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Abstract
Odd-diffusive systems, characterised by broken time-reversal and/or parity, have recently been
shown to display counterintuitive features such as interaction-enhanced dynamics in the dilute
limit. Here we extend the investigation to the high-density limit of an odd tracer embedded in a
soft medium described by the Gaussian core model (GCM) using a field-theoretic approach based
on the Dean–Kawasaki equation. Our analysis reveals that interactions can enhance the dynamics
of an odd tracer even in dense systems. We demonstrate that oddness results in a complete reversal
of the well-known self-diffusion (Ds) anomaly of the GCM. Ordinarily, Ds exhibits a
non-monotonic trend with increasing density, approaching but remaining below the
interaction-free diffusion, D0, (Ds < D0) so that Ds ↑ D0 at high densities. In contrast, for an odd
tracer, self-diffusion is enhanced (Ds > D0) and the GCM anomaly is inverted, displaying Ds ↓ D0

at high densities. The transition between the standard and reversed GCM anomaly is governed by
the tracer’s oddness, with a critical oddness value at which the tracer diffuses as a free particle
(Ds ≈ D0) across all densities. We validate our theoretical predictions with Brownian dynamics
simulations, finding strong agreement between the them.

1. Introduction

The transport of a tracer particle in crowded environments, such as the cytoplasm [1] or the plasma
membrane of cells [2] is of fundamental interest in biological applications [3]. This transport can be
characterised by the mean-squared displacement (MSD) of the tracer particle which provides the
self-diffusion coefficient for those systems that admit a long-time diffusive regime. Self-diffusion as a concept
goes back to the pioneering works by Maxwell [4], Stefan [5] and Boltzmann [6]. Already in 1875 Maxwell
stated that ‘it is true that the diffusion of molecules goes on faster in a rarefied gas’ [7]. This is not only
intuitively appealing but has also been extensively validated in theoretical studies on various interacting
systems such as repulsive hard spheres [8–10], Yukawa-like particles [11], attractive Lennard–Jones-like
colloids [12–15], but also for bounded soft interactions [16, 17]. Furthermore experimental studies have
well-established the decrease of self-diffusion with interactions [18–21].

Despite this seemingly paradigmatic effect, it is surprising that even the effect of repulsive interactions
can enhance the self-diffusion [22]. This counter-intuitive behaviour is found in odd-diffusive systems [22,
23], characterised by probability fluxes perpendicular to the density gradient. The microscopic cause of the
enhanced self-diffusion was attributed to a mutual rolling of particles induced by odd diffusion instead of the
ordinary repulsion after an interaction [22, 24], and associated with the non-Hermitian time evolution of the
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system [25]. Examples of odd systems include, for instance, charged Brownian particles moving in the
presence of a magnetic field and therefore subject to Lorentz force [26–29] at equilibrium but also active
chiral particles [30–33] out of equilibrium, in particular, chiral bacteria and algae [34–36]. Another
important example are skyrmionic systems [37–39]. Oddness in these systems can be directly shown to
originate from the inherent chirality. Oddness further serves as an effective description, such as for diffusion
in porous media structures [40, 41], systems with transverse forces [42, 43], optical tweezer experiments [44,
45], Magnus forces in soft matter [46, 47] and even the interstellar medium [48, 49] (see also the discussion
in [24]).

The phenomenon of interaction induced enhancement has been investigated only in the dilute limit and
in combination with hard-sphere interactions. Although molecular interactions always manifest a diverging
repulsion at short distances, effective soft interactions are known to emerge in numerous biophysical and soft
matter systems [50, 51]. A natural question now concerns the generality of the enhancement effect: does it
persist at high densities and/or for a generic interaction potential? Both these questions can be addressed in
the framework of a model with soft interactions where at high densities particles can interpenetrate. A very
popular soft interaction potential is that of the Gaussian core model (GCM). Pioneered by Stillinger in 1976
[52] and Stillinger and Weber starting from 1978 [53–57], the model found wide applications while being
recognised to accurately describe the effective interaction between polymer coils [58–62] over a wide range of
densities [63], polymer–colloid mixtures [64], and flexible dendrimers [65]. Interestingly, the GCM displays
some counter-intuitive features which are referred to as static and dynamic anomalies [17, 66–71], and its
phase behaviour in the density–temperature plane has been exhaustively investigated in the last few
decades [60, 66, 72–74]. The GCM, for example, has an upper-freezing temperature above which the system
is always fluid. There it has been shown that the diffusivity can increase upon isothermal compression until
the GCM behaves as a ‘high-density ideal gas’ [17, 60].

In this work, we study via analytical and numerical methods the transport of an odd-diffusive tracer
immersed in a medium of particles represented by the GCM. To model the interactions of the tracer with the
medium we employ a field-theoretic description within the Dean–Kawasaki approach [75–77], which allows
us to make accurate analytical predictions specifically in highly dense, yet fluid systems. By comparing these
predictions with Brownian dynamics simulations, we find remarkable agreement for two distinct regimes:
depending on the strength of the oddness parameter κ, the interactions can either reduce the self-diffusion
or enhance it. These regimes are separated by the oddness effect, where the host medium effectively is
invisible to the tracer. Whereas dynamics can be enhanced in driven systems [78–81], it is remarkable that
even in equilibrium systems such as those considered here, tracer diffusion can be enhanced by interparticle
interactions. We further recover the diffusion anomaly for the GCM and find that in an odd-diffusive system,
this anomaly as a function of the medium density is inverted when enhancement occurs.

The remainder of this work is organised as follows: in section 2 we set up the model and derive the
governing time-evolution equations for the tracer and the host field. In section 3 we employ a weak-coupling
approximation and evaluate the self-diffusion within this perturbative approach. We then present the
theoretical predictions and the results of numerical simulations. In section 4 we present our conclusions and
give an extended outlook to further applications of the effect. Additional details are presented in the
appendices. In particular, in appendix A we discuss some subtleties in deriving the time-evolution of the odd
tracer particle. In appendix B we solve the case in which the tracer does not interact with the medium. In
appendix C we determine the first non-trivial contribution of the tracer-medium interaction to the
self-diffusion within the weak-coupling approximation. Appendix D provides details of the simulations.

2. The model

We consider the stochastic dynamics in d= 2 spatial dimensions of an ensemble of N + 1 interacting
particles with positions Xj(t) ∈ R2 at time t, and j ∈ {0, . . . ,N}. A sketch of the system is shown in
figure 1(a). The particle labelled by X0 is characterised by an odd-diffusive behaviour and its dynamics
follow an underdamped equation of motion. We refer to this particle as the odd tracer. In particular, the
effect of oddness is encoded in the fact that its friction tensor Γ= γ[1−κϵ] is characterised by
antisymmetric elements proportional to the dimensionless oddness parameter κ, which stem from a
non-conservative force experienced by the tracer [28, 82]. Here, γ denotes the scalar friction coefficient. In
the overdamped limit, this effect results in the odd diffusion tensor D= TΓ−1 = D0(1+κϵ), where
D0 = T/(γ(1+κ2)) is the scalar diffusion coefficient of a free odd particle [28], and T is the temperature of
the thermal bath measured in units such that the Boltzmann constant is one. We denote with ϵ the
two-dimensional antisymmetric Levi–Civita symbol (ϵxx = ϵyy = 0 and ϵxy =−ϵyx = 1) and with 1 the
identity matrix. The stochastic dynamics of the odd tracer can be written as
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Figure 1. (a) Sketch of an odd-diffusing colloidal particle (red tracer with κ ̸= 0) coupled via soft-core interactions to a medium
of normally diffusing colloidal particles (blue host particles with κ= 0). In the mesoscopic description discussed here, the host
particles are accounted for in terms of their fluctuating density field ρ(x, t). (b) Analytical (perturbative) predictions (solid lines)
are compared with the results of Brownian dynamics simulation (symbols) for the long-time self-diffusion coefficient Ds/D0 of
the odd tracer coupled to normal host particles as a function of the oddness parameter κ, see equation (33). For sufficiently small
values of κ, the self-diffusion Ds is reduced compared to the the value D0 it takes for an odd tracer in the absence of interactions
with the host particles, as intuitively expected in a crowded environment. For κ > κc = 1, however, the interaction of the tracer
with the host particles enhances its self-diffusion. This phenomenon persists for a remarkably wide range of of values of the
density c. Note that at higher densities (c= 1.0) the relative reduction/enhancement of the self diffusion is smaller than it is at
intermediate densities (c= 0.5). This can be understood by the self-diffusion anomaly of the GCM (non-monotonic dependence
of the self-diffusion coefficient Ds as a function of the density, highlighted in the inset of panel (b). The simulation parameters to
obtain panel (b) are: N= 200 particles of massm= 0.01, friction coefficient γ= 1.0, thermal energy T= 1.0, particle diametre
σ= 1.0, and λ̄= 1.0 (see definition in equation (32)). For further details on the simulations see appendix D.

Ẋ0 = V0, (1)

mV̇0 =−λtr

N∑
j=1

∇U
(
X0 −Xj

)
−ΓV0 +

√
2Tγ ξ0, (2)

where V0(t) denotes the velocity of the odd tracer at time t,m its mass, λtr is the overall strength of its
interaction U with the particles of the host medium, while ξ0 belongs to a set of N + 1 independent
zero-mean Gaussian white noises {ξi }Ni=0 with correlation

⟨ξi (t)⊗ ξj (s)⟩= δij δ (t− s) 1. (3)

Here, the symbol⊗ denotes the outer product between two vectors a and b, so that [a⊗ b]αβ = aαbβ . The
interaction potential U in equation (2) is assumed to be pairwise and with a smooth behaviour at the origin,
such that∇U(0) = 0. Although we are ultimately interested in investigating the self-diffusion of the odd
tracer in the overdamped regime, in which inertial effects can be neglected compared to viscous forces, we
keep the time scale τγ =m/γ finite throughout the derivation, and take the limitm→ 0 at the end of the
calculation because the stochastic description of an overdamped odd particle bears some non-trivial
subtleties [28, 29]. As shown in appendix A, the velocity V0 can be marginalised out at the level of the
stochastic dynamics, leading to the following equation of motion for the position of the odd tracer

Ẋ0 =−λtr

m

ˆ t

t0

dsG(t− s)
N∑

j=1

∇U
(
X0 (s)−Xj (s)

)
+G(t− t0)V0 (t0)+η (t) , (4)

where the memory matrix G(u) is defined as

G(u) = e−|u|/τγM(u) , (5)

M(u) =

(
cos(uκ/τγ) sin(uκ/τγ)
− sin(uκ/τγ) cos(uκ/τγ)

)
, (6)

and t0 is the time at which the initial conditions are imposed. Odd diffusion thus introduces oscillations in
the dynamics of the tracer which decay on a time-scale τγ and vanish in the limit of a normal-diffusive
system, i.e. G(u)→ exp(−|u|/τγ)1 as κ→ 0. The memory introduced by the coarse-graining of the velocity
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appears in the convolution of G(u) with the interaction forces, as well as in the zero-mean Gaussian coloured
noise

η (t) =

√
2Tγ

m

ˆ t

t0

dsG(t− s)ξ0 (s) , (7)

with correlation

⟨η (t)⊗η (s)⟩= T

m

[
e−|t−s|/τγ − e−(t+s−2t0)/τγ

]
M(t− s) . (8)

At long times t− t0, s− t0 ≫ τγ , the effect of the initial conditions is forgotten and the two-point correlation
function above becomes time-translation invariant and reads

⟨η (t)⊗η (s)⟩ ≃ T

m
G(t− s) , t, s≫ t0, (9)

which corresponds to the noise correlation reported in [28]. In the same spirit as [78, 79], we find it
convenient to describe the particles constituting the host medium in terms of their density field. Indeed, we
are not interested in the microscopic details of the crowding host particles, but only in investigating the
extent to which they affect the dynamics of the odd tracer. To this aim, following [75], we introduce the
fluctuating particle density

ρ(x, t) =
N∑

j=1

δ
(
x−Xj (t)

)
, (10)

and use it in order to formulate a mesoscopic description of the medium based on the microscopic one. The
dynamics of the tracer can be written from equation (4) as

Ẋ0 =−λtr

m

ˆ t

t0

dsG(t− s)

ˆ
dx∇U (X0 (s)− x) ρ(x, s)+G(t− t0)V0 (t0)+η (t) . (11)

The stochastic evolution of the density ρ(x, t) appearing in the previous equation can be determined on the
basis of the microscopic dynamics of the N host particles. In the overdamped regime their dynamics are

Ẋj =−λho

γ

N∑
k=1

∇U
(
Xj −Xk

)
− λtr

γ
∇U

(
Xj −X0

)
+
√
2T/γ ξj, (12)

where j ∈ {1, . . .,N}. Here we assume that the potential which acts between the various pairs of host particles
is, up to an overall constant λho/λtr, the same as that which determines the interaction λtrU between each
host particle and the tracer. Analogously to the original works by Kawasaki [76] and Dean [75], the stochastic
dynamics of ρ(x, t) can be derived using Itô’s lemma, and it turns out to be governed by the following
continuity equation

∂

∂t
ρ(x, t) =−∇x ·J (x, t) , (13)

with the fluctuating flux

J (x, t) =−λho

γ

ˆ
dyρ(y, t)∇U (x− y) ρ(x, t)− λtr

γ
∇U (x−X0) ρ(x, t)

− T

γ
∇ρ(x, t)−

√
2Tρ(x, t)/γΛ(x, t) . (14)

A few comments on the above equation are in order: the first line on the r.h.s. corresponds to the drift flux
due to the soft interactions between the host particles in the medium, and to the interaction between the
density field of the host particles and the odd tracer at position X0. The second line, instead, stems from the
coupling of the density ρ(x, t) with the equilibrium thermal bath at temperature T. This involves the
standard diffusive flux proportional to∇ρ and a fluctuating contribution that depends on the zero-mean
Gaussian white noise fieldΛ(x, t). The latter is characterised by the correlation

⟨Λ(x, t)⊗Λ(y, s)⟩= δ (t− s) δ (x− y) 1. (15)
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Note that the noise
√
2Tρ(x, t)/γΛ(x, t) is multiplicative as its amplitude depends on the fluctuating

density itself and is to be interpreted in the Itô sense. Moreover, equation (13) is nonlinear in the density ρ,
thus it cannot be solved analytically. In order to overcome this problem, we assume that the density
fluctuations are much smaller than the homogeneous bulk density (see, e.g. [78, 79, 83–85]). In other words,
we decompose the fluctuating density as ρ(x, t) = ρ0 +ϕ(x, t), where ρ0 = N/L2 is the density in the
homogeneous state, N the number of particles and L the typical box size, while ϕ(x, t) represents the
fluctuations around that state. Then we assume that |ϕ(x, t)| ≪ ρ0, which is increasingly accurate in the
regime of high densities [83]. At the lowest order in ϕ(x, t)/ρ0 from equations (13) and (14), one gets the
following linear dynamics for the field ϕ(x, t),

∂

∂t
ϕ(x, t) =

ρ0
γ

ˆ
dy [λtr δ (y−X0)+λhoϕ(y, t)]∇2

xU (x− y)+
T

γ
∇2ϕ(x, t)+ ζ (x, t) , (16)

where we introduce the scalar zero-mean Gaussian white noise field ζ(x, t) with correlations

⟨ζ (x, t)ζ (y, s)⟩=−2Tρ0
γ

δ (t− s)∇2
xδ (x− y) . (17)

Note that, in this context, ρ0/γ is often referred to as the field mobility coefficient [86]. In the regime of
small density fluctuations, the microscopic equation of motion of the odd tracer derived from equation (11)
becomes

Ẋ0 =−λtr

m

ˆ t

t0

dsG(t− s)

ˆ
dx∇U (X0 (s)− x) ϕ(x, s)+G(t− t0)V0 (t0)+η (t) . (18)

3. Self-diffusion of the odd tracer

Using the evolution equations derived in the previous section, we analyse the self-diffusion coefficient of the
odd tracer and investigate how this is affected by the soft-core interactions with the host particles. Using a
perturbative approach in the coupling strength λtr between the field ϕ(x, t) and the odd tracer, we compute
the MSD of the latter and extract from its long-time behaviour the self-diffusivity defined as

Ds = lim
(t−t0)→∞

⟨|X0 (t)−X0 (t0) |2⟩
4(t− t0)

. (19)

To this purpose, it is convenient to rewrite the stochastic dynamics of the field ϕ(x, t) in terms of its Fourier
modes ϕq(t), where the Fourier transform fq of a function f(x) is defined as fq =

´
dx f(x)exp(−ix · q). The

field dynamics in equation (16) becomes

∂

∂t
ϕq =−αqϕq−λtr

ρ0
γ
q2Uq e

−iq·X0 + ζq (t) , (20)

where we introduced the inverse relaxation time

αq =
(
λhoρ0Uq+T

)
q2/γ (21)

of the q-mode of the field and the Fourier transform of the noise ζq(t) with correlation

⟨ζq (t)ζp (s)⟩=
2Tρ0 q2

γ
δ (t− s) (2π)2 δ (q+ p) . (22)

Importantly, the relaxation time 1/αq of ϕq increases upon decreasing q2 → 0, eventually diverging for the
q= 0mode. This is in agreement with the fact that the field ϕ(x, t) is a locally conserved quantity, which
evolves according to the continuity equation given by equation (16). Note that the field evolution in
equation (20) is formally analogous to the one reported in [87–90] for the case of model B dynamics. The
coupling between the odd tracer and the field in equation (18) can also be rewritten in terms of the modes
ϕq(t) and becomes

Ẋ0 (t) =−λtr

m

ˆ t

t0

dsG(t− s)

ˆ
dq

(2π)2
iqUqϕq (s) e

iq·X0(s) +G(t− t0)V0 (t0)+η (t) . (23)

In the next section, we use equations (23) and (20) as the starting point for the weak-coupling
approximation.
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3.1. Weak-coupling approximation
To compute the MSD, we formally expand the tracer position and the density field in powers of the coupling
strength λtr. This technique was put forward by [87, 88, 91] and adopted from a perturbative expansion of
the generating functional of the dynamics within a path-integral formalism [83, 92–94]. The formal
expansion of the tracer position and field reads

X0 (t) =
∞∑
n=0

λn
trX

(n)
0 (t) , (24)

ϕq (t) =
∞∑
n=0

λn
trϕ

(n)
q (t) . (25)

Following [87, 88, 91] we use equations (24) and (25) to obtain a series expansion for the MSD of the tracer,

⟨|X0 (t) |2⟩=
〈
X(0)
0 (t) ·X(0)

0 (t)
〉
+λ2

tr

(〈
X(1)
0 (t) ·X(1)

0 (t)
〉
+ 2

〈
X(0)
0 (t) ·X(2)

0 (t)
〉)

+O
(
λ4
tr

)
, (26)

up to corrections of orderO(λ4
tr) and where we assumed that the initial position of the tracer is X0(t0) = 0

without loss of generality. However, the accuracy of the results obtained with the truncated series has to be
checked a posteriori with numerical simulations. Importantly, all contributions related to odd powers of λtr

vanish as the equations of motion are invariant under the transformation (λtr,ϕ)↔ (−λtr,−ϕ) [87, 91]. In
order to evaluate the MSD we thus have to solve the set of coupled stochastic dynamics for the tracer and the
field, equations (23) and (20), respectively, at different orders of the expansion in λtr. At the lowest order
O(λ0

tr) we find

Ẋ
(0)
0 (t) = G(t− t0)V0 (t0)+η (t) , (27)

which determines the time evolution of the tracer particle in the absence of the interaction with the medium
and is solved in appendix B. The tracer evolution to linear orderO(λ1

tr) becomes

Ẋ
(1)
0 (t) =− 1

m

ˆ t

t0

ds G(t− s)

ˆ
dq

(2π)2
iqUqϕ

(0)
q (s) eiq·X

(0)
0 (s), (28)

which depends on the free field ϕ
(0)
q and the free tracer position X(0)

0 . Similarly, at orderO(λ2
tr) we find

Ẋ
(2)
0 (t) =− 1

m

ˆ t

t0

ds G(t− s)

ˆ
dq

(2π)2
iqUq

[
ϕ(1)
q (s)+ iq ·X(1)

0 (s) ϕ(0)
q (s)

]
eiq·X

(0)
0 (s), (29)

which, again, is related to the tracer position and the field at lower orders in the interaction coupling. The

relevant correlations within the weak-coupling approximations, i.e. ⟨X(1)
0 (t) ·X(1)

0 (t)⟩ and ⟨X(0)
0 (t) ·X(2)

0 (t)⟩,
are evaluated in appendix C, see equations (C.4) and (C.6) respectively. In particular, in the overdamped

regimem→ 0, the expressions for ⟨X(1)
0 (t) ·X(1)

0 (t)⟩ and ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ simplify significantly, and are
given in equations (C.15) and (C.16) respectively. Using these expressions in equations (27) and (19), our
theoretical approach yields

Ds

D0
= 1− λ2

trρ0
2γ2

1−κ2

1+κ2

ˆ
dq

(2π)2
q4|Uq|2

αq

(
αq+D0q2

) +O
(
λ4
tr

)
(30)

for the self-diffusion coefficient, which constitutes the central result of the present work.
This equation predicts that the sign of the first non-trivial perturbative correction to the self-diffusion Ds

is solely governed by the oddness parameter κ, due to the proportionality to the factor (1−κ2). This implies
that the critical value κc = 1 separates two distinct regimes in which the interaction with the host medium
suppresses (κ < κc) or enhances (κ > κc) the self-diffusion of the odd tracer; in particular, for κ= κc we
observe Ds = D0. Note that the specific value κc = 1 of the critical oddness parameter, as well as the
counter-intuitive independence of κc on the density of the host medium, is expected to be accurate within
the weak-coupling regime only. It is worth asking whether in equation (30) the two contributions

⟨X(1)
0 (t) ·X(1)

0 (t)⟩ and ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ respresent distinct physical effets of interaction-reduction and
enhancement, as they evidently have different sign, see equations (C.15) and (C.16). However, both terms are
finite and keep their sign also in the case κ= 0, in which the self-diffusion is always reduced. This leads us to
speculate that the decomposition of the correction to the self-diffusion in these two terms might be merely
formal and not necessarily associated with two distinct physical effects. Furthermore, it is apparent from

6
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Figure 2. Analytical (perturbative) predictions (solid lines), see equation (33), and results of Brownian dynamics simulation
results (symbols) for the long-time self-diffusion coefficient Ds/D0 of an odd tracer coupled to normally diffusive host particles as
a function of the area fraction c in two spatial dimensions, with interparticle potential U given by equation (31). (a) For an
interaction coupling λ= 1 the self-diffusion Ds decreases upon increasing density c of the medium for κ < κc = 1, while it
increases for κ > κc. Interestingly, at the critical value κc , the odd tracer diffuses at long times as in the absence of host particles,
i.e. Ds = D0. (b) For a larger value of the coupling λ= 4, we observe that the enhancement of the self-diffusion for κ > κc is
much more pronounced (up to 20%), and the largest enhancement is obtained at a lower host medium density (c≃ 0.15). The
self-diffusion anomaly of the GCMmodel (i.e. the non-monotonic dependence of Ds on the host density) becomes evident for
κ < κc and is inverted for κ > κc. For the density getting higher, the GCM is known to exhibit a ‘high-density ideal gas’-like
behaviour [60], a trend which we observe here as well. The simulation parameters used to obtain the two panels are the same as in
figure 1. For further details on the simulations see appendix D.

equation (30) that for suitable choices of the parameters the corrected self-diffusion Ds becomes negative.
This unphysical behaviour suggests that, correspondingly, the weak-coupling approximation breaks down.
These questions will be addressed in future work. Another important aspect to highlight is the fact that the
derivation of equation (30) does not require any specific assumption of the form of the interaction potential
U .

3.2. Gaussian-core model
We proceed and specialise the predictions in equation (30) for the case of the Gaussian core model (GCM).
Note that even though the host–host and host–tracer interactions can be different in principle, we restrict
our analysis to identical interactions and coupling strengths λho = λtr = λ. In the GCM, particles interact via
the (bounded) Gaussian interaction potential

U (x) =
1

2πσ2
exp

(
− x2

2σ2

)
. (31)

The typical rangeof interaction is set by σ, which corresponds to the inter-particle distance at which the
interaction force F(x) =−λ∇U(x) is the strongest. Accordingly, we interpret σ as an effective particle
radius, which, in turn, defines a particle area of πσ2 and thus an effective area fraction
c= πσ2ρ0 = πσ2N/L2. In the framework of the mesoscopic field-theoretic description introduced in
section 2, the length scale σ also determines the range of interaction between the odd tracer and the
fluctuating density field ϕ(x, t). We note that, as apparent from equation (31), U has units [U ] = 1/m2 and
therefore λ is dimensional with units [λ] = Jm2. For it to become an expansion parameter it thus needs to be
made dimensionless by a typical energy and length scale of the system. To this aim, we use the length scale σ
and the thermal energy, obtaining

λ→ λ=
λ

2πσ2T
, (32)

such that [λ] = 1, defining T to be measured in units such that the Boltzmann constant is unity. In related
works, the phase diagram of the GCM is analysed and 1/λ is used as an effective temperature [53, 60, 61].
The GCM, thereby, was found to exhibit an upper-freezing temperature at 1/λfreez = 0.0102 [60], above
which it behaves as a fluid for all densities. Our parameter choice in figures 1 and 2 ensures that the medium
is in the fluid phase with λ≪ λfreez, see also appendix D. The self-diffusion correction reported in
equation (30) can now be expressed in terms of dimensionless quantities as

Ds

D0
= 1− 2πλ

2
c
1−κ2

1+κ2

ˆ
dp

(2π)2
|Up/σ|2

βp/σ

(
βp/σ +

1
1+κ2

) +O
(
λ
4
)
, (33)
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where we introduced the rescaled wave vector p= σq and the dimensionless quantity βq = (2λcUq+ 1).
Note that βq is invariant under the transformation (λ→ aλ, c→ c/a) where a> 0 is a constant coefficient,
i.e. it assumes the same value if we consider a more diluted medium with stronger interaction coupling.
Consequently, it is easy to verify that the first non-trivial correction to the self-diffusion depends linearly on
a. Remember further that D0 = T/(γ(1+κ2)) which leaves the factor of 1/(1+κ2) in the integrand of
equation (33).

By specialising equation (33) to the GCM case and resorting to standard numerical integration schemes
(see appendix C) for the evaluation of the momentum integral, we analyse the extent to which the long-time
self-diffusion Ds of the odd tracer is affected by the interactions with the host medium. In figure 1(b) we
show the behaviour of Ds as a function of the oddness parameter κ and compare the theoretical predictions
with Brownian dynamics simulations (see appendix D for details). In particular, we observe that in the
weak-coupling limit, when the oddness parameter κ is smaller than its critical value κc = 1, for all densities c
the self-diffusion of the odd tracer is suppressed compared to the value D0, which characterises a single odd
particle in the absence of interactions. This behaviour is expected and can be observed in various systems
with repulsive interactions, e.g. in systems with hard-core [8–11] or soft-core [16, 17] repulsion, but also for
attractive Lennard–Jones particles [12–15]. The decrease of the self-diffusion upon increasing the density of
the particles in the medium reflects the intuition that in a crowded environment the motion of a diffusive
tracer is hindered by the collisions with the other particles.

However, the combined effect of the particle interactions with the odd-diffusive motion of the tracer
eventually results in an inversion of this tendency. For κ > κc, we observe an enhancement of the
self-diffusion Ds compared to D0, irrespective of the area fraction c. This phenomenology was first observed
for the self-diffusion of odd-diffusive hard disks in [22] and since then was confirmed via theory and
simulations for systems of particles with excluded volume [24, 25, 39]. Our finding proves that an
enhancement of the self-diffusion is possible not only for systems of particles with hard-core repulsion, but
also with generic bounded soft-core potentials, as shown in equation (30). At the same time, the fact of
having soft-core interactions shifts the value of the critical oddness parameter to κc = 1, while it was
κc = 1/

√
3≈ 0.58 in the case of hard disks [22]. This implies that in the case of soft-core interactions a more

pronounced chirality is required to enhance the transport properties of the odd-tracer, as the effect of the
collisions is ‘milder’ in the presence of soft interactions.

One of the main advantages of the field-theoretic description adopted here compared to the geometric
approach of [22], is that it allows us to extend the investigation to the case of dense systems. In particular, we
show in figure 1(b) the dependence of Ds on κ for very dilute (c= 5%, dark blue), moderately dense
(c= 50%, grey), and very dense (c= 100%, yellow) systems of host particles. It appears that the behaviour of
the self-diffusion as a function of the density is far from trivial. Focusing on values of κ with κ < κc, Ds is
larger when the tracer is dispersed in a very dense medium (c= 100%) than in the case of intermediate
density (c= 50%). This seemingly counter-intuitive phenomenon of the GCM, referred to as the
‘self-diffusion anomaly’, is associated with the structural anomaly of the fluid GCM at high density [16, 17,
67–69, 95, 96]. Specifically, as the interaction potential is bounded, particles tend to overlap for sufficiently
high densities, generating an entropic gain [17], and actually tend to display a ‘high-density ideal gas’-like
behaviour for even higher densities [60], where Ds ↑ D0. In the inset of figure 1(b), we show the emergence of
this anomaly by investigating the dependence of Ds on c over a wide range of densities up to c= 200%. For a
normal diffusive tracer (κ= 0), we confirm the non-monotonic anomalous behaviour of Ds, which first
sharply decreases and then slowly increases upon increasing c, but with Ds < D0 for all densities c.
Surprisingly, however, for κ > κc = 1, we observe a specular trend showing an initial increase of the
self-diffusion Ds for sufficiently dilute systems, followed by a decrease as a function of c, when its value
exceeds a certain threshold. Thus, for κ > κc, the self-diffusion anomaly of the GCM is inverted, Ds ↓ D0, and
remarkably Ds > D0 for all densities.

In figure 2 we plot the self-diffusion Ds as a function of the density c up to c= 50% for different values of
the oddness parameter κ. In particular, panel (a) shows the predictions for a coupling parameter λ= 1 while
panel (b) for λ= 4. Notably, the analytical predictions (solid lines) are in excellent agreement with the
results of Brownian dynamics simulations (symbols), especially for denser systems. This is coherent with the
fact that the linearisation of the Dean–Kawasaki equation in equation (13) provides more accurate results
when the density fluctuations ϕ around the homogeneous bulk density ρ0 are much smaller than ρ0 itself. As
anticipated by figure 1(b) and above, it turns out that Ds > D0 for κ > κc, while Ds < D0 for κ < κc.
Particularly interesting in figure 2(a) is the critical case κ= κc, for which the self-diffusion appears to be
insensitive to any changes in the medium density, and the tracer diffuses effectively as a free particle. This
effect can be rationalised by noting that increasing the host density has a twofold effect on the tracer: on the
one hand, it makes the surrounding environment more crowded, thus hindering the motion of the tracer; on
the other hand, thanks to the mutual rolling mechanism analysed in [22, 24], the interaction with the host
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particles can speed up the dynamics of the odd tracer. At κ= κc these two effects balance each other and the
tracer effectively evolves as in the absence of interactions. Also in this case, figure 2(a) shows a remarkable
agreement between analytical predictions and numerical data obtained from Brownian dynamics
simulations. Importantly, the fact that κc does not depend on the host medium density holds true only
within the weak-coupling regime illustrated in panel (a) of figure 2, while it is not longer the case when the
interaction strength λ is increased, as shown in panel (b) of figure 2.

With λ being chosen four times larger in figure 2(b) than in figure 2(a), the interaction-induced
enhancement of Ds can reach≈20% of the free value D0, compared to≈5% of figure 2(a), which agrees with
the λ rescaling of the interaction-correction observed in equation (33). Upon increasing the value of the
coupling λ, the self-diffusion anomaly of the GCM is further observed starting from much lower densities
(c≈ 15%). In this case, the agreement between simulations and analytical predictions is slightly worse,
specifically in the dilute regime due to the less accurate linearisation of Dean’s equation. Further, the
matching is less accurate in the dense regime when the oddness parameter approaches κc. This observation
can be rationalised by noting that when the interaction coupling λ is sufficiently large and κ≈ κc, the first

non-trivial correction to Ds in equation (33) becomes comparable with higher-order termsO(λ
4
), which are

neglected in our analytical treatment.

4. Conclusions

In this work, we studied the self-diffusion coefficient Ds of an odd-diffusive tracer coupled to an ensemble of
normally diffusive crowding host particles. The pairwise interaction between the particles was modelled by
the bounded soft-core Gaussian potential, the so-called Gaussian core model (GCM), implying that distinct
particles may partially overlap. From the microscopic picture of the GCM fluid, we moved to a field-theoretic
description based on the Dean–Kawasaki equation [75–77] in which the host particles are coarse-grained
into a thermally fluctuating density field ρ(x, t). Under the assumption that the interaction coupling strength
λtr between the density field and the odd tracer is sufficiently small, we obtained a perturbative expansion for
the MSD of the latter, which we truncated at the first non-trivial orderO(λ2

tr). Based on this expansion we
evaluated the field-induced correction to the self-diffusion of the odd tracer and compared it with Brownian
dynamics simulations. In particular, we showed that, upon increasing the oddness parameter κ, the collisions
with the host particles have a substantially different effect on the transport properties of the tracer.
Specifically, there exists a critical value κc of the oddness parameter κ such that for κ < κc the self-diffusion
Ds is reduced by the crowding effect introduced by the host particles, i.e. Ds decreases upon increasing the
overall host particle density c. In contrast, for κ > κc the interaction with the host particles leads to an
enhancement of the self-diffusion upon increasing c. Moreover, we showed that this enhancement reaches its
maximum at a specific density of the system, whose value depends on the interaction coupling λtr. Beyond
that value, Ds starts decreasing upon increasing c. This non-monotonic behaviour of the self-diffusion as a
function of the area fraction c for κ > κc is specular to that of normally diffusive Gaussian-core particles, for
which the diffusion coefficient first sharply decreases and then slowly increases upon increasing the host
density (see the self-diffusion anomaly of the GCM, discussed, e.g. in [16, 17, 67–69]). Finally, we showed
that at the critical value κ= κc and within the weak-coupling regime, the self-diffusion of the odd tracer is
not affected by the collisions with the crowding particles, irrespective of their density.

Our results extend previous studies on odd-diffusive tracers in the dilute hard-sphere limit [22, 24, 25,
39] by incorporating soft-core interactions and high-density effects through a field-theoretical approach.
Unlike for the dilute regime, in which the enhancement of self-diffusion was primarily attributed to the
special nature of steric collisions under oddness, the present work demonstrates that a similar enhancement
can persist even in the high-density regime of soft particles, in which inter-penetrating interactions
dominate. These findings suggest that the mechanism behind interaction-enhanced diffusion is more general
than previously considered, extending beyond purely steric effects to include a broader class of soft-matter
systems.

The model presented here can be extended to address a variety of related problems. For example, the
Dean–Kawasaki equation has already been generalised to the underdamped regime, by including in the
description a momentum density field [97, 98]. A potentially interesting direction is that of deriving the
fluctuating hydrodynamic equations for a system of interacting odd-diffusive soft-core particles in the
underdamped regime and then use it to study the dynamic behaviour of a tracer in such a medium.
Moreover, the derivation presented here can be used for a systematic analysis of the role of mass on the
transport properties of an odd tracer in a crowded environment, which we leave for future work.

The GCM is known to exhibit further anomalous properties beyond the self-diffusion anomaly discussed
here, among which we mention a density anomaly (expansion upon isobaric cooling), a structural order
anomaly (reduction of the short-range translational order upon isothermal compression) and a re-entrant
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melting transition for the solid GCM [17, 60, 67, 69, 70]. As we showed here, the interplay between the odd
diffusivity of the tracer and the self-diffusion anomaly (increase upon isothermal compression) of the
underlying fluid gives rise to an interesting and unexpected behaviour of the self-diffusion coefficient (see
figure 2(a)). It is therefore interesting to thoroughly investigate the influence of oddness on structural,
transport and thermodynamic properties of the GCM.

For a binary mixture of GCM particles, previous work showed the existence of fluid-fluid phase
separation [99, 100]. Coupling odd tracers to this kind of mixtures might show surprising behaviour in the
dynamics of the transition. Correlations on arbitrarily large length scales which could introduce
fluctuation-induced forces between the odd-particles [88, 101–105]. Finally, in the formulation presented
here, the odd tracer and the host particles (and thus the density field ρ) evolve according to an equilibrium
dynamics. It may be interesting to analyse the transport properties of an (odd) tracer coupled to an active
(odd) fluid featuring nonequilibrium fluctuations, in which the detailed balance condition is not fulfilled.
The odd medium could be described by continuum models based on fluctuating density and polarity fields,
as for example in [106], or with hydrodynamic theories characterised by odd viscosity [107], where already
remarkable effects for tracers have been reported [46, 108–113].
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Appendix A. Velocity marginalisation

In this appendix we derive the equation of motion for the position of the odd tracer reported in equation (4)
by integrating out the velocity variable V0(t) from equations (1) and (2). To this aim, we define the new
variable U0(t) = S−1V0(t), which is related to the velocity V0(t) by a suitably chosen linear transformation S.
The latter has the property to diagonalise the friction tensor Γ, and satisfies S−1ΓS= L, with L,S ∈ C2×2. In
particular, L is diagonal and contains the eigenvalues of the friction tensor L00 ≡ ℓ0 = γ(1− iκ) and
L11 ≡ ℓ1 = γ(1+ iκ), where i denotes the imaginary unit, while

S=
1√
2

(
−i i
1 1

)
. (A.1)

Note that the emergence of complex eigenvalues is due to the oscillatory behaviour introduced by the oddness
parameter κ. In the new variable U0, the dynamics of equations (1) and (2) can be formally solved, yielding

U0 (t) = e−
(t−t0)

m LU0 (t0)−
λtr

m

ˆ t

t0

dse−
(t−s)

m L
N∑

j=0

S−1∇U
(
X0 (s)−Xj (s)

)
+

1

m

ˆ t

t0

dse−
(t−s)

m L S−1 ξ0 (s) . (A.2)

The expression for U0(t) can be inverted back into the original variables to find the stochastic dynamics of
the position Ẋ0(t) = SU0(t). Using the identity, obtained from straightforward computation,

SαβS
−1
βσ fσ (s) exp

(
−ℓβ
m

(t− s)

)
= Gαβ (t− s) fβ (s) (A.3)

where f(s) is a generic 2-dimensional vector, s< t and G(u) defined in equation (5) of the main text,
equation (4) is finally obtained. Note that repeated indices imply summation according to the Einstein
notation. As described in equation (7), the evolution of the position of the odd tracer depends on the colored
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noise η(t), which is given by the convolution of the function G(u) with the white noise ξ0. The correlation of
η(t) can be computed as

⟨η (t)⊗η (s)⟩= 2Tγ

m2

ˆ t

t0

dt ′
ˆ s

t0

ds ′G(t− t ′) GT (s− s ′) δ (t ′ − s ′)

=
2Tγ

m2

ˆ min(t,s)

t0

dt ′G(t− t ′) GT (s− t ′)

=
T

m

[
e−|t−s|/τγ − e−(t+s−2t0)/τγ

]
M(t− s) , (A.4)

which corresponds to the correlation reported in equation (8) of the main text, andM is given by
equation (6). For the matrix product in the above calculation we used the relation

G(t− t ′) GT (s− t ′) = e−(t+s−2t ′)/τγ M(t− s) , (A.5)

which easily can be shown with the help of trigonometric identities.

Appendix B. Tracer dynamics in the absence of interaction with the medium

We here analyse the case in which the coupling between the odd tracer and the density field of the particles in

the medium is switched off. We denote the position of such a free odd tracer as X(0)
0 , and the free field as ϕ(0)

q .

B.1. Free dynamics of the odd tracer
In the absence of the coupling to the field, i.e. λtr = 0, the stochastic dynamics of the odd tracer in
equation (27) can be exactly solved, and yields

X(0)
0 (t) =

ˆ t

t0

dsG(s− t0) V0 (t0)+

ˆ t

t0

dsη (s) , (B.1)

where we assumed that the odd tracer is initially at X(0)
0 (t0) = 0, without loss of generality. Note that V0(t0) is

an assigned value and therefore does not need a perturbative expansion. As the position X(0)
0 of the tracer

follows a Gaussian process, we can characterise it by its mean µ0(t)≡ ⟨X(0)
0 (t)⟩ and two-time connected

correlation function C(t, s). From equation (B.1) these quantities can be straightforwardly obtained, yielding

µ0 (t) =mA(t− t0)V0 (t0) , (B.2)

and

C(t, s)≡
〈
X(0)
0 (t)⊗X(0)

0 (s)
〉
−
〈
X(0)
0 (t)

〉
⊗
〈
X(0)
0 (s)

〉
= 2D0 [min(s, t)− t0] 1−mT

[
Γ−1A(t− t0)+

(
Γ−1A(s− t0)

)T]
+mT

[
Θ(t− s) Γ−1A(t− s)+Θ(s− t)

(
Γ−1A(s− t)

)T]−mTA(t− t0)A
T (s− t0) , (B.3)

where we introduced the abbreviation A(u) = Γ−1[1−G(u)]. We denoted by a⊗ b= aαbβ the outer
product between two vectors a and b, and we introduced the bare diffusion coefficient D0 = T/(γ(1+κ2))
of the odd tracer. Note that the connected correlation satisfies C(t, s) = CT(s, t). Once µ0(t) and C(t, s) are
known, we can compute the generating functional Z[j] of the n-point correlations for the position of the odd
tracer in the free case (λtr = 0),

Z [j] =

〈
exp

{ˆ
dt j(t) ·X(0)

0 (t)

}〉
, (B.4)

where j(t) is an auxiliary field and the average is taken with respect to the Gaussian path probability

P0 [x]∝ exp

{
−1

2

ˆ
dt

ˆ
ds [x(t)−µ0 (t)] ·C(t, s) [x(s)−µ0 (s)]

}
. (B.5)

Solving the functional Gaussian integral in equation (B.4) leads to the expression

Z [j] = exp

{
1

2

ˆ
dt

ˆ
ds j(t) ·C(t, s) j(s)+

ˆ
dt j(t) ·µ0 (t)

}
(B.6)

for the generating functional. The explicit expression of this generating functional will be particularly useful
for deriving some of the expressions presented further below, see equation (C.3).
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B.2. Free dynamics of the field

In the absence of interactions with the tracer particle, the dynamics of the free field in Fourier space ϕ(0)
q

follows an Ornstein–Uhlenbeck process, solved by

ϕ(0)
q (t) = ϕ(0)

q (t0) e
−αq(t−t0) +

ˆ t

t0

dse−αq(t−s) ζq (s) . (B.7)

Here, ϕq(t) =
´
dx ϕ(x, t) exp(−ix · q) denotes the (two-dimensional) Fourier transform of a field ϕ(x, t)

with wave vector q. From equation (B.7) we compute the two-point correlations of the free field as〈
ϕ(0)
q (t) ϕ(0)

p (s)
〉
=
〈
ϕ(0)
q (t0) ϕ

(0)
p (t0)

〉
e−αq(t−t0) e−αp(s−t0)

+
T

λhoUq+T/ρ0

[
e−αq|t−s| − e−αq(t+s−2t0)

]
(2π)2 δ (q+ p) , (B.8)

where we used that Uq = U−q which holds for any symmetric interaction potential. When t= s and the field
had sufficient time to relax (formally t0 →−∞), the two-point correlator yields〈

ϕ(0)
q (t) ϕ(0)

p (t)
〉
=

T

λhoUq+T/ρ0
(2π)2 δ (q+ p) . (B.9)

Thus, if we assume that the field is distributed according to its equilibrium distribution before being put in

contact with the odd tracer at time t= t0, then ⟨ϕ(0)
q (t0)ϕ

(0)
p (t0)⟩ is given by equation (B.9). Under this

assumption, equation (B.8) can be written as〈
ϕ(0)
q (t) ϕ(0)

q ′ (s)
〉
= (2π)2 δ (q+ p)

T

λhoUq+T/ρ0
e−αq|t−s|

≡ (2π)2 δ (q+ p) Cϕq (t− s) , (B.10)

which defines the stationary time-translational invariant correlator Cϕq of the free field ϕ
(0)
q , and which will

be of importance later, see equations (C.2) and (C.3).

Appendix C.Weak-coupling approximation

In this appendix, we compute the first non-trivial perturbative correction to the MSD which, due to the
symmetry (λtr,ϕ)↔ (−λtr,−ϕ) is of second order in the interaction coupling λtr. In the case in which the
tracer is initialised at the origin, i.e. for X0(t0) = 0, this is formally given by equation (26). In order to

evaluate this correction, we need to separately compute the correlations ⟨X(1)
0 (t) ·X(1)

0 (t)⟩ and
⟨X(0)

0 (t) ·X(2)
0 (t)⟩. To evaluate the first, we formally solve the stochastic dynamics in equation (28) to get〈

X(1)
0 (t) ·X(1)

0 (t)
〉
=− 1

m2

ˆ
dq

(2π)2

ˆ
dp

(2π)2
qβpγ Ut,qUt,p

×
ˆ t

t0

ds

ˆ s

t0

du

ˆ t

t0

ds ′
ˆ t

t0

du ′Gαβ (s− u) Gαγ (s
′ − u ′)

×
〈
ϕ(0)
q (u) ϕ(0)

p (u ′) eiq·X
(0)
0 (u)+ip·X(0)

0 (u ′)
〉
. (C.1)

As the average in the last line only involves the position of the free tracer X(0)
0 and the free field ϕ

(0)
q , it can be

factorised as follows〈
ϕ(0)
q (u) ϕ(0)

p (u ′) eiq·X
(0)
0 (u)+ip·X(0)

0 (u ′)
〉
=
〈
ϕ(0)
q (u) ϕ(0)

p (u ′)
〉〈

eiq·X
(0)
0 (u)+ip·X(0)

0 (u ′)
〉

= (2π)2 δ (q+ p) Cϕq (u− u ′)Qq (u,u
′) (C.2)

where we used equation (B.10) and we introduced the two-time quantityQq, which can be obtained from
the generating functional as

Qq (u,u
′)≡Z [j= iq(δ (t− u)− δ (t− u ′))]

= exp

{
−1

2
q · [C(u,u)+C(u ′,u ′)]q+

1

2
q · [C(u ′,u)+C(u,u ′)]q+ iq · [µ0 (u)−µ0 (u

′)]

}
.

(C.3)
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Therefore, the correlation ⟨X(1)
0 (t) ·X(1)

0 (t)⟩ in equation (C.1) can be rewritten as

〈
X(1)
0 (t) ·X(1)

0 (t)
〉
=

1

m2

ˆ
dq

(2π)2
qβqγ |Ut,q|2

×
ˆ t

t0

ds

ˆ s

t0

du

ˆ t

t0

ds ′
ˆ s ′

t0

du ′Gαβ (s− u)Gαγ (s ′ − u ′)Cϕq (u− u ′)Qq (u,u
′) . (C.4)

Before calculating ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ it is convenient to solve the dynamics of ϕ(1)
q , obtaining

ϕ(1)
q (t) =−q2Uq

ρ0
γ

ˆ t

t0

dse−αq(t−s) e−iq·X(0)
0 (s) , (C.5)

where we used that ϕ(n)
q (t0) = 0 for all n⩾ 1. This is justified as we already assumed for equation (B.9) that

the initial condition of the field is drawn from its equilibrium distribution in the absence of the coupling
with the tracer. With the help of the identity (see equation (B.6) for the definition of Z)

〈
X(0)
0 (t) e

−iq·
[
X(0)
0 (u ′)−X(0)

0 (u)
]〉

=
δZ [{j}]
δj(t)

∣∣∣∣∣
j(t)=−iq[δ(t−u ′)−δ(t−u)]

=Qq (u,u
′) [(C(t,u)−C(t,u ′)) iq+µ0 (t)] , (C.6)

the correlation ⟨X(0)
0 (t) ·X(2)

0 (t)⟩ can now be evaluated to be

⟨X(0)
0 (t) ·X(2)

0 (t)⟩= iρ0
γm

ˆ
dq

(2π)2
qβq

2|Ut,q|2
ˆ t

t0

ds ′
ˆ s ′

t0

du ′
ˆ u ′

t0

dv ′ Gαβ (s
′ − u ′) e−αq(u ′−v ′)

× [(Cαγ (t,u
′)−Cαγ (t,v

′)) iqγ +µα
0 (t)]Qq (u

′,v ′)+
i

m2

ˆ
dq

(2π)2
qβqδqϵ|Ut,q|2

×
ˆ t

t0

ds ′
ˆ s ′

t0

du ′
ˆ u ′

t0

dv ′
ˆ v ′

t0

dw ′ Gαβ (s
′ − u ′) Gδϵ (v

′ −w ′)

× [(Cαγ (t,u
′)−Cαγ (t,w

′)) iqγ +µα
0 (t)] Cϕq (u

′ −w ′)Qq (u
′,w ′) . (C.7)

The expression for the correlations given in equations (C.4) and (C.7) are rather lengthy and do not admit an
efficient numerical evaluation due to the nested time-integrals. However, these integrals can be analytically
evaluated within the small-mass limitm→ 0 that characterises the overdamped regime. We can simplify the
expression ofQq(t, s) given in equation (C.3) by neglecting all contributions proportional tom in its
exponent and find

Qq (t, s)→ e−q2D0|t−s|+iq·(µ0(t)−µ0(s)), m→ 0, (C.8)

according to whichQq is an exponential function of the two times t and s only. Since also the two-point
correlator C(t, s) of equation (B.5), the function G(t) defined in equation (5) of the main text, and the
free-field correlator Cϕq(t) in Equation (B.10) can be rewritten as (complex) exponentials upon using
suitable trigonometric identities, the nested time-integrals in equations (C.4) and (C.7) can thus be solved
analytically. Note that the validity of this seemingly uncontrolled approximation in equation (C.8) is checked
a posteriori by comparing the analytical predictions with numerical simulations. By further specialising this
analysis to the long-time limit t0 →−∞, we rewrite the correlation in equation (C.4) as

〈
X(1)
0 (t) ·X(1)

0 (t)
〉
=

2Tρ0
γm2

(t− t0)

ˆ
dq

(2π)2
q4|Ut,q|2

αq
Re

[
fq
]
, (C.9)

where Re[fq] denotes the real part of the momentum-dependent complex number fq defined as

fq =
τ 2γ

α̃q

[
1−

(
iκ− τγα̃q

)2] −
τ 4γ α̃q

(1+ iκ)
[
(1+ iκ)2 −

(
τγα̃q

)2] . (C.10)
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To make the notation more compact, we further defined the new inverse time scale α̃q ≡ αq+D0q2

(compare with equation (20) for the definition of αq). The correlation given in equation (C.7) can
analogously be rewritten as〈

X(0)
0 (t) ·X(2)

0 (t)
〉
=− 2D0ρ0

γ2 (1+κ2)
(t− t0)

ˆ
dq

(2π)2
q4|Ut,q|2

α̃2
q

− 2ρ0
γm

D2
0 (t− t0)

ˆ
dq

(2π)2
q6|Ut,q|2

αq
Re

[
gq
]
,

(C.11)

where we introduced the complex number gq defined as

gq =
τγ

(
2τγ α̃q+ 1− iκ

)
α̃2
q

(
τγ α̃q+ 1− iκ

)2 . (C.12)

The remaining momentum integrals of equations (C.4) and (C.7) can be finally performed numerically (e.g.
using Mathematica). For the numerical evaluation, we truncated the integration domain R2 of the
momentum integral into [−qb,qb]2, by introducing the momentum cut-off qb = 300. The value of qb, which
guarantees an accurate estimate of the original integral, actually depends on the specific interaction
potential, as well as on the other parameters of the model (see appendix D for more details). Here, we use a
Gaussian interaction potential which displays a Gaussian decay on a momentum scale much smaller than qb.
We checked the validity of this approximation by testing the numerical integration for insensitivity against a
variation of qb around the chosen value. By combining the numerical evaluation of equations (C.9)
and (C.11) with the formal expression of the first non-trivial perturbative correction to the MSD given in
equation (26), we obtain the results shown in panels (a) and (b) of figure 2. Note that equations (C.9)
and (C.11) can be rewritten, in the overdamped regimem→ 0, by using

Re
[
fq
]

m2

m→0−→ 1

γ2α̃q (1+κ2)
, (C.13)

Re
[
gq
]

m
m→0−→ 1

γα̃2
q (1+κ2)

. (C.14)

Specifically, these expressions allow us to rewrite equation (C.9) as〈
X(1)
0 (t) ·X(1)

0 (t)
〉
=

2D0ρ0
γ2

(t− t0)

ˆ
dq

(2π)2
q4|Ut,q|2

α̃q

1

αq
, (C.15)

and equation (C.11) as〈
X(0)
0 (t) ·X(2)

0 (t)
〉
=−2D0ρ0

γ2
(t− t0)

ˆ
dq

(2π)2
q4|Ut,q|2

α̃q

1

α̃q (1+κ2)

− 2D0ρ0
γ2

(t− t0)

ˆ
dq

(2π)2
q4|Ut,q|2

α̃q

D0q2

αqα̃q (1+κ2)
. (C.16)

The sum of these two expressions can be easily computed and gives the result reported in equation (30) of
the main text.

Appendix D. Simulations details

D.1. Brownian dynamics simulations
The stochastic dynamics of the particles constituting the system can be conveniently cast in the general form
of an underdamped Langevin equation for the ith particle,

dXi (t)

dt
= Vi (t) , (D.1)

mi
dVi (t)

dt
=−γi (1−κi ϵ) Vi (t)+ Fi (t)+

√
2γi kBTξi (t) , (D.2)

where Xi(t),Vi(t) ∈ R2 are the ith particle position and velocity, respectively, with i = 0,1, . . . ,N and a
suitable choice of the parametersmi, γi, κi. 1 is the identity matrix and ϵ the two-dimensional Levi–Civita
symbol. In total, we simulate the dynamics of N = 200 particles, where the particle i= 0 models the
odd-diffusive tracer (κ0 = κ ̸= 0) and all other particles form the set of normal-diffusive host particles
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Figure D1. (a) Self-diffusion coefficient Ds/D0 as a function of the dimensionless coupling parameter λ. The curves are
computed with three different area fractions c, and with an oddness parameter κ= 2> κc, such that we are in the enhancement

regime and Ds > D0. (b) Typical TAMSD δ2i (∆) curves as a function of lag-time∆ related to i = 1, . . . ,10 trajectories of a total
length of T= 4× 105 real-time steps in the case of N= 200 interacting particles with density c= 0.1 and κ ∈ {0,2}. The values
∆min = 1 and∆max = 100 mark the interval of lag times∆ (in real-time units) used for ensemble averaging the TAMSDs.

(κi = 0 for i = 1, . . . ,N). The coefficients γi,mi denote the particles’ friction and mass, respectively, and are
assumed to be equal for the tracer and the host particles, i.e. γi = 1.0 andmi = 0.01 for i = 0, . . . ,N. In units
where the Boltzmann constant kB is set to unity, the temperature of the thermal bath is taken to be T= 1.0.
ξi(t) is a zero-mean Gaussian white noise with correlations ⟨ξi,α(t)ξj,β(t ′)⟩= δij δαβ δ(t− t ′). Note that
Latin indices i, j label the particles, while Greek indices α,β refer to the (two) spatial coordinates.

The conservative force Fi(t) exerted on particle i and appearing in equation (D.2) is given by the sum of
pairwise interaction forces Fi(t) =

∑N
j=0 fij(t), where f ij derives from a (normalised) Gaussian interaction

potential U , i.e. fij =−λ∇U(Rij) if Rij < δc and fij = 0 if Rij > δc. Here, Rij = |Xi(t)−Xj(t)| is the
inter-particle distance, and δc denotes a cut-off length scale that we use in order to truncate the interaction
potential U(Rij) for reducing the computational time required by the Brownian dynamics simulations. In
particular, if δc is sufficiently larger than the typical decay length of U(Rij), the error introduced by this
truncation is negligible. For the Gaussian interaction potential reported in equation (31), we choose σ= 1.0.
Note that σ is used as an effective particle radius, from where we deduce the effective concentration of
particles c= πσ2N/L2, where L is the length of the square simulation box. The cut-off distance of the
interaction force is chosen to be δc = 4σ.

The dimensionless interaction scale λ= λtr/(2πσ2T) is given in terms of the coupling λtr compared
with the thermal energy T and the length scale σ of the Gaussian potential. For a comparison between
theoretical predictions and simulation results, see figure D1(a), where different couplings λ are tested. The
analytical predictions are expected to be valid in a regime where the coupling between the tracer and the host
particle is sufficiently small. However, from figure D1(a) it can be seen that at high densities (c= 1.0 and
c= 1.8) the whole range of tested couplings produces very accurate results. At the low density c= 0.2,
instead, the mismatch between the analytical prediction and the numerical data increases upon increasing λ.
As a compromise between the accuracy of the analytical predictions and the magnitude of the effects shown
in the figures of the main text (section 3), we opt for λ= 1 and compare the results with λ= 4 in figure 2 of
the main text. Note that λ= 1 is such that the maximum of the interaction energy λU(Rij) is equal to the
thermal energy T.

To solve the first-order stochastic differential equation (D.2) we use the standard Euler-Maruyama
scheme [22], where Xi(tn+1) and Vi(tn+1) are calculated from Xi(tn) and Vi(tn) and tn+1 = tn +∆t with
∆t= 10−3. The thermal noise is accounted for by

√
2γiT∆tN (0,1), whereN (0,1) is a two-dimensional

random vector drawn from a multivariate normal distribution with zero mean and covariance matrix given
by the identity matrix 1. Note that the discretised stochastic equations of motion are interpreted according to
the Itô prescription, implying that the standard deviation of the noise is proportional to

√
∆t. To simulate

equation (D.2) we use a square box of length L with periodic boundary conditions, where the box length is
determined so as to result into the desired density of particles c, i.e. L=

√
πσ2N/c. As the interaction force

does not diverge for Rij → 0 and particle overlaps are possible, we initialise the position of the N = 200
particles according to a uniform distribution over the finite box. After an initial equilibration period of
neq = 107 time steps, we start recording the stochastic trajectory for a total duration of ntot = 4× 108 time
steps, which corresponds to a trajectory length of T= 4× 105 in real-time units. For an efficient
computation, we used a neighbour-list implementation for the evaluation of the interaction forces, with a
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buffer radius δbuff which has been optimised in order to minimise the computational time. Over the broad
range of densities simulated, a buffer-radius of δbuff ≈ 2δc turned out to be the most efficient.

D.2. MSD evaluation
In order to evaluate the diffusion coefficient of the tracer particle we calculate the time-averaged MSD
(TAMSD) [114] for each (independent) trajectory i according to

δ2i (∆,T) =
1

T−∆

ˆ T−∆

0
dt |X{i}

0 (t+∆)−X{i}
0 (t) |2, (D.3)

where X{i}
0 (t) is the the position of the tracer particle at time t in trajectory i, T is the trajectory length and∆

is the lag time. As the system under consideration is ergodic, we can ensemble-average over the i = 1, . . . , imax

independent trajectories to obtain the estimate for the MSD [115], which is formally defined as〈
|X0 (t)−X0 (0) |2

〉
= lim

T→∞

〈
δ2i (∆ = t,T)

〉
= lim

T→∞

1

imax

imax∑
i=1

δ2i (t=∆,T). (D.4)

By taking T large enough one can assume that the initial conditions play no role in the evaluation of the
long-time MSD. Hence, for the sake of simplicity, we impose X0(t0) = 0. We observe from figure D1(b) that
the most reliable∆-range from which to extract the MSD is 1=∆min ⩽∆⩽∆max = 100. The MSD is then
used to deduce the self-diffusion coefficient Ds by fitting a linear time-dependence ⟨|X0(t)|2⟩= 4Ds t, where
we take N∆ = 40 logarithmically equidistant lag-times to fit the MSD and ensemble average over imax = 10
independent trajectories.
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