

Q1 =
|ξ|

Γ(α1 − α2)(1 + (α1 − α2 − 1)q)1/q
+

kf
Γ(α1)(1 + (α1 − 1)q)1/q

.

Moreover, p, q ∈ (1,∞) such that 1/p+ 1/q = 1 and α1 − α2 + 1/q > 1.
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From the above results, we note that compared to the fractional-order initial
value problem (IVP) the Ulam-type stability for the fractional-order BVP is quite
complex to analyse. One of the reasons is that the IVP utilises different methods such
as integral transform method, fixed point method and different integral inequalities.
Another reason may be that the solution of the IVP can be written in the form
a simple Volterra integral equation, whereas the solution of the BVP appears as a
mixed (Volterra and Fredholm) integral equation.

8. Fractional-order impulsive differential equations

An impulsive differential equation is a special class of differential equation used to
describe real-world phenomena more accurately, including evolutionary processes
characterised by abrupt changes of the state at certain instants. In the literature
two familiar impulses are found: instantaneous impulses and non-instantaneous
impulses. In the case of instantaneous impulses, the time interval of the changes
is relatively short in comparison to the total duration of the process, while in
the non-instantaneous case, an impulsive action starts at an arbitrary point in
time and remains active for a finite time interval. For details on the theory of
the impulsive differential equation see the monographs by Lakshmikantham [38],
Bainov [8] and Wang [74]. In 2013, Hernández [28] introduced a new class of
impulsive differential equation with non-instantaneous impulses and studied the
existence of a mild solution. Agarwal et al. [3] analysed a Caputo FDE with non-
instantaneous impulses. For a detailed survey on non-instantaneous impulses on
integer- and FDEs, we refer to the monograph by Agarwal et al. [4].

Wang et al. [81] studied the existence of the solution and the Ulam-Hyers
stability of non-linear impulsive FDEs with Caputo derivative on the finite interval
J = [0, T ]:

CD
α
0,tu(t) = f(t, u(t)), t ∈ J ′ := J \ {t1, . . . , tm}, 0 < α < 1,

∆u(tk) := u(t+k )− u(t−k ) = Ik(u(t
−
k )), k = 1, 2, . . . , m,

u(0) = u0,

(8.1)

where f : J × R → R is jointly continuous, Ik : R → R and tk, k = 1, 2, . . . , m,
satisfy 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T , u(t+k ) = limǫ→0+ u(tk + ǫ)

and u(t−k ) = limǫ→0− u(tk + ǫ) represent the right and left limits of u(t) at t = tk.
They established the results by using the fixed point theorem on a Banach space
PC(J,R) = {u : J → R : u ∈ C ((tk, tk+1],R) , k = 0, 1, . . . , m; u(t+k ), u(t

−
k ) exist
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with u(tk) = u(t−k )} endowed with the norm

‖u‖PC= sup
t∈J

|u(t)|.

Lemma 8.1. [81] Let u ∈ PC(J,R) satisfy the following inequality

|u(t)|≤ a(t) + b

∫ t

0

(t− τ)α−1|u(τ)| dτ +
∑

0<tk<t

θk|u(t
−
k )|,

where a(t) is non-negative continuous and non-decreasing function on J and b, θk
are non-negative constants. Then,

|u(t)|≤ a(t) (1 + θEα(bΓ(α)t
α))k Eα(bΓ(α)t

α), for t ∈ (tk, tk+1],

where θ = max{θk : k = 1, 2, . . .m}.

Definition 8.1. [81] A function u ∈ PC(J,R) is a solution of the impulsive FDE

(8.1) if u satisfies

u(t) =































































u0 +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ [0, t1],

u0 + I1(u(t
−
1 )) +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ (t1, t2],

u0 + I1(u(t
−
1 )) + I2(u(t

−
2 )) +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ (t2, t3],

...

u0 +

m
∑

k=1

Ik(u(t
−
k )) +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ (tm, T ],

(8.2)

They assume the following assumptions to establish the main results:
(A9) For arbitrary (t, u) ∈ J × R, there exist Cf ,Mf > 0 and q1 ∈ [0, 1) such that
|f(t, u)|≤ Cf |u|

q1+Mf .
(A10) For arbitrary u ∈ R, there exist CI ,MI > 0 and q2 ∈ [0, 1) such that
|Ik(u)|≤ CI |u|q2+MI k = 1, 2 . . . , m.
(A11) There exists a constant K

(k)
I > 0 such that |Ik(u1)− Ik(u2)|≤ K

(k)
I |u1 − u2|,

for all u1, u2 ∈ R and k = 1, 2, . . . , m.

Theorem 8.1. Let the assumptions (A9), (A10), (A11) hold and f ∈ C(J×R,R)

be a Lipschitz-continuous function with respect to the second variable with a Lipschitz

constant Lf . Let ϕ ∈ C(J,R+) be a non-decreasing function and there exists a
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constant λϕ > 0 such that 1
Γ(α)

∫ t

0
(t − τ)α−1ϕ(τ) ds ≤ λϕϕ(t) for each t ∈ J . If a

function v ∈ PC(J,R+) satisfies the inequalities

∣

∣

CD
α
0,tv(t)− f(t, v(t))

∣

∣ ≤ ϕ(t), t ∈ J ′

∣

∣∆v(tk)− Ik(v(t
−
k ))

∣

∣ ≤ ϕ(tk), k = 1, 2, . . . , m,
(8.3)

then there exists a unique solution u ∈ PC(J,R) of the impulsive FDE (8.1) such

that

|v(t)− u(t)|≤ (m+ λϕ)M
∗ϕ(t), ∀ t ∈ J, (8.4)

where M∗ = Eα(LfT
α) (1 +KIEα(LfT

α))m and KI = max{K(k)
I : k =

1, 2, . . . , m}. In other words, the impulsive FDE BVP (8.1) is Ulam-Hyers-Rassias

stable.

Ding [21] studied the Ulam-Hyers stability of delay FDEs with instantaneous
impulses by using the Banach fixed point theorem and the abstract Grönwall
inequality.

Wang et al. [82] investigated the existence of the solution and Ulam-type
stability of non-linear FDEs with non-instantaneous impulses with a Caputo
derivative on the finite interval J = [0, T ]:

CD
α
0,tu(t) = f(t, u(t)), t ∈ (tk, sk], k = 0, 1, . . . , m, 0 < α < 1,

u(t) = gk(t, u(t)), t ∈ (sk−1, tk], k = 1, 2, . . . , m,

u(0) = u0,

(8.5)

where 0 = t0 < s0 < t1 < s1 < . . . < tm < sm = T , f : J × R → R is continuous,
and gk : [sk−1, tk] × R → R is continuous for each k = 1, 2, . . . , m, the so-called
non-instantaneous impulses.

Definition 8.2. [82] A function u ∈ PC(J,R) is a mild solution of the FDE (8.5)

if u satisfies

u(t) =











































u0 +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ [0, s0],

gk(t, u(t)), for t ∈ (sk−1, tk], k = 1, 2, . . . , m,

gk(tk, u(tk))−
1

Γ(α)

∫ tk

0

(tk − τ)α−1f(τ, u(τ)) dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, u(τ)) dτ, for t ∈ (tk, sk], k = 1, 2, . . . , m.

(8.6)
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They introduced the concepts of generalised Ulam-Hyers stability for the non-
instantaneous impulsive FDE (8.5).

Let ε > 0 and ϕ ∈ PC(J,R+) be non-decreasing. Consider the following
inequalities:

{

∣

∣

CD
α
0,tv(t)− f(t, v(t))

∣

∣ ≤ ϕ(t), t ∈ (tk, sk], k = 0, 1, . . . , m,

|v(t)− gk(t, v(t))| ≤ ε, t ∈ (sk−1, tk], k = 1, 2, . . . , m.
(8.7)

Definition 8.3. [82] The non-instantaneous impulsive FDE (8.5) is said to be

generalised Ulam-Hyers stable with respect to (ϕ, ε) if there exists a constant L > 0

such that, for each solution v ∈ PC(J,R) of the inequality (8.7) there exists a

solution u ∈ PC(J,R) of the FDE (8.5) with

|v(t)− u(t)|≤ L(ϕ(t) + ε), t ∈ J.

They assume the following assumptions to establish the main results:
(A12) gk ∈ C([sk−1, tk]×R,R) and there are positive constants Lgk , k = 1, 2, . . . , m

such that |gk(t, u1) − gk(t, u2)|≤ Lgk |u1 − u2|, for each t ∈ (sk−1, tk], and for all
u1, u2 ∈ R.
(A13) The function ϕ ∈ C(J,R+) is a non-decreasing function. There exist cϕ > 0

and 0 < p < α < 1 such that
(
∫ t

0

(ϕ(ς))1/p dς

)p

≤ cϕϕ(t), ∀ t ∈ J.

Theorem 8.2. [82] Assume (A12) and (A13) hold, and let f ∈ C(J × R,R) be

Lipschitz-continuous with respect to the second variable with a Lipschitz constant

Lf . If a function v ∈ PC(J,R) satisfies the inequality (8.7). Then, there exists a

unique solution u ∈ PC(J,R) of the FDE (8.5) as given in equation (8.6) such that

|v(t)− u(t)|≤

(

2cϕ
Γ(α)

(

1−p
α−p

)1−p

T α−p + 1

)

1−M
[ϕ(t) + ε] t ∈ J, (8.8)

provided that M = max{M1,M2} < 1, and where

M1 = max

{

Lfcϕ
Γ(α)

(

1− p

α− p

)1−α

(sα−p
k + tα−p

k ) + Lgk

∣

∣

∣
k = 0, 1, 2, . . . , m

}

,

M2 = max

{

Lf

Γ(α + 1)
(sαk + tαk ) + Lgk

∣

∣

∣
k = 1, 2, . . . , m

}

.

Page 33 of 38 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-123115

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Similarly, Shankar and Bora [60,61] established the Ulam-Hyers and generalised
Ulam-Hyers stability of the non-instantaneous impulsive integro-differential equation
involving a Caputo derivative by using the Banach fixed point theorem and applied
the obtained results to fractional RLC circuits as an application.

9. Conclusions

We presented a brief survey and introduced the methods to deal with the Ulam-
Hyers stability of fractional-order differential equations (FDEs). The survey covers
recent contributions in this area for various classes of FDEs such as linear FDEs,
non-linear FDEs, delay FDEs, fractional-order boundary value problems (BVP),
and impulsive FDEs. We also established a connection between the Lyapunov and
Ulam-Hyers stability for dynamical systems and pointed out that the Ulam-Hyers
stability is more general than the Lyapunov stability.

From this survey, one can observe that most of the results on Ulam-Hyers
stability for FDEs have been established on a bounded interval, and none of the
authors have tried to estimate the best Ulam-Hyers constant even for linear FDEs.
As this field has large relevance in practical applications of FDEs, both more work on
the development of the theoretical framework and establishing solutions for concrete
problems are needed.
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