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Run-and-tumble particle (RTP) motion is a key model for certain bacteria and other actively mov-
ing microscopic particles, combining phases of directed motion with "tumbles", stationary phases
during which the particle reorients itself. We here continue previous studies of unconstrained RTP
motion and consider the transition path properties of an RTP subjected to an external potential.
Exact expressions are derived for the RTP transition path properties, supported by results from
Monte Carlo simulations. We explore the effects of particle velocity, tumble rate and the external
potential on the splitting probability, transition path time, coefficient of variation, transition path
shape, unsuccessful transition path distribution and duration, based on forward and backward mas-
ter equations. Counterintuitively, the presence of the potential may accelerate the escape of RTPs.
Moreover, we show that the external potential gives rise to the appearance of an asymmetry of the
transition path properties which increases with the steepness of the potential. While the potential
does not affect the forward and reverse transition paths of the RTP, these are affected by the particle
velocity, in contrast with free RTPs.

I. INTRODUCTION

Active particle systems [1–4] consume energy and convert it into their own directional motion. The energy may
be extracted from the environment or from internal (e.g., biochemical) sources. The range of active systems is very
wide, from micro-scale microorganisms such as moving cells and bacteria [5], to the macro-scale including swimming
fish, flying birds, or animals migrating on land [6]. In addition to natural active systems, there also exist a growing
number of artificial active systems, such as artificial self-driven particles or other active materials [7–9]. Research in
active systems aims to understand the complex behaviours and emergent phenomena that arise from the interactions
between active particles, with profound implications for physical, biological, materials, and robotics sciences [10–12].

A paradigmatic example of active particles is the run-and-tumble particle (RTP), which is a classic model for
describing the intermittent motion governed by phases of directed swimming and direction-changing tumbling. Typical
RTPs are bacteria such as Escherichia coli or Bacillus subtilis [13–15]. The movement of RTPs is effected by self-
propulsion, e.g., due to flagellar filaments, based on the non-equilibrium conversion of energy, and they exhibit many
interesting dynamical phenomena [16]. Special interest has been devoted to the transition properties of RTPs, revealing
several remarkable dynamical behaviours different from those observed in equilibrium systems. The study of RTPs
splits into two broad categories, studying the motion of RTPs in unconfined environments or when the RTPs move in
complex environments with boundaries or obstacles. In the unconfined case the dynamics of RTPs was characterised
by quantities such as the position distribution [17–20], the escape/first-passage behaviour [21–23], or the distribution
of times required for an RTPs to reach a maximum displacement [24]. However, it is important to unveil the dynamics
of RTPs in their natural, complex environments [25]. Understanding the interplay between RTP motion and obstacles
as well as boundaries provides relevant clues to bio- and medicine technology applications [26].

Rich behaviours for RTPs in confinement have been uncovered such as the steady state probability density [27–31],
entropy production [32–34], random search [35], or first-passage properties [36–39]. An active particle trapped in
a confining potential generally has a non-Boltzmann stationary distribution [40, 41]. Interestingly, the probability
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density of RTPs confined in a box concentrates near the boundaries [42], similar to persistent long-range correlated
motion [43]. Here we study another important context of RTPs, their transition path properties, in a finite interval
and in the presence of an external potential.

Many processes in chemistry, physics and life sciences, ranging from chemical and enzymatic reactions to transport
processes in condensed matter, conformational transformation of macromolecules, protein folding, etc., need a thermal
activation to cross some barrier in the relevant coordinates [44, 45]. The transition path is an important concept that
describes the real occurrence of thermal activation process and the associated dynamics [46]. Transition path properties
mainly include the transition path time [47], the coefficient of variation of the transition path time distribution [48],
and the transition path shape [49]. The transition path time [50] is the duration that characterises the real occurrence
of thermal activation process, such as, the transit time of cell membrane pores, ion channel transport, or polymer
translocation time through a pore [51–55]. The mean transition path time, which is defined as the average time it
takes for the particle to move along the transition path from an initial state to a final state, plays an important
role in characterising the dynamic behaviour. The transition path shape [56] characterises the temporal and spatial
evolution of the distribution of the transition path within the transition region. The coefficient of variation (COV)
CV , the ratio of the standard deviation and the mean of a probability density, is a statistical measure that describes
the degree of dispersion of the probability distribution and has also been used to quantify the width of transition path
time distributions [57]. For an exponential distribution, CV = 1; when CV < 1 ("low-variance") the distribution is
narrower than an exponential distribution, while for CV > 1 ("high-variance") it is broader. We note that the COV
is a vital measure for the multidimensionality of the system [58].

Generally, the mean transition path time is calculated solely from successful barrier crossing events, and it is
therefore (much) shorter than the mean first-passage time across the same barrier, as the latter also includes (many)
unsuccessful ("unproductive") crossing attempts due to the height of the barrier as compared to thermal energy
[59]. Indeed, the study of unproductive paths started to emerge [59, 60]. It was shown that unsuccessful paths can
provide complementary information not available in the transition path, as these paths explore additional parts of
the reaction phase space than transition paths. A crucial example are unsuccessful folding events of proteins leading
to misfolded conformations [61–63], that are related to diseases, including Alzheimer’s and Parkinson’s [65, 66]. The
study of unsuccessful paths in protein folding is expected to also provide information on the dynamics in the presence
of pathogenic factors. We note that the transition path dynamics of equilibrium systems are better studied both
theoretically [67] and numerically [68, 69], while the transition path dynamics of non-equilibrium systems, especially
concerning the theoretical aspects, remains somewhat elusive. Recently, we considered the transition path dynamics
of free RTPs for active, i.e., non-equilibrium RTPs [70]. We are here extending this study to the case when the RTP
is under the influence of an external, confining potential.

Concretely, we here combine analytical derivations and stochastic simulations to quantify the transition path prop-
erties of RTPs subjected to an external potential, including the splitting probability, transition path time, the COV,
transition path shape, distribution of unproductive attempts, and the average duration of unproductive fluctuations.
As remarked above, the study of unsuccessful paths of RTPs is expected to shed additional light on the system, on
top of the transition paths.

The paper is organised as follows. We first present the main analytical characteristics of the transition path for
an RTP in an external potential in Sec. II. Then, we discuss the concrete results and compare them with Monte
Carlo simulations in Sec. III. We draw our conclusions in Sec. IV. Appendix A and B provide analytical expressions
and a brief derivation of the backward equations and splitting probability, respectively. Explicit forms of the mean
transition path time and the COV are presented in App. C. Two explicit results for the mean return times for the
linear potential case are revealed in App. D.

II. TRANSITION PATH PROPERTIES OF A RUN AND TUMBLE PARTICLE

Throughout this paper, we consider a one-dimensional RTP subjected to an external potential. The corresponding
Langevin equation reads [38]

dx(t)

dt
= f(x) + vσ(t), (1)

where x is the time dependent reaction coordinate and v is the constant speed of the RTP. σ(t) = ±1 represents a
dichotomous noise switching between ±1 with a Poisson rate γ. Here we choose the convention that σ = +1 defines
a right-moving state and σ = −1 a left-moving state. The rate γ corresponds to the tumbling rate of the RTP. The
force acting on the particle is f(x) = −dV (x)/dx in terms of the external potential V (x).

The master equation for the probability density function (PDF) associated with the Langevin dynamic (1) then
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reads

∂P+(x, t|x0, σj)

∂t
= −

∂

∂x
(f(x) + v)P+(x, t|x0, σj)− γ

[

P+(x, t|x0, σj)− P−(x, t|x0, σj)
]

, (2a)

∂P−(x, t|x0, σj)

∂t
= −

∂

∂x
(f(x) − v)P−(x, t|x0, σj) + γ

[

P+(x, t|x0, σj)− P−(x, t|x0, σj)
]

, (2b)

where the P±(x, t|x0, σj) denotes the PDF of particles located at x0 at time t and state ±1, given the initial state σj .

A. Splitting probability

For our analysis we use the transition path region [xA, xB ], where xA and xB are the locations of the absorbing
boundaries. φ

σj

A (x0, σi) denotes the probability for a particle to exit through the left-hand boundary xA in the σj-
moving state given it was initially at position x0 ∈ [xA, xB] in the state σi. Analogously, φ

σj

B (x0, σi) denotes the exit

probability through the right boundary xB. φ±1
A/B are the desired splitting probabilities.

The calculation of the splitting probability is related to the first-passage time density (FPTD) K(xA/B , t|x0) from

x0 to xA/B. The nth moment K(n)(xA/B |x0) of the FPTD is defined as [49]

K(n)(xA/B|x0) =

∫ ∞

0

tnK(xA/B, t|x0)dt. (3)

Similarly, K(n)(xA/B |x0, σj) is the nth-order moment of the FPTD of a particle initially located at x0 in the state
σj . For the initial velocity we assume that positive and negative particle velocities occur with equal probability (i.e.,
we consider the symmetric initial velocity condition σ(0) = ±1, each with probability 1/2). The "average" nth-order
moment K(n)(xA/B |x0) of the FPTD of a particle initially located at x0 is then given by

K(n)(xA/B|x0) =
1

2

[

K(n)(xA/B |x0,−1) +K(n)(xA/B |x0,+1)
]

. (4)

Moreover, K(n)(xA/B |x0, σj) satisfies the coupled backwards equations [49]

−nK(n−1)(xA/B |x0,+1) = (f(x0) + v)
∂

∂x0
K(n)(xA/B |x0,+1) + γ

[

K(n)(xA/B|x0,−1)−K(n)(xA/B |x0,+1)
]

,

−nK(n−1)(xA/B |x0,−1) = (f(x0)− v)
∂

∂x0
K(n)(xA/B |x0,−1) + γ

[

K(n)(xA/B|x0,+1)−K(n)(xA/B |x0,−1)
]

,

(5)

with the boundary conditions

K(n)(xA|xA,−1) = K(n)(xA|xB,+1) = 0,

K(n)(xB |xB,+1) = K(n)(xB |xA,−1) = 0.
(6)

We present the derivation of Eq. (5) in Appendix A. Moreover, the zeroth moment of the FPTD is the splitting
probability (φA/B(x0) = K(0)(xA/B |x0) =

∫∞

0
K(xA/B, t|x0)dt, in fact,

∫∞

0
K(xA, t|x0)dt +

∫∞

0
K(xB, t|x0)dt = 1),

i.e.

(f(x0) + v)
∂

∂x0
φ
σj

A (x0,+1) + γ
[

φ
σj

A (x0,−1)− φ
σj

A (x0,+1)
]

= 0,

(f(x0)− v)
∂

∂x0
φ
σj

A (x0,−1) + γ
[

φ
σj

A (x0,+1)− φ
σj

A (x0,−1)
]

= 0,

(7)

and the associated boundary conditions are

φ+1
A (xA,−1) = 1, φ+1

A (xB ,+1) = 0,

φ−1
A (xA,−1) = 1, φ−1

A (xB ,+1) = 0.
(8)

Without loss of generality, we define ρA(x0) = φ−1
A (x0,+1)+φ−1

A (x0,−1), and µA(x0) = φ−1
A (x0,+1)−φ−1

A (x0,−1).
Then, substituting ρA(x0) and µA(x0) into Eq. (7) results in

f(x0)
∂

∂x0
ρA(x0) + v

∂

∂x0
µA(x0) = 0,

f(x0)
∂

∂x0
µA(x0) + v

∂

∂x0
ρA(x0)− 2γµA(x0) = 0.

(9)

Page 3 of 28 AUTHOR SUBMITTED MANUSCRIPT - JPhysA-122344.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



4

According to the boundary conditions Eq. (8), we obtain

φ−1
A (x0,−1) = −C1

∫ x0

xA

γv

f2(x)− v2
N1(x)dx +

C2

2
+

C2

2
N1(x0),

φ−1
A (x0,+1) = −C1

∫ x0

xA

γv

f2(x)− v2
N1(x)dx +

C2

2
−

C2

2
N1(x0),

(10)

where N1(x0) = exp
(

−
∫ xB

x0

2γf(y)
f2(y)−v2 dy

)

, C2 = 2 + C1N1(xA), C1 = −1
/

(

−
∫ xB

xA

γv
f2(x)−v2N1(x)dx + 1

2N1(xA) +
1
2

)

.

Similarly, combining Eqs. (7) and (8) we obtain

φ+1
A (x0,−1) = C3

∫ xB

x0

γv

f2(x) − v2
N2(x)dx +

C4

2
+

C3

2
N2(x0),

φ+1
A (x0,+1) = C3

∫ xB

x0

γv

f2(x) − v2
N2(x)dx +

C4

2
−

C3

2
N2(x0),

(11)

which yields

N2(x0) = exp

(
∫ x0

xA

2γf(y)

f2(y)− v2
dy

)

,

C4 = −C3, C3 =

(
∫ xB

xA

γv

f2(x) − v2
N2(x)dx −

1

2
N2(xB)−

1

2

)−1

. (12)

The results for φ
σj

B (x0,±1) can be obtained in a similar manner, as shown in App. B, where we also derive the
results for the special case of a linear potential.

With our assumption of a symmetric initial velocity (σ(0) = ±1 each with probability 1/2) above, the "average"
splitting probabilities read

φ−1
A (x0) =

1

2
[φ−1

A (x0,+1) + φ−1
A (x0,−1)],

φ+1
A (x0) =

1

2
[φ+1

A (x0,+1) + φ+1
A (x0,−1)],

φA(x0) =
1

2
[φ+1

A (x0) + φ−1
A (x0)]. (13)

Meanwhile,

φA(x0,+1) =
1

2
[φ+1

A (x0,+1) + φ−1
A (x0,+1)],

φA(x0,−1) =
1

2
[φ+1

A (x0,−1) + φ−1
A (x0,−1)].

(14)

In our notation, φ+1
A (x0) and φ−1

A (x0) are the splitting probabilities that the particle leaves the transition region at
xA and is in the right-moving (+1) and left-moving (−1) state, respectively. φA(x0,+1) is the splitting probability
of a particle starting from x0 in the right-moving state and subsequently leaving the transition region through xA.
Similarly, φA(x0,−1) denotes the case when the particle is initially in the left-moving state. φB(x0) can be obtained
in a similar way.

B. Transition path time and coefficient of variation

We define τTP(xB |xA) and τTP(xA|xB) as the mean transition path time of the RTP from xA/xB to xB/xA.
τTP(xB |xA) is called the forward mean transition path time, and τTP(xA|xB) is the reverse case. According to
Eq. (5), the first-order moment K(1)(xA/B |x0,±1) of the FPTD satisfies the coupled backward equations

(f(x0) + v)
∂

∂x0
K(1)(xA/B |x0,+1) + γ

[

K(1)(xA/B |x0,−1)−K(1)(xA/B |x0,+1)
]

= −φA/B(x0,+1),

(f(x0)− v)
∂

∂x0
K(1)(xA/B |x0,−1) + γ

[

K(1)(xA/B |x0,+1)−K(1)(xA/B |x0,−1)
]

= −φA/B(x0,−1).

(15)
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In order to solve Eq. (15), we define

ηB(x0) = K(1)(xB |x0,+1) +K(1)(xB |x0,−1),

ǫB(x0) = K(1)(xB |x0,+1)−K(1)(xB |x0,−1), (16)

with which we immediately obtain

f(x0)
∂

∂x0
ηB(x0) + v

∂

∂x0
ǫB(x0) = −φB(x0,+1)− φB(x0,−1),

f(x0)
∂

∂x0
ǫB(x0) + v

∂

∂x0
ηB(x0) = φB(x0,−1)− φB(x0,+1) + 2γǫB(x0).

(17)

For our choice of the potential V (x) = ax2 + bx+ c, we arrive at the expression

ǫB(x0) =
1

M1(x0)

∫ x0

xA

φB(x,−1)M1(x)

f(x)− v
dx−

1

M1(x0)

∫ x0

xA

φB(x,+1)M1(x)

f(x) + v
dx+

D1

M1(x0)
,

ηB(x0) = −

∫ x0

xA

φB(x,−1)

f(x)− v
dx− 2γv

∫ x0

xA

∫ x

xA

φB(y,−1)M1(y)

f(y)− v
dy

dx

M1(x)(f2(x)− v2)

−

∫ x0

xA

φB(x,+1)

f(x) + v
dx+ 2γv

∫ x0

xA

∫ x

xA

φB(y,+1)M1(y)

f(y) + v
dy

dx

M1(x)(f2(x)− v2)

−2γvD1

∫ x0

xA

dx

M1(x)(f2(x) − v2)
+D2, (18)

where

M1(x0) =

[

(2axB + b)2 − v2

(2ax0 + b)2 − v2

]γ/(2a)

and D2 =
D1

M1(xA)
, (19)

and where D1 can be derived via the relation ηB(xB) + ǫB(xB) = 0. The form of D1 is quite complex, and we do not
present it here. For the linear potential case, we have presented the detail forms of Eq. (18) in App. B. As a result,
we showed how K(1)(xB |x0,+1) = 1

2 [ǫB(x0) + ηB(x0)] and K(1)(xB |x0,−1) = 1
2 [ηB(x0)− ǫB(x0)] can be calculated.

The mean first-passage times from the initial position x0 to xA/xB are then given by

τFP(xA/B |x0) =
K(1)(xA/B |x0)

φA/B(x0)
, (20)

where K(1)(xA/B |x0) =
1
2 [K

(1)(xA/B |x0,+1)+K(1)(xA/B |x0,−1)]. As xA and xB are two absorbing boundaries, the

mean transition path times τTP(xB |xA) and τTP(xA|xB) can be derived via the limits [49]

τTP(xB |xA) = τFP(xB|x0 → xA),

τTP(xA|xB) = τFP(xA|x0 → xB).
(21)

We continue with the derivation of the COV CV of the transition path time distribution. CV has the form [48]

CV =

(

〈t2TP〉 − 〈tTP〉
2
)1/2

〈tTP〉
, (22)

in terms of the first and second-order moments of the transition path time distribution, and where 〈t2TP〉 =

K(2)(xB/A|xA/B)/φB/A(xA/B). Moreover, 〈tTP〉 stands for τTP(xB |xA) or τTP(xA|xB). In order to obtain 〈t2TP〉

we need to first obtain the second moment K(2)(xB/A|x0) of the FPTD. Similar to K(1)(xB/A|x0,±1), the expression

K(2)(xB/A|x0,±1) obey the backward equations

−2K(1)(xA/B|x0,+1) = (f(x0) + v)
∂

∂x0
K(2)(xA/B |x0,+1) + γ

[

K(2)(xA/B |x0,−1)−K(2)(xA/B |x0,+1)
]

,

−2K(1)(xA/B|x0,−1) = (f(x0)− v)
∂

∂x0
K(2)(xA/B |x0,−1) + γ

[

K(2)(xA/B |x0,+1)−K(2)(xA/B |x0,−1)
]

.

(23)
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Here, we present the forms of K(2)(xB |x0,±1). A derivation of K(2)(xA|x0,±1) is shown in App. C.
Defining

ωB(x0) = K(2)(xB |x0,+1) +K(2)(xB |x0,−1),

θB(x0) = K(2)(xB |x0,+1)−K(2)(xB |x0,−1), (24)

Eq. (23) can be rewritten as

f(x0)
∂

∂x0
ωB(x0) + v

∂

∂x0
θB(x0) = −2K(1)(xB |x0,+1)− 2K(1)(xB |x0,−1),

f(x0)
∂

∂x0
θB(x0) + v

∂

∂x0
ωB(x0) = 2γθB(x0) + 2

[

K(1)(xB |x0,−1)−K(1)(xB |x0,+1)
]

.

(25)

With to the boundary conditions (6) we obtain

θB(x0) =
2

M1(x0)

∫ x0

xA

M1(x)K
(1)(xB|x,−1)

f(x)− v
dx−

2

M1(x0)

∫ x0

xA

M1(x)K
(1)(xB |x,+1)

f(x) + v
dx+

D3

M1(x0)
,

ωB(x0) = −2

∫ x0

xA

K(1)(xB |x,−1)

f(x)− v
dx − 4γv

∫ x0

xA

∫ x

xA

M1(y)K
(1)(xB |y,−1)

f(y)− v
dy

dx

M1(x)(f2(x)− v2)

−4γv

∫ x0

xA

K(1)(xB |x,+1)

f(x) + v
dx+ 2

∫ x0

xA

∫ x

xA

M1(y)K
(1)(xB |y,+1)

f(y) + v
dy

dx

M1(x)(f2(x)− v2)

−2γvD3

∫ x0

xA

dx

M1(x)(f2(x)− v2)
+D4, (26)

where D4 = D3/[M1(xA)], and D3 can be derived from θB(xB) + ωB(xB) = 0. M1(x0) appears in Eq. (18) and
K(2)(xB/A|x0) = 1

2 [K
(2)(xB/A|x0,+1) + K(2)(xB/A|x0,−1)]. Then we can determine the theoretical results of CV

from Eq. (22).

C. Mean transition path shape

We define τTP
shape(x0|xA) and τTP

shape(x0|xB) as the mean transition path shapes of RTPs from xA/xB to x0, respec-

tively. They are given by [49]

τTP
shape(x0|xA) = τTP(xB|xA)− τTP(xB|x0),

τTP
shape(x0|xB) = τTP(xA|xB)− τTP(xA|x0).

(27)

The analytical results of the transition path shape for RTPs are given in App. C, i.e. Eqs. (C3-C6).

D. Distribution of unproductive attempts

As shown in Fig. 1, showing simulations results of Eq. (1), we observe from the sample trajectories (gray lines) of
RTPs the unproductive fluctuations in the forward and reverse directions, shown by the red and pink lines, respectively.
The yellow lines represent transition paths in the transition path region [−1, 3].
p(x|NPFF ) and p(x|NPFR) are distributions of forward and reverse unproductive attempts, respectively. The

position distribution for forward or reverse unsuccessful reaction attempts can be expressed, respectively, as [59]

p(x|NPFF ) ∝ [φA(x)]
2peq(x),

p(x|NPFR) ∝ [φB(x)]
2peq(x),

(28)

where peq(x) is the stationary distribution of the system (1). peq(x) can be obtained from Eq. (2) [38], yielding

peq(x) ∝
1

v2 − f2(x)
exp

[

2γ

∫ x

0

f(y)

v2 − f2(y)
dy

]

. (29)

For the linear potential case, in Eq. (29), peq(x) ∝
1

v2−b2 exp
(

2γb
v2−b2x

)

.
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(a) (b)

FIG. 1: (a) Sketch of the RTP trajectory of Eq. (1) including the transition paths and unproductive attempts. The transition
region is [xA, xB] = [−1, 3]. (b) Unproductive attempts. Red lines are unproductive attempts from xA to xA, pink lines are
unproductive attempts from xB to xB, and yellow lines stand for transition paths.

E. Mean duration of unproductive fluctuations

The mean duration of unproductive fluctuations, i.e., the mean return times τR(xA → xA) and τR(xB → xB).
These are also the forward and reverse durations of unproductive fluctuations, respectively. Then, τR(xA → xA) and
τR(xB → xB) satisfy [59]

τR(xA → xA) =
K(1)(xA|xA)

φA(xA)
,

τR(xB → xB) =
K(1)(xB |xB)

φB(xB)
,

(30)

where K(1)(xA|xA) and K(1)(xB |xB) can be obtained from Eq. (D1).

III. RESULTS

We proceed with the analysis of how the systems parameters, such as the height of the potential barrier, on the
transition path properties of RTPs, we work with the linear potential function V (x) = Ux/2 as an example, other
potential functions can be studied analogously. Here, we assume that |U | < 2v, otherwise the RTP always just moves
in one direction, which would result in a rather trivial transition path behaviour.

A. Splitting probability

The variation of the splitting probability φA(x0) with the initial position x0 is shown in Fig. 2. As expected,
φA(x0) decreases as x0 increases. However, as can be seen from Eq. (B10), the decrease with x0 is not linear, which
is significantly different from the free RTP case [70]. The splitting probability of the particle initially in the +1 state
is significantly smaller than that of the −1 state, i.e., φ+1

A (x0,+1) is less than φ+1
A (x0,−1), and φ−1

A (x0,+1) is less

than φ−1
A (x0,−1). Moreover, the splitting probability is the same when the particles have the same initial position

x0 and the same σj state. Thus, as the particle gets closer to xA = −1, it has a higher chance to escape through the
left-hand boundary xA.

Fig. 3 compares the analytical splitting probability φB(x0) (solid lines), for different cases, with simulation results
of the Langevin equation (1) (symbols). Unlike the splitting probability φA(x0), φB(x0) gradually increases with
growing x0, but again the relationship is non-linear. We see that φ±1

B (x0,+1) is greater than φ±1
B (x0,−1). Moreover,

φ−1
B (x0,±1) and φ+

B(x0,±1) are the same. Here, the probability for the particle to exit at the left-hand boundary
xA = −1 is always equal to the case at the right-hand boundary xB . Indeed, Figs. 2 and 3 demonstrate that the
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FIG. 2: Splitting probability of an RTP as a function of x0, with the parameters V (x) = Ux/2, U = −4, γ = 2.0, and v = 5.0.
The transition region is [−1, 3]. We find excellent agreement between the numerical simulations (symbols) and the theoretical
predictions (lines) from Eqs. (B9) and (B10).

analytic results of the splitting probabilities, shown by the solid lines, is very good quantitative agreement with the
numerical results from Monte Carlo simulations.

B. Transition path time and COV

We now consider the forward and reverse transition path times τ(xB |xA) and τ(xA|xB), as well as the COV CV of
the transition path time distribution. We specifically consider effects of the particle speed v, tumble rate γ, transition
region boundaries xA and xB, and the steepness U of the potential function U on τ(xB |xA) and τ(xA|xB), as shown
in Figs. 4 and 5, respectively.

We see that upon increasing v the γ-dependence of τ(xB |xA) approaches a linear dependence, see panel (a) in Fig. 4.
From panel (b), as intuitively expected, larger v leads to smaller τ(xB |xA). Changing the size of the transition path
region, panel (c) demonstrates that τ(xB |xA) monotonically decreases with xB −xA. In panel (d), τ(xB |xA) is shown
to increase as xB −xA increases. To obtain additional insight into the behaviour of the RTPs in an external potential
we plot in panels (e) and (f) the values of τ(xB |xA) as function of U . We observe that τ(xB |xA) is monotonically
increasing with U . We note that for the largest γ value a plateau-like region emerges around U = 0. As evidenced in
this figure, the theoretical solutions for τ(xB |xA) are nicely consistent with Monte Carlo simulations of the Langevin
equation (1).

Similarly, in Fig. 5, the effects of the systems parameters on the reverse transition path time τ(xA|xB) are considered.
τ(xA|xB) exhibits a monotonic behaviour with respect to these parameters. In panels (a-d) we present the variation
of τ(xA|xB) with γ, v, and xB − xA, demonstrating consistency with that of τ(xB |xA). As seen in panels (e) and (f),
the difference to the case in Fig. 4 is that growing U effects a decrease in τ(xA|xB). Again, as in panel (e) of Fig. 4,

Page 8 of 28AUTHOR SUBMITTED MANUSCRIPT - JPhysA-122344.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



9

(a)
-1 0 1 2 3

x
0

0

0.2

0.4

0.6

0.8

1

B-1

B

-1
(x

0
,-1)

B

-1
(x

0
,+1)

B

-1
(x

0
)

B

-1
(x

0
,-1)

B

-1
(x

0
,+1)

B

-1
(x

0
)

(b)
-1 0 1 2 3

x
0

0

0.2

0.4

0.6

0.8

1

B+
1

B

+1
(x

0
,-1)

B

+1
(x

0
,+1)

B

+1
(x

0
)

B

+1
(x

0
,-1)

B

+1
(x

0
,+1)

B

+1
(x

0
)

(c)
-1 0 1 2 3

x
0

0

0.2

0.4

0.6

0.8

1
B

B
(x

0
,-1)

B
(x

0
,+1)

B
(x

0
)

B
(x

0
,-1)

B
(x

0
,+1)

B
(x

0
)

FIG. 3: Splitting probability of an RTP as a function of x0, where the parameters are V (x) = Ux/2, U = −4, γ = 2.0, and
v = 5.0. The transition region is [−1, 3]. The lines are analytic results from Eqs. (B9) and (B10), the symbols represent
numerical results. The agreement with the theoretical predictions is excellent.

panel (e) exhibits a plateau-like crossover around vanishing U . Generally, excellent agreement between the theoretical
results and the numerical simulations is observed.

To further detail the difference between the situations of Figs. 4 and 5, we plot in Fig. 6 the dependence of the
difference τ(xB |xA) − τ(xA|xB) on the systems parameters. The difference τ(xB |xA) − τ(xA|xB) the the transition
path times is shown as function of γ and v in panels (a) and (b), respectively. Remarkably, the difference τ(xB |xA)−
τ(xA|xB) is completely independent of γ, which is different from the free RTP case [70]. In fact, we previously proved
theoretically that the system parameters cannot effect a symmetry breaking in the transition path properties of these
RTPs for unconstrained motion (i.e., τ(xB |xA) = τ(xA|xB)) [70]. Panel (b) demonstrates that τ(xB |xA)− τ(xA|xB)
decreases with growing v, as intuitively expected. Panels (c) and (d) show the effect of the transition path region
on the difference τ(xB |xA) − τ(xA|xB), for various v and γ. In both cases a linear dependence is observed. As v
increases, panel (c), the slope of decreases, i.e., τ(xB |xA)) and τ(xA|xB) approach each other. In panel (d) we see
that the different choices of γ do not affect the difference τ(xB |xA) − τ(xA|xB). Finally, panels (e) and (f) show
the dependence on the slope U of the external potential, for different γ and v. In both cases the difference of the
transition path times. As shown by the dashed lines, the absolute values of the time difference are fully symmetric
around U = 0, as they should. Summarising Fig. 6, the time difference τ(xB |xA)− τ(xA|xB) decreases monotonically
with the particle speed v, left-hand boundary xA, and the steepness U .

From Figs. 4 to 6 we see that the forward and reverse transition path times differ significantly. In fact, this can
be rationalised as follows. The potential function defined used here is V (x) = Ux/2. When U > 0, in the forward
direction, the particle moves from xA to xB , and the RTP is in the process of climbing the potential. In the reverse
direction, the particle moves from xB to xA, and the RTP is going downhill. When for this situation U > 0 the value
of U increases, the reverse transition path time becomes significantly less than the forward transition path time. The
difference between τ(xA|xB) and τ(xB |xA) thus increases as the absolute value of U increases. (When U < 0, the
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FIG. 4: Forward transition path times τ (xB|xA). (a) τ (xB|xA) as function of γ for different values of v with U = 0.2, xA = −1,
and xB = 3. (b) τ (xB|xA) versus v for different values of γ with U = 0.2, xA = −1, and xB = 3. (c) τ (xB|xA) as function of
xB − xA for various v with U = 0.2, γ = 1.0, and xA = 2. (d) τ (xB|xA) as function of xB − xA for various γ with U = 0.2,
v = 1.0, and xB = 0. (e) τ (xB|xA) versus U for various γ with v = 6.0, xA = −1.0, and xB = 3.0. (f) τ (xB|xA) as function
of U for various v with γ = 4.0, xA = −1.0, and xB = 3.0. Solid lines correspond to the predictions from Eq. (C5), while the
symbols represent numerical simulations of Eq. (1). Both show excellent agreement.
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FIG. 5: Reverse transition path times τ (xA|xB). (a) τ (xA|xB) as a function of γ for different values of v with U = 0.2, xA = −1,
and xB = 3. (b) Plot of τ (xA|xB) vs v for different values of γ with U = 0.2, xA = −1, and xB = 3. (c) τ (xA|xB) as function
of xB − xA for various v with U = 0.2, γ = 1.0, and xA = 2. (d) τ (xA|xB) versus xB − xA for various γ with U = 0.2, v = 1.0,
and xB = 0. (e) τ (xA|xB) as function of U for various γ with v = 6.0, xA = −1.0, and xB = 3.0. (f) τ (xA|xB) as function of
U for various v with γ = 4.0, xA = −1.0, and xB = 3.0. Solid lines represent Eq. (C5), the symbols represent the numerical
simulations from Monte Carlo simulations.
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FIG. 6: Difference of the transition path times in both directions from Eq. (C5). (a) τ (xB|xA) − τ (xA|xB) as a function of γ
for different values of v with U = 0.2, xA = −1, and xB = 3. (b) τ (xB|xA)− τ (xA|xB) versus v for different values of γ with
U = 0.2, xA = −1, and xB = 3. (c) τ (xB|xA) − τ (xA|xB) as function of xB − xA for various v with U = 0.2, γ = 1.0, and
xA = 2. (d) τ (xB|xA)− τ (xA|xB) versus xB − xA for various γ with U = 0.2, v = 1.0, and xB = 0. (e) τ (xB|xA)− τ (xA|xB)
as function of U for various γ with v = 6.0, xA = −1.0, and xB = 3.0. (f) τ (xB|xA) − τ (xA|xB) versus U for various v with
γ = 4.0, xA = −1.0, and xB = 3.0. Solid lines represent the theoretical predictions of τ (xB|xA) − τ (xA|xB), the dotted lines
are the absolute values of the theoretical predictions of τ (xB|xA)− τ (xA|xB) for U > 0.
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situation is opposite.) This is exactly the result presented in Figs. 6(e) and (f).
In order to consider the influence of the system parameters on the COV CV , we choose CV for the forward transition

path time distribution as an example to carry out a specific discussion. Fig. 7 displays the CV as function of the
systems parameters. As can be seen from panels (a) to (d), when U is positive, CV < 1 for all selected parameters.
Interestingly, one observes a clear non-monotonic behaviour as function of γ, panel (a). Overall, the dependence of CV

on the parameters exhibits quite diverse behaviour. When looking at the influence of U on CV , it gradually decreases
with growing U . For very negative values of U , CV exceeds unity, i.e., leading to wider than exponential distributions
of the transition path times.

The COV CV for additional parameter values is shown in Fig. 8, concentrating on negative values of U . The
variation of CV with γ and v in panels (a) and (b) is consistent with those shown in the same panels of Fig. 7. In
particular, panel (a) demonstrates again a clear maximum of CV as function of γ. For the selected parameters, smaller
v or U values allow CV to exceed unity. As shown in panels (c) and (d), depending on the choice of the parameters
the functional dependence of CV on xA or xB switches between monotonic behaviour and a slight maximum.

C. Mean transition path shape

We continue by discussing the effect of the systems parameters on the mean transition path shapes τTP
shape(x0|xA)

and τTP
shape(x0|xB), which are obtained from simulations of Eq. (1) and compared with those obtained analytically in

Eq. (27).
In Fig. 9 shows the variation with the initial position x0 of the transition path shapes. Panels (a), (c), and (e) show

the case U > 0; panels (b), (d), and (f) represent the case U < 0. As shown in (a) and (b), the transition path shapes
show the expected monotonous dependence on x0. Moreover, a monotonous dependence on v is seen: An increase of
v effects a decrease of τTP

shape(x0|xA) and τTP
shape(x0|xB) for fixed x0. Panels (c) and (d) show that for larger γ effects

higher transition path shape amplitudes. However, the influence of U on τTP
shape(x0|xA) and τTP

shape(x0|xB) is more

subtle. Panels (e) and (f) demonstrate that regardless of the (positive or negative) value of U , τTP
shape(x0|xB) decreases

with the increase of U , while τTP
shape(x0|xA) shows the opposite dependence. For negative values of U , in panels (b),

(d), and (f), we see that τTP
shape(x0|xB) is larger than τTP

shape(x0|xA).

We note that the results shown in Fig. 9 demonstrate that the quantities τTP
shape(x0|xA) and τTP

shape(x0|xB) are no
longer symmetric for the chosen systems parameter, i.e., the potential causes a visible asymmetry of the transition
path shape. This asymmetry becomes more pronounced as the absolute value of U increases, see panels (e) and (f).
Especially when the U > 0, the values of τTP

shape(x0|xA) are larger than those of τTP
shape(x0|xB). The trend is reversed

for the case U < 0.

D. Position distribution of unproductive attempts

We now consider the positional distribution p(x|NPFF ) and p(x|NPFR) for unproductive attempts in forward
and reverse directions, respectively. According to Eqs. (28) and (B10), the monotonic behaviour of p(x|NPFF ) and
p(x|NPFR) is clearly visible. As shown in Fig. 10, the forward distribution p(x|NPFF ) is a decreasing function of the
position x for fixed system parameters. For symmetry reasons, the dependence on x is increasing for p(x|NPFR), as
seen in Fig. 11.

Panels (a) and (b) in Fig. 10 show that when the particles are close to the left boundary xA of the transition path
region, they have a high probability p(x|NPFF ) for unproductive attempts. Indeed, it can be shown from Eqs. (28)
and (B10) that p(x|NPFF ) has a maximum at xA. Simultaneously, the distribution of unproductive paths decreases
as v increases. However, it increases with growing γ. As shown in panels (c) and (d), a larger U leads to an increase
of p(x|NPFF ).

Fig. 11 shows the opposite case of the reverse direction, i.e., p(x|NPFR), for different values of v, γ and U . We see
that here the maximum is attained at the right boundary, xB . The influences of v, γ, and U on p(x|NPFR) show an
opposite trend to the behaviour in Fig. 10.

E. Mean duration of unproductive fluctuations

Fig. 12, shows the mean durations τ(xA|xA) and τ(xB |xB) as function of the systems parameters of the duration
of the forward and reverse unsuccessful path. Panels (a) and (c) show plots of τ(xA|xA) as function of v or γ for
different values of U , as calculated from Eq. (D1). Increasing v and γ lead to a decrease of τ(xA|xA) at larger values,
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with an initial increase. Similarly, panels (b) and (d) show a decreasing trend of τ(xB |xB) for larger values of v or
γ. A quite rich behaviour is shown by the mean durations τ(xA|xA) and τ(xB |xB) in dependence of U on variation
of γ and v. In panels (e) and (f) we see that with increase of U , τ(xA|xA) increases initially, then turning into a
decreasing trend. Moreover, τ(xB |xB) and τ(xA|xA) are symmetric with respect to U = 0.

From the results presented in Figs. 4, 5, and 12, we see that as the tumbling rate γ increases, the forward and
reverse transition path times τ(xB |xA) and τ(xA|xB) both increase, while the durations of the unsuccessful forward
and reverse paths τ(xA|xA) and τ(xB |xB) decrease. In fact, according to the motion characteristics of an RTP, the
particles are affected by the tumbling rate during their motion. Thus, when the particles approachies the target and
the motion direction of the particles suddenly changes, the particle moves backward and thus away from the target
position. Therefore, the random tumbling characteristic of the RTP may hinder the escape behavior of the particles
and promote unsuccessful paths.

IV. CONCLUSIONS

We here provided an efficient theoretical scheme to analyse the transition path properties for an RTP under the
influence of an external potential. Specifically, we studied the effect of the particle velocity, the tumble rate, the
potential stiffness, and the transition path region on the transition path properties for a one-dimensional RTP.
In addition, we also determined the theoretical description of the failed (unproductive) attempts for RTPs. The
nonequilibrium behaviour of such RTPs results in transition path properties that are significantly different from those
of equilibrium systems. Particularly, the transition path properties exhibit an interesting monotonous dependence on
the system parameters. All our theoretical results are confirmed by Monte Carlo simulations.

When an external potential is introduced, we find that the tumble rate of the RTP has no effect on the time
difference of the transition path times in the two directions. Interestingly, our theoretical results demonstrate that
the symmetry properties of the transition path time and shape are quite sensitive to the steepness of the potential:
increasing stiffness leads to more pronounced asymmetry. Moreover, the presence of the potential accelerates the escape
of the RTP. These results will be useful in the study of bacterial chemotaxis in complex systems, their community
behaviour, or phenomena such as the transport of nanoparticles in fluids. The research on the unsuccessful paths of
RTPs is expected to promote the related work in life, medicine and other fields, and for the investigation of active
drug delivery.

Our method succeeds in obtaining theoretical results of transition path properties of RTPs subjected to an external
potential. These were shown to be in excellent agreement with Monte Carlo simulations results. In agreement with
the results of Ref. [71], where the phenomenon of symmetry breaking in the transition path time during a telegraph
process was observed in the presence of an external potential function, we indeed found a pronounced asymmetry in
the settings of our system. It will be interesting to set up our system for telegraphic noise. Moreover, the analysis
presented here may also be generalised to other active systems, such as active Brownian particles.
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Appendix A: Detailed derivation of Eq. (5)

Here, we focus on the derivation of K(xB, t|x0, σj), the case K(xA, t|x0, σj) can be obtained in a similar manner.
Following Eq. (1), we derive the backward master equation for K(xB, t|x0,+1) and K(xA, t|x0,−1). To this end

we first write the disretised version of Eq. (1). We suppose that at time t, the RTP is in the state σ(t) = +1. Then,
one obtains [72]

x(t + dt) =

{

x(t), with probability γdt and σ(t+ dt) = −1

x(t) + [f(x) + v]dt, with probability 1− γdt and σ(t+ dt) = +1.
(A1)
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Conversely, when the RTP particle is in the state σ(t) = −1 at time t, we find

x(t + dt) =

{

x(t), with probability γdt and σ(t+ dt) = +1

x(t) + [f(x)− v]dt, with probability 1− γdt and σ(t+ dt) = −1.
(A2)

Now we assume that the RTP starts to move at time t = 0 at the initial position x(0) = x0. At first, there is no
change of state such that σ(t) = +1 with probability 1 − γdt. According to Eq. (1), from time t = 0 to time t = dt,

the RTP has the velocity dx(t)
dt = f(x)+ v, therefore, the RTP’s position is x0 + [f(x)+ v]dt at time dt. In addition, if

the RTP particle tumbles and the state changes to σ(t) = −1, it has position x0 + [f(x)− v]dt with probability γdt.
Then, we arrive at

K(xB , t+ dt|x0,+1) =(1− γdt)K(xB , t|x0 + [f(x0) + v]dt,+1)

+ γdtK(xB, t|x0 + [f(x0)− v]dt,−1).
(A3)

In order to solve Eq. (A3), we perform the Taylor expansion of the first and second terms to first order in dt,
resulting in

K(xB, t|x0 + [f(x0) + v]dt,+1) = K(xB, t|x0,+1) + [f(x0) + v]dt∂x0
K(xB, t|x0,+1),

K(xB, t|x0 + [f(x0)− v]dt,−1) = K(xB, t|x0,−1) + [f(x0)− v]dt∂x0
K(xB, t|x0,−1).

(A4)

Substituting Eq. (A4) into Eq. (A3) and retainiing only first-order terms of order dt, we find

K(xB, t+ dt|x0,+1) =K(xB , t|x0,+1) + [f(x0) + v]dt∂x0
K(xB, t|x0,+1)

+ γdt[K(xB, t|x0,−1)−K(xB , t|x0,+1)].
(A5)

Then, taking the limit dt → 0 leads to

∂tK(xB, t|x0,+1) = [f(x0) + v]∂x0
K(xB, t|x0,+1) + γ[K(xB, t|x0,−1)−K(xB, t|x0,+1)]. (A6)

K(xA|x0, σj) can be obtained in a similar manner. Finally, according to Eq. (3), we obtain from Eq. (A6) the set of
equations

−nK(n−1)(xA/B |x0,+1) = (f(x0) + v)
∂

∂x0
K(n)(xA/B |x0,+1) + γ

[

K(n)(xA/B |x0,−1)−K(n)(xA/B |x0,+1)
]

,

−nK(n−1)(xA/B |x0,−1) = (f(x0)− v)
∂

∂x0
K(n)(xA/B |x0,−1) + γ

[

K(n)(xA/B |x0,+1)−K(n)(xA/B |x0,−1)
]

.

(A7)

Appendix B: Detailed theoretical results for the splitting probability φB(x0)

The splitting probabilities φ
σj

B (x0,±1) satisfy

(f(x0) + v)
∂

∂x0
φ
σj

B (x0,+1) + γ
[

φ
σj

B (x0,−1)− φ
σj

B (x0,+1)
]

= 0,

(f(x0)− v)
∂

∂x0
φ
σj

B (x0,−1) + γ
[

φ
σj

B (x0,+1)− φ
σj

B (x0,−1)
]

= 0.

(B1)

We define ρB(x0) = φ−1
B (x0,+1)+φ−1

B (x0,−1) and µB(x0) = φ−1
B (x0,−1)−φ−1

B (x0,+1). Therefore, Eq. (B1) can be
rewritten as

f(x0)
∂

∂x0
ρB(x0) + v

∂

∂x0
µB(x0) = 0,

f(x0)
∂

∂x0
µB(x0) + v

∂

∂x0
ρB(x0)− 2γµB(x0) = 0.

(B2)
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Then, we obtain φ−1
B (x0,±1),

φ−1
B (x0,−1) = C5

∫ xB

x0

γv

f2(x)− v2
N1(x)dx +

C2

2
+

C5

2
N1(x0),

φ−1
B (x0,+1) = C5

∫ xB

x0

γv

f2(x)− v2
N1(x)dx +

C6

2
−

C5

2
N1(x0),

(B3)

where C6 = 2− C5, C5 = −1
/[ ∫ xB

xA

γv
f2(x)−v2N1(x)dx − 1

2N1(xA)−
1
2

]

, and N1(x0) appears under Eq. (10).

Similarly, we find

φ+1
B (x0,−1) = −C7

∫ x0

xA

γv

f2(x) − v2
N1(x)dx +

C8

2
+

C7

2
N1(x0),

φ+1
B (x0,+1) = C7

∫ x0

xA

γv

f2(x)− v2
N1(x)dx +

C8

2
−

C7

2
N1(x0),

(B4)

where C8 = C7N1(xA), and C7 = 1
/

[

−
∫ xB

xA

γv
f2(x)−v2N1(x)dx + 1

2N1(xA) +
1
2

]

.

For the case of a linear potential, the force is f(x) = b (i.e., V (x) = Ux/2, b = −U/2), and the results become

φ+1
A (x0,−1) = −

vC9

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C10

2
−

C9

2
exp

( 2γbx0

b2 − v2

)

,

φ+1
A (x0,+1) = −

vC9

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C10

2
+

C9

2
exp

( 2γbx0

b2 − v2

)

,

(B5)

where C10 = 2 + C9 exp
(

2γbxA

b2−v2

)

and C9 = −1

/[

(12 − v
2b ) exp

(

2γbxB

b2−v2

)

+ (12 + v
2b ) exp

(

2γbxA

b2−v2

)

]

. Similarly,

φ+1
B (x0,−1) = −

vC11

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C12

2
−

C11

2
exp

( 2γbx0

b2 − v2

)

,

φ+1
B (x0,+1) = −

vC11

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C12

2
+

C11

2
exp

( 2γbx0

b2 − v2

)

.

(B6)

where C12 = C11 exp
(

2γbxA

b2−v2

)

and C11 = 1

/[

(12 − v
2b ) exp

(

2γbxB

b2−v2

)

+ (12 + v
2b ) exp

(

2γbxA

b2−v2

)

]

.

Moreover,

φ−1
A (x0,−1) = −

vC13

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C14

2
−

C13

2
exp

( 2γbx0

b2 − v2

)

,

φ−1
A (x0,+1) = −

vC13

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C14

2
+

C13

2
exp

( 2γbx0

b2 − v2

)

,

(B7)

where C14 = 2 + C13 exp
(

2γbxA

b2−v2

)

and C13 = −1

/[

(12 − v
2b ) exp

(

2γbxB

b2−v2

)

+ (12 + v
2b ) exp

(

2γbxA

b2−v2

)

]

, and

φ−1
B (x0,−1) = −

vC15

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C16

2
−

C15

2
exp

( 2γbx0

b2 − v2

)

,

φ−1
B (x0,+1) = −

vC15

2b

[

exp
( 2γbx0

b2 − v2

)

− exp
( 2γbxA

b2 − v2

)

]

+
C16

2
+

C15

2
exp

( 2γbx0

b2 − v2

)

,

(B8)

where C16 = C15 exp
(

2γbxA

b2−v2

)

and C15 = 1

/[

(12 − v
2b ) exp

(

2γbxB

b2−v2

)

+ (12 + v
2b ) exp

(

2γbxA

b2−v2

)

]

.
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Finally, we obtain

φ+1
A (x0,−1) = φ−1

A (x0,−1) =

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbx0

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

φ+1
A (x0,+1) = φ−1

A (x0,+1) =

(

1− v
b

)

[

exp
(

2γbxB

b2−v2

)

− exp
(

2γbx0

b2−v2

)]

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

φ+1
B (x0,−1) = φ−1

B (x0,−1) =

(

1 + v
b

)

[

exp
(

2γbxA

b2−v2

)

− exp
(

2γbx0

b2−v2

)]

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

φ+1
B (x0,+1) = φ−1

B (x0,+1) =

(

1 + v
b

)

exp
(

2γbxA

b2−v2

)

+
(

1− v
b

)

exp
(

2γbx0

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) .

(B9)

Then from Eq. (14) we derive

φA(x0,−1) = φ+1
A (x0,−1), φA(x0,+1) = φ+1

A (x0,+1),

φB(x0,−1) = φ+1
B (x0,−1), φB(x0,+1) = φ+1

B (x0,+1),

φA(x0) =

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+ v
b exp

(

2γbx0

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

φB(x0) =

(

1 + v
b

)

exp
(

2γbxA

b2−v2

)

− v
b exp

(

2γbx0

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) .

(B10)

Then, combining Eqs. (28) and (B10), we obtain the positional PDFs p(x|NPFF ) and p(x|NPFR) for unproductive
attempts in forward and reverse directions, respectively.

Appendix C: Detailed theoretical results of the mean transition path time, transition path shape and
variation coefficient

According to Eq. (15), we define ηA(x0) = K(1)(xA|x0,+1) + K(1)(xA|x0,−1) and ǫA(x0) = K(1)(xA|x0,+1) −
K(1)(xA|x0,−1) and find that

f(x0)
∂

∂x0
ηA(x0) + v

∂

∂x0
ǫA(x0) = −φA(x0,+1)− φA(x0,−1),

f(x0)
∂

∂x0
ǫA(x0) + v

∂

∂x0
ηA(x0) = φA(x0,−1)− φA(x0,+1) + 2γǫA(x0).

(C1)
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With the help of the boundary conditions (6) we then get

ǫA(x0) = N (x0)M
−1
1 (x0),

ηA(x0) = 4γv2C3

∫ x0

xA

∫ x

xA

[W (y)]−( γ
2a

+1)Q1(y)dy[W (x)]
γ
2a

−1dx

− 2γv2C4

∫ x0

xA

∫ x

xA

[W (y)]−( γ
2a

+1)dy[W (x)]
γ
2a

−1dx

+
γv

2a
C3

∫ x0

xA

log[M2(x)][W (x)]
γ
2a

−1dx− 2γvD5[W (xB)]
− γ

2a

∫ x0

xA

[W (x)]
γ
2a

−1dx

+ C3

∫ x0

xA

Q1(x)
2(2ax+ b)

(2ax + b)2 − v2
dx−

B

4a
log[M2(x0)] + vC3

∫ x0

xA

[W (x)]
γ
2a

−1dx+D6,

N (x0) = −2n0vC3

∫ x0

xA

[W (x)]−( γ
2a

+1)Q1(x)dx + n0vC4

∫ x0

xA

[W (x)]−( γ
2a

+1)dx

−
n0C3

4a
log[M2(x0)] +D5,

(C2)

where C3 and C4 are given below Eq. (11) and n0 =
[

(2axB + b)2 − v2
]

γ
2a as well as M2(x0) = (2ax0+b)2−v2

(2axA+b)2−v2 ,

W (x0) = (2ax0 + b)2 − v2, Q1(x0) =
∫ x0

xA
γv[W (x)]

γ
2a

−1dx, and D6 = D5[M2(xB)]
− γ

2a . D5 can be obtained from

ηA(xB) + ǫA(xB) = 0.
Eq. (20) can be rewritten as

τTP(xB |xA) =
K(1)(xB |xA)

φB(xA)
=

D2

φB(xA)
,

τTP(xA|xB) =
K(1)(xA|xB)

φA(xB)
=

D5

φA(xB)
.

(C3)

For the linear potential case f(x) = −U/2 = b (a = 0),

G1 = −a1b1C11(xB − xA) + b2C11(a1 − a2),

G2 = b3C11(n2 − n1xA) + b4n1C11 − a2b5C11(xB − xA),

G3 = G1 + b7

(

a1
a2

− 1

)

, G4 = G2 −
b6n1

a2
−

2

b
(xB − xA),

G5 = −
G3 +G4

a1 + a2 − a3n1
, G6 = a2G5,

G7 = G4 − a3n1G5 +G6,

D1 = −
(G1 +G2)

2(a1 + a2 − a3n1)
,

D2 = a2D1,

D5 =
1

2
G7,

(C4)

where a0 = 2γb
b2−v2 , a1 = exp(a0xB), a2 = exp(a0xA), a3 = 2γv

b2−v2 , b1 = b2+v2

b(b2−v2) , b2 = v(b+v)
2γb2 , b3 = 2γv(b2+v2)

b(b2−v2)2 ,

b4 = 2v
b2−v2 − v2

b2(b−v) , b5 = b+v
b2 , b6 = 2v2

b(b2−v2) , b7 = v
γb , n1 = a1−a2

a0
, n2 = 1

a0
(a1xB − a2xA − n1), and C11 appears

below Eq. (B6).
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The final results based on Eq. (C3) then read

τTP(xB|xA) =

[

− v
γb +

v3

γb3 + b2+v2

b2(b+v) (xB − xA)
]

exp
(

2γbxB

b2−v2

)

+
[

v
γb −

v3

γb3 + b+v
b2 (xB − xA)

]

exp
(

2γbxA

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

τTP(xA|xB) =

[

− v
γb +

v3

γb3 − b−v
b2 (xB − xA)

]

exp
(

2γbxB

b2−v2

)

+
[

v
γb −

v3

γb3 − b2+v2

b2(b+v) (xB − xA)
]

exp
(

2γbxA

b2−v2

)

(

1− v
b

)

exp
(

2γbxB

b2−v2

)

+
(

1 + v
b

)

exp
(

2γbxA

b2−v2

) ,

τTP(xA|xB)−τTP(xB |xA) =
2b2(xB − xA) exp

(

2γbxB

b2−v2

)

+ 2(b2 + bv + v2)(xB − xA) exp
(

2γbxA

b2−v2

)

b2(b + v)
[

(1− v
b ) exp

(

2γbxB

b2−v2

)

+ (1 + v
b ) exp

(

2γbxA

b2−v2

)] .

(C5)

Then,

K(1)(xB |x0) = b3C11(n4 − xAn3) + b4C11n3 − a2b5C11(x0 − xA)

− a3n3D1 +D2,

K(1)(xA|x0) = b3C11(n4 − xAn3) + b4C11n3 − a2b5C11(x0 − xA)

−
1

a2
b6n3 −

2

b
(x0 − xA)− a3n3D5 +D6,

(C6)

where n3 = 1
a0

[

exp(a0x0)− a2

]

, n4 = 1
a0

[

x0 exp(a0x0)− xAa2 − n3

]

.

We define ωA(x0) = K(2)(xA|x0,+1) + K(2)(xA|x0,−1) and θA(x0) = K(2)(xA|x0,+1) − K(2)(xA|x0,−1). Then
Eq. (23) can be rewritten as

f(x0)
∂

∂x0
ωA(x0) + v

∂

∂x0
θA(x0) = −2K(1)(xA|x0,+1)− 2K(1)(xA|x0,−1),

f(x0)
∂

∂x0
θA(x0) + v

∂

∂x0
ωA(x0) = 2γθA(x0) + 2

[

K(1)(xA|x0,−1)−K(1)(xA|x0,+1)
]

.

(C7)

This leads us to

θA(x0) =
2

M1(x0)

∫ x0

xA

M1(x)K
(1)(xA|x,−1)

f(x)− v
dx−

2

M1(x0)

∫ x0

xA

M1(x)K
(1)(xA|x,+1)

f(x) + v
dx+

D7

M1(x0)
,

ωA(x0) = −2

∫ x0

xA

K(1)(xA|x,−1)

f(x)− v
dx− 4γv

∫ x0

xA

∫ x

xA

M1(y)K
(1)(xA|x,−1)

f(y)− v
dy

dx

M1(x)(f2(x) − v2)

− 2

∫ x0

xA

K(1)(xA|x,+1)

f(x) + v
dx+ 4γv

∫ x0

xA

∫ x

xA

M1(y)K
(1)(xA|x,+1)

f(y) + v
dy

dx

M1(x)(f2(x) − v2)

− 2γvD7

∫ x0

xA

dx

M1(x)(f2(x)− v2)
+D8,

(C8)

where D8 = D7

M1(xA) , D7 can be derived from θA(xB) + ωA(xB) = 0, and M1(x0) appears under Eq. (18).

Similarly, for the linear potential case f(x) = −U/2 = b (a = 0), we present the simplest forms of the second
moment of the forward transition path time, 〈t2TP〉 = K(2)(xB |xA)/φB(xA) and COV CV of the forward transition
path time distribution,

〈t2TP〉 =−
(xB − xA)

2T1 + (xB − xA)T2 + T3

2
[

(1− v
b )a1 + (1 + v

b )a2
]2 ,

CV =

[

(xB − xA)
2T4 + (xB − xA)T5 + T6

]1/2

[m1 +m2(xB − xA)] a1 + [−m1 +m3(xB − xA)] a2
,

T1 =E1a
2
1 + E2a1a2 + E6a

2
2, T2 = E9a

2
1 + E4a1a2 + E7a

2
2,

T3 =E3a
2
1 + E5a1a2 + E8a

2
2, T4 = s1a1a2,

T5 =s7a
2
1 + s3a1a2 + s5a

2
2, T6 = s2a

2
1 + s4a1a2 + s6a

2
2,

(C9)
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where

E1 = −
2(b2 + v2)2

b4(b + v)2
, E2 =

4(3v4 − b4)

b4(b2 − v2)
,

E3 =
v2(b2 − v2)(6bv − 4b2 − 2v2)

γ2b6
, E4 =

8v2(b2 − 3bv)

γb5
,

E5 =
4v2(2b4 − b2v2 − v4)

γ2b6
, E6 =

−2(b+ v)2

b4
,

E7 =
2v4 − 6b2v2 − 4b3v

γb5
, E8 =

−2v2(b2 − v2)(2b2 + 3bv + v2)

γ2b6
,

E9 =
2v(b− v)(2b2 + bv + v2)

γb5
,

s1 = −
4v4

b4(b2 − v2)
, s2 =

(b2 − v2)(2v4 + b2v2 − 3bv3)

γ2b6
, s3 =

8v3

γb4
,

s4 = −
2v2(b2 − v2)(b2 + 2v2)

γ2b6
, s5 =

v(2bv2 + b2v + v3)

γ2b5
,

s6 =
(b2 − v2)(b2v2 + 2v4 + 3bv3)

γ2b6
, s7 = −

(b− v)2v2

γb5
,

m1 = −
v(b2 − v2)

γb3
,m2 =

b2 + v2

b2(b+ v)
,

m3 =
b+ v

b2
, (C10)

and a1, a2 were presented below Eq. (C4).

Appendix D: Explicit reselts of Eq. (30)

Here, we present some resluts of the mean return times τR(xA → xA) and τR(xB → xB), for the linear potential
case. Then, Eq. (30) could be rewritten as

τR(xA → xA) =
(v3 − b2v) exp

(

4γbxA

b2−v2

)

+
[

2bv(b− v)− 4γbv2(xB−xA)
b+v

]

exp
(

2γb(xB+xA)
b2−v2

)

− v(b− v)2 exp
(

4γbxB

b2−v2

)

2γb
[

v(b + v) exp
(

4γbxA

b2−v2

)

+ (b− v)(b + 2v) exp
(

2γb(xB+xA)
b2−v2

)

+ (b− v)2 exp
(

4γbxB

b2−v2

)] ,

τR(xB → xB) =
v(b + v)2 exp

(

4γbxA

b2−v2

)

−
[

2bv(b+ v)− 4γbv2(xB−xA)
b−v

]

exp
(

2γb(xB+xA)
b2−v2

)

− (v3 − b2v) exp
(

4γbxB

b2−v2

)

2γb
[

(b + v)2 exp
(

4γbxA

b2−v2

)

+ (b+ v)(b − 2v) exp
(

2γb(xB+xA)
b2−v2

)

− v(b− v) exp
(

4γbxB

b2−v2

)] .

(D1)
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FIG. 7: COV CV for the linear potential V (x) = Ux/2. (a) CV for U = 15 and various v as function of γ, with xA = −1 and
xB = 3. (b) CV for different U as function of v for γ = 1.0, xA = −1, andxB = 3. (c) CV as function of xA for various v, with
U = 15.5, γ = 1.0, and xB = 3. (d) CV as function of xB for U = 13.9, γ = 1.0, and xA = −1. (e) and (f) CV as function of U
for various v and γ, respectively, with γ = 1.0 (panel (e)) andv = 9.0 (panel (f)), with xA = −1, and xB = 3. The results of
the simulations (symbols) are in excellent agreement with the theoretical results Eq. (C9) shown by the solid lines.
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FIG. 8: COV CV for the linear potential V (x) = Ux/2, with U < 0. (a) CV for various v and U = −15 as function of γ, with
xA = −1 and xB = 3. (b) CV as function of v for different values of U and γ = 1.0, xA = −1, xB = 3. (c) CV as function of xA

with U = −15.5, γ = 1.0, and xB = 3. (d) CV as function of xB for U = −13.9, γ = 1.0, and xA = −1. Excellent agreement is
observed between the Monte Carlo simulations (symbols) and the analytical predictions (solid lines) from Eq. (C9).
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FIG. 9: Transition path shapes τTP
shape(x0|xA) and τTP

shape(x0|xB) as function of x0 from Monte Carlo simulations (symbols) and

for analytical results, Eq. (20). Open symbols are τTP
shape(x0|xA), the closed symbols stand for τTP

shape(x0|xB). The transition
region is [−1, 3]. Parameters: (a) U = 0.2, γ = 1.0. (b) U = −0.2, γ = 1.0. (c) U = 1.0, v = 3.0. (d) U = −1.0, v = 3.0. (e)
γ = 1.0, v = 2.0. (f) γ = 1.0, v = 2.0. Note the different y-axes in panels (e,f). The theoretical results from Eq. (27) are in
excellent agreement with the simulations.
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FIG. 10: Position distributions p(x|NPFF ) of forward unproductive attempts. Parameters: (a) U = 0.5, γ = 2.0. (b) U = 0.5,
v = 2.0. (c) γ = 2.0, v = 2.0. (d) γ = 2.0, v = 2.0. Solid lines represent Eqs. (28) and (B10), the symbols show results of
numerical simulations.
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FIG. 11: Position distributions p(x|NPFR) of reverse unproductive attempts. Parameters: (a) U = 0.5, γ = 2.0. (b) U = 0.5,
v = 2.0. (c) γ = 2.0, v = 2.0. (d) γ = 2.0, v = 2.0. Solid lines represent Eqs. (28) and (B10), the symbols show results of
numerical simulations.
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FIG. 12: Mean duration of forward and reverse unproductive attempts for the transition path region [−1, 3]. Parameters: (a,b)
γ = 2.0. (c,d) v = 3.0. (e) v = 5.0. (f) γ = 3.0. Note the two different y-axes in panels (e,f). Solid and dashed lines represent
the theoretical predictions for τ (xA|xA), τ (xB|xB) from Eq. (D1), respectively. The symbols represent numerical simulations.
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