PHYSICAL REVIEW E 112, 034119 (2025)

Fractional Brownian motion with mean-density interaction:
A myopic self-avoiding fractional stochastic process

Jonathan House ®,! Rashad Bakhshizada®,' Skirmantas Janu3onis ©,> Ralf Metzler®,*> and Thomas Vojta®!
' Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, USA
3Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany

® (Received 21 April 2025; revised 28 July 2025; accepted 21 August 2025; published 11 September 2025)

Fractional Brownian motion is a Gaussian stochastic process with long-range correlations in time; it has been
shown to be a useful model of anomalous diffusion. Here, we investigate the effects of mutual interactions
in an ensemble of particles undergoing fractional Brownian motion. Specifically, we introduce a mean-density
interaction in which each particle in the ensemble is coupled to the gradient of the total, time-integrated density
produced by the entire ensemble. We report the results of extensive computer simulations for the mean-squared
displacements and the probability densities of particles undergoing one-dimensional fractional Brownian motion
with such a mean-density interaction. We find two qualitatively different regimes, depending on the anomalous
diffusion exponent « characterizing the fractional Gaussian noise. The motion is governed by the interactions
for o < 4/3, whereas it is dominated by the fractional Gaussian noise for « > 4/3. We develop a scaling theory
explaining our findings. We also discuss generalizations to higher space dimensions and nonlinear interactions,
the relation of our process to the “true” or myopic self-avoiding walk, as well as applications to the growth of
strongly stochastic axons (e.g., serotonergic fibers) in vertebrate brains.
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I. INTRODUCTION

Diffusive transport is a widespread phenomenon that oc-
curs in numerous physical, chemical, and biological systems.
Its scientific investigation encompasses two centuries, rang-
ing from Robert Brown’s seminal experiment in 1827 [1] to
cutting-edge research today. The modern notion of diffusion
is based on the groundbreaking discoveries of Einstein [2],
Smoluchowski [3], and Langevin [4] according to which nor-
mal diffusion results from a stochastic process that is local
in both time and space, fulfilling three conditions: (i) individ-
ual particles are independent of each other, (ii) the process
features a finite correlation time after which individual incre-
ments are statistically independent, and (iii) the displacements
over a correlation time are symmetrically distributed in the
positive and negative directions and feature a finite variance.
If these conditions are fulfilled, then the central limit theorem
holds, yielding the celebrated linear dependence (x?) ~ ¢ of
the mean-squared displacement of the moving particle on the
elapsed time ¢ [5].

Anomalous diffusion, i.e., random motion that does not
obey the linear relation (x?) ~ ¢, can occur in systems that
violate at least one of the conditions listed above. Anomalous
diffusion is instead characterized by the power law (x?) ~ t*
where « is the anomalous diffusion exponent. For o < 1, the
motion is subdiffusive (i.e., (x?) grows slower than t), whereas
it is superdiffusive for o > 1 (i.e., (x?) grows faster than ¢).
Both types of motion have been experimentally observed in
numerous systems; and different mathematical models have
been proposed to describe the resulting data (for reviews see,
e.g., Refs. [6-12] and references therein).
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For example, anomalous diffusion can be caused by
slowly decaying long-range correlations between the incre-
ments (steps) of the stochastic process. The paradigmatic
mathematical model for this situation is fractional Brow-
nian motion (FBM) [13,14], a non-Markovian self-similar
Gaussian stochastic process with stationary increments. Pos-
itive, persistent correlations between the increments lead to
superdiffusion (1 < o < 2), whereas negative, antipersistent
correlations produce subdiffusion (0 <« < 1). For « =1,
FBM is identical to normal Brownian motion with uncorre-
lated increments. FBM has been successfully applied to model
the dynamics in a wide variety of systems including diffusion
inside biological cells [15-20], the dynamics of polymers
[21,22], electronic network traffic [23], as well as fluctuations
of financial markets [24,25].

Recently, reflected FBM [26-28] was employed to explain
the inhomogeneous spatial distribution of serotonergic fibers
(axons) in vertebrate brains [29-31]. To this end, the set of
serotonergic fibers is modeled as an ensemble of FBM trajec-
tories that propagate inside the brain, starting from the cell
bodies in the brainstem. This model successfully reproduces
key features of the inhomogeneous fiber density distribution
in the brain (whereas normal Brownian motion would tend to
produce a homogeneous distribution). So far, different fibers
have been treated as independent in this approach. However,
experimental evidence in mouse models suggests that the
growth of serotonergic fibers is sensitive to the extracellular
levels of serotonin (released by the fibers themselves) [32-34],
and that active self-repulsion (as opposed to physical volume
exclusion) contributes to the distribution of serotonergic fibers
in the brain [35]. Specifically, a lack of serotonin synthesis in
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the developing brain increases serotonergic fiber densities in
some forebrain regions [33], and a pharmacologically induced
increase in brain serotonin levels (using fluoxetine, a widely
prescribed antidepressant) results in a decrease in the sero-
tonergic fiber densities in some of the same regions [36,37].
These findings suggest that growing fibers may be sensitive to
the local coarse-grained density of the entire fiber ensemble
and be repulsed from regions where this density is high.

In this paper, we therefore introduce a stochastic process
that models this idea. It consists of FBM with a “mean-
density” interaction, i.e., an interaction that couples each of
the particles in a large ensemble of particles to the gradient
of the total, time-integrated density of an entire ensemble.
We then investigate, by means of large-scale computer simula-
tions, the behavior of this stochastic process in one dimension.
We find two qualitatively different regimes. If the anomalous
diffusion exponent « of the underlying FBM is below 4/3,
then the motion is governed by the interactions, whereas it
is dominated by the fractional Gaussian noise for o > 4/3.
To explain this interesting threshold behavior, we develop a
one-parameter scaling theory.

Interestingly, our process can be understood as a general-
ization of the “true” or myopic self-avoiding random walk
[38] to fractional noise, and could therefore also be called
“myopic self-avoiding fractional Brownian motion.”

Our paper is organized as follows. We define FBM, in-
troduce the mean-density interaction, and discuss the details
of our numerical approach in Sec. II. In Sec. III, we present
the simulation results for the mean-squared displacement.
The scaling theory is developed in Sec. IV. In Sec. V, we
present simulation results for the instantaneous and integrated
probability densities and compare them to the scaling theory
predictions. Effects of fluctuations due to a finite particle
number are addressed in Sec. VI. We also consider general-
izations to higher space dimensions and nonlinear interactions
in Sec. VII, and we conclude in Sec. VIII.

II. MODEL
A. Fractional Brownian motion

FBM can be defined as a continuous-time centered Gaus-
sian stochastic process for the position X [39] of a particle
that is located at the origin at time ¢ = 0. In the absence of
boundaries, the covariance function of the position at later
times s and ¢ is given by

(X ()X (1)) = K" — |s —1]* +1%), (D

with « in the range 0 < o < 2. The constant K, of physical
dimension length?/time®, is the generalized diffusion coeffi-
cient. Setting s = ¢, this relation simplifies to (X?) = 2Kt*
showing that FBM leads to anomalous diffusion with anoma-
lous diffusion exponent «. The corresponding probability
density function of the position variable takes the Gaussian

form
1 X2
N exp (— Ak ) 2)
For computer simulations, it is convenient to work with

a discrete-time version of FBM [40]. We discretize time by
defining x,, = X (t,) with t, = en where € is the time step and

PX,t)=

n is an integer. The time evolution of the position x,, takes the
form of a random walk with identically Gaussian distributed
but long-range correlated steps, governed by the recursion
relation

Xnp1 = Xn + & 3

Here, the increments or steps &, constitute a discrete fractional
Gaussian noise, i.e., a stationary Gaussian process of zero
mean, variance o2 = 2K¢?, and covariance function

Cy = (Enbman) = 30°(In+ 11" =2]n* + [n — 1|%).  (4)

In the marginal case, @ = 1, the covariance vanishes for all
n # 0, i.e., we recover normal Brownian motion. For n — oo,
the covariance takes the power-law form (£,,&,,1,) ~ o(o —
1)|n|~Y with y = 2 — «. The correlations are positive (persis-
tent) for @ > 1 and negative (antipersistent) for o« < 1.

To achieve the continuum limit, the standard deviation o
of an individual step must be small compared to the consid-
ered distances. Equivalently, the time step € must be small
compared to the total time ¢. The continuum limit can thus be
reached either by taking € to zero at fixed ¢ or by taking ¢ to
infinity at fixed €. In this paper, we fix € = 1 and consider the
long-time limit t — oo.

B. Mean-density interaction

We now consider a large ensemble of N particles, each
performing an independent FBM process starting at time t =
0. In addition, the particles experience a generalized “force”
that is proportional to the gradient of the total time-integrated
density of the entire ensemble since the starting time,

N n
Po(x,ty) =Y > 8[x—x], )

j=1 m=1

where x/ is the position of particle j at time step m, and 8(x)
denotes the Dirac § function.

This is an appropriate choice, for example, for the appli-
cation of the process to serotonergic fibers, as discussed in
Sec. I. In this application, each growing fiber is represented by
an FBM trajectory. Fibers release serotonin along their entire
length at a roughly constant rate (per time and per length of
fiber). Serotonin diffuses away and decays slowly, leading to
a quasi-steady state in which the local serotonin density is
approximately proportional to the density of fiber segments
Piot(x,t,) in a given region. The growing fibers sense this
density and are repulsed from high-density regions. Analo-
gous arguments would apply to other applications in which
the trajectories represent growing physical objects that persist
in time.

We note that one can imagine other applications in which
the influence of the density at earlier times decays with time,
for example, if the interaction is mediated by a chemical with
a finite lifetime that is released by the moving particle (rather
than the entire trajectory). This situation can be modeled by
introducing a memory kernel in Eq. (5). We will briefly con-
sider this case in Appendix A.

In the presence of a density-dependent force, the recursion
relation for the position of particle j,

Ay =P 60+ A 0], ©
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now contains two terms, the fractional Gaussian noise E,Ej )
with covariance

(E0E,) = Casij (@)
(where §;; is the Kronecker 6) and the force term
. A 0
D 1] = == —Po(x, t, 8
f[xn ) ] N ox ot (X5 )x_x;/) 3

d
—A Pint (x’ tn)
ox

©))

Here, P, = Pot/N is the mean integrated density of the en-
semble. The factor 1/N in the relation between the total
integrated density P and the force is introduced in the spirit
of mean-field theory to permit a well-defined thermodynamic
limit N — oo. The parameter A controls the character and
strength of the interaction. For positive A, the particles are
pushed away from regions of high density, whereas they are
attracted to high-density regions for negative A. Note that the
normalization of P, is proportional to time

/ dxPuy(r 1) = 1, (10)

oo
reflecting the growth of the trajectories with time.

In the application of FBM to the growth of serotonergic
neurons in vertebrate brains discussed in Sec. I, P represents
the total density of the growing set of serotonergic fibers.
Assuming that the fibers are repulsed from regions of higher
density, we are interested in positive A in the following.

C. Simulation details

We have performed computer simulations of discrete-
time one-dimensional FBM with mean-density interaction for
anomalous diffusion exponents « in the range between 0.4 (in
the subdiffusive regime) and 1.7 (deep in the superdiffusive
regime). We fix the time step at € = 1 and set K = 1/2, lead-
ing to a variance o> = 1 of the individual steps. The particles
start at the origin x = 0 at ¢ = 0 and perform up to 2% ~ 134
million time steps.

The correlated Gaussian random numbers &, that repre-
sent the fractional noise for each particle are precalculated
before the simulation by means of the Fourier-filtering method
[41]. This technique starts from a sequence of independent
Gaussian random numbers x, of zero mean and unit vari-
ance (which we generate using the Box-Muller transformation
with the LFSR113 random number generator proposed by
L’Ecuyer [42] as well as the 2005 version of Marsaglia’s KISS
[43]). The Fourier transform ¥, of these numbers is converted
via §w = [C()N"?%w» using the Fourier transform C(w) of the
covariance function (4). The inverse Fourier transformation of
the £, yields the fractional Gaussian noise [44].

To implement the mean-density interaction, we consider
ensembles of up to N = 128 particles. The mean integrated
density P (x,t,) is collected as a histogram with a narrow
bin width Ax = 0.1. To achieve a smooth mean integrated
density for our moderately large ensemble sizes, we replace
the 6 functions in the definition (5) of Py (x, f,,) by Gaussians
of variance 0.25. We have confirmed that small changes of
the histogram bin width and the variance of the smoothing
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FIG. 1. Mean-squared displacement {x?) of FBM with mean-
density interaction vs time ¢ for interaction strength A = 1/40 and
several . The data are averages over 16 ensembles of 128 random
walkers each. The resulting statistical errors are much smaller than
the symbol size. The solid lines are power-law fits of the long-time
behavior with (x?) = ct%. They yield & = « for o > 4/3 and & =
4/3 for o < 4/3, for details see text.

Gaussian only lead to minuscule changes of the results [45].
The gradient in the definition of the force (9) is computed via
a simple two-point formula directly from the histogram. To
ensure the robustness of the results, we have also performed
test calculations using a higher-order (four-point) gradient
formula as well as calculations that do not use a histogram
at all but analytically compute the derivative of the sum of
the accumulated Gaussians. The latter method is restricted to
times ¢t < 10* because of the high numerical effort of keeping
track of all the Gaussians. All gradient algorithms give the
same results (within our error bars) for the available simula-
tion times.

To further reduce the statistical errors, the results are aver-
aged over up to 4096 independent ensembles, depending on
the parameters

III. RESULTS: MEAN-SQUARED DISPLACEMENT

We now turn to the results of our computer simulations.
Figure 1 presents the time evolution of the mean-squared
displacement (x?) of several ensembles of random walkers
performing FBM with mean-density interaction. In all cases,
the mean-squared displacement follows a power-law time de-
pendence (x?) ~ % for sufficiently long times. Note that we
need to distinguish the exponent « that parameterizes the
fractional Gaussian noise, as defined in Eq. (4), from the
exponent & that characterizes the mean-squared displacement
of the interacting system.

A detailed analysis of the data in Fig. 1 reveals two dif-
ferent regimes. For « = 1.7, 1.5, and 4/3, the mean-squared
displacement features a power-law behavior over the entire
time range. Fits with (x?) = c¢t% where both ¢ and & are fit
parameters yield @ values very close to the corresponding
FBM value «. In fact, the data can be fitted with high quality
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FIG. 2. Mean-squared displacement (x?) of FBM with mean-
density interaction vs time ¢ for @ = 0.7 and several values of the
interaction strength A. The data are averages over 60 ensembles
of 128 random walkers each. The resulting statistical errors are
much smaller than the symbol size. The dashed line represents a
fit of the long-time behavior for A = 2/5 with (x?) = c*/> whereas
the dash-dotted line shows the FBM relation (x?) = ¢%¢°7. Inset:
crossover time 7, from FBM to interaction-dominated behavior vs
interaction strength A. The solid line is a power law fit, yielding an
exponent of —1.05.

(reduced x? values below unity) with & fixed at @ = «. The
solid lines in Fig. 1 for « = 1.7, 1.5, and 4/3 show these fits.

The data for « = 0.7 and 1.0, in contrast, show a more
complex behavior. At short times, the mean-squared displace-
ment (x?) increases more slowly, as would be expected for
(noninteracting) FBM with a lower «. For longer times, (x?)
crosses over to a faster power-law behavior that can be fitted
very well (reduced x2 values below unity) with (x?) ~ % with
a = 4/3 for both « = 0.7 and 1.0. The solid lines in Fig. 1 for
a = 0.7 and 1 correspond to such fits for times larger than 109.
In fact, the mean-squared displacement curves for o = 0.7
and 1.0 are essentially indistinguishable for times beyond 10°.
This suggests that the long-time behavior for these « values
is dominated by interactions whereas the fractional Gaussian
noise plays a subleading role.

Further evidence for a crossover between FBM-like behav-
ior at short times and interaction-dominated behavior at long
times can be found in Fig. 2 which shows the mean-squared
displacement at o = 0.7 for several different interaction
strengths A. At the earliest times, the mean-squared displace-
ments are independent of A and follow the FBM relation
(x?) = o297, After a crossover time 7., the behavior of the
mean-squared displacement changes to (x?) ~ */3 with an A-
dependent prefactor. 7, increases with decreasing interaction
strength A, as can be seen in the inset of Fig. 2. We have
observed an analogous behavior for @ = 1.0. For « = 1.5, in
contrast, the data for different A are essentially indistinguish-
able because the force terms are negligible compared to the
noise.

This crossover at 7, for ¢ < 4/3 can be understood as
follows. At short times, the integrated density P, is small.

The interaction terms (forces) (9) therefore do not yet play
a role in the recursion relation (6), and the process behaves
just like (noninteracting) FBM. As Py increases with time,
the interaction terms (9) also increase. At the crossover time
Ty, their contribution to the displacement becomes comparable
to that of the fractional Gaussian noise. The crossover time
increases with decreasing interaction strength A because, for
smaller A, a larger integrated density Py, is required for the
same generalized force f. Beyond the crossover time, the
process is interaction dominated, as discussed above.

It is also interesting to visualize individual trajectories. In
the noise-dominated regime « > 4/3, the trajectories closely
resemble FBM trajectories because the interaction terms (9)
are small compared to the fractional Gaussian noise. We there-
fore focus on the interaction-dominated regime, o < 4/3.
Figure 3 presents trajectories for « = 0.7 with and without
the mean-density interaction. For comparison, it also shows
FBM trajectories with o« = 4/3.

The trajectories of noninteracting FBM with o = 0.7
shown in panel (b) are highly jittery (antipersistent) because
of the negative correlations of subdiffusive (¢ < 1) fractional
Gaussian noise. This jittery motion is still visible in the
presence of the mean-density interaction shown in panel (a).
However, it is superposed onto a more regular motion away
from the starting point (clearly visible for the trajectories
furthest away from the origin in the tails of the probability
density). The comparison with panel (c) demonstrates that the
trajectories of FBM with mean-density interaction do not re-
semble those of noninteracting FBM for « = 4/3 even though
the mean-squared displacements of both processes evolve as
(x?) ~t*3. The a = 4/3 FBM trajectories are less jittery,
even on short timescales because the fractional Gaussian noise
for @ > 1 is positively correlated [46].

IV. SCALING THEORY

In this section, we develop a scaling theory for FBM with
mean-density interaction to explain the computer simulation
results quantitatively. Consider an ensemble of N random
walkers starting at the origin x = 0 at time ¢ = 0. The scaling
theory is based on the assumption that, for sufficiently long
times, the integrated distribution Pjy(x,¢) approaches a uni-
versal functional form characterized by a single length scale
b(t) that increases with time #. This can be expressed via the
scaling ansatz

t X
Pp(x, 1) = my[%} (11)

The factor ¢ accounts for the fact that the space-integral
(normalization) of the integrated density Py (x,?) increases
linearly with time. As a result, the scaling function Y can be
normalized to unity

/ Y(y)dy = 1. (12)

o]

Using this scaling form, the force term in the FBM recursion
(6) can be expressed as

0 At [ x
f(X,f)=—A£Pim(X,l‘)= _bz_(t)Y [%} (13)
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FIG. 3. Plots of 16 individual trajectories, randomly chosen from
simulations with N = 128 particles. (a) FBM with mean-density
interaction for « = 0.7 and A = 1/40. (b) Noninteracting FBM,
o = 0.7. (c) Noninteracting FBM, o = 4/3. (Note that FBM is self-
similar; thus, the appearance of the trajectories in panel (c) does not
depend on the absolute scale.)

Here Y’ denotes the derivative of the scaling function with
respect to its argument. Let us further assume that the length
scale b(t) increases according to the power law

b(t) ~ 1°, (14)

with an unknown (positive) exponent §. Equation (13) then
implies that the typical force varies with time as

flx,t) ~ 172, (15)

If the force term dominates the motion of the particles (com-
pared to the fractional Gaussian noise), then the leading
behavior of the displacement is simply given by a time integral
over the force. The typical displacement is thus expected to

behave as

t
Xgp(t) ~ / dt’ fup') ~ 1272, (16)
0
For the theory to be self-consistent, the time dependence of
Xyyp Needs to match the assumed time dependence of the length
scale b(t),

o1, (17)

yielding 6 = 2/3. In the force-dominated regime, the mean-
squared displacement is therefore expected to behave as

(x?) ~ bA(t) ~ 1Y, (18)
To further check the self-consistency of the scaling theory,
let us discuss what happens if the length scale b(t) increases
faster than t2/3, as is expected to happen if the motion is driven
by fractional Gaussian noise with an anomalous diffusion
exponent « > 4/3. In this case, the displacement contribu-
tion (16) resulting from integrating the forces would grow
more slowly than #*/3. This implies that the contribution of
the forces to the displacement is subleading compared to the
fractional Gaussian noise.

If we assume, however, that the length scale b(¢) increases
more slowly than 7>/3, then the hypothetical contribution of
the forces to the displacement would increase faster than
t?/3, leading to a contradiction. The scaling theory therefore
predicts that one-dimensional FBM with mean-density inter-
action in free space is dominated by the fractional Gaussian
noise (and behaves like regular FBM) for o > 4/3 (i.e., y <
2/3), whereas it is interaction-dominated for o < 4/3 (i.e.,
y > 2/3). This yields the following mean-squared displace-
ment behaviors,

4/3
2y )
<~x > {t(x — t2—y

These predictions agree with the Monte Carlo results of
Sec. III.

The scaling theory also allows us to estimate the crossover
time 7, from the initial FBM behavior to the interaction-
dominated long-time behavior. According to Eq. (13), the
forces behave as f ~ At'~ in the FBM regime, leading to
a typical displacement Xgoc. ~ At>~®. The crossover occurs
when this force-induced displacement overcomes the FBM
displacement. This implies o0 t%/* ~ At>~ or

(A>2/(3a4)
Ty ~ | — .
o

This relation holds in the interaction-dominated regime, o <
4/3. For the case of o = (.7, the exponent in the power law
(20) evaluates to —1.053, in excellent agreement with the data
in the inset of Fig. 2.

for @ < 4/3,

for @ > 4/3. (19)

(20)

V. RESULTS: PROBABILITY DENSITIES

In this section, we present the Monte Carlo results for the
mean integrated density P, defined in Egs. (5) and (9) as

N n
Pine(x, 1) = 11\7 Z ZB[X —X,(nj)].

j=1 m=1

21
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This not only provides additional insight into the behavior of
FBM with mean-density interaction, but also allows us to test
the assumptions underlying the scaling theory developed in
Sec. IV. In addition, we also analyze the instantaneous (fixed
time) probability density of the diffusing particles,

P(x,1,) = 1 i 8[x —x{] (22)
v 'n N n M
j=1

In the application to serotonergic neurons, it represents the
density of the active tips of the growing fibers.

For reference, we first consider the case of noninteracting
FBM. The (instantaneous) probability density is given by
Eq. (2). It can be expressed in terms of the parameters of our
discrete-time FBM version as

P(x,t,) =

1 x2 23)
€X - .
ooz P\ 207

The integrated density Py (x, ,) is obtained by summing this
Gaussian over time steps 1 to n. In the continuum limit, the
summation can be replaced by an integration, yielding

1 2

|x|/e1 1 X
Pine(x, 1) = m (5 Ty W) (24)
where I is the upper incomplete I" function (for details, see
Appendix B). The function (24) has a maximum (with a cusp)
at x = 0 and a Gaussian tail (up to a power-law prefactor) for
large x.

We now turn to our simulation results for the (instan-
taneous) probability density P(x,t) and the time-integrated
density P (x,?) for FBM with mean-density interaction.
We have studied in detail two values of «, one in the
fractional-noise-dominated regime « > 4/3 and one in the
interaction-dominated regime o < 4/3.

We start by discussing o« = 1.5 in the noise-dominated
regime. Figure 4(a) shows the integrated density for several
different times.As expected, P, broadens with time, and its
normalization increases, reflecting the growth of the trajec-
tories with time. Figure 4(a) also compares the simulation
results for times t = 22 and 2%’ with the integrated density
(24) of noninteracting FBM for the same «. The agreement
is nearly perfect and demonstrates that, for « = 1.5, the in-
teraction does not affect the integrated density distribution at
sufficiently long times. This agrees with the conclusion of the
scaling theory of Sec. IV which predicts that for « > 4/3, the
force terms in the recursion (6) become negligibly small com-
pared to the fractional Gaussian noise for ¢t — oo. Figure 4(b)
shows that the integrated density fulfills the scaling form (11)
with the root-mean-squared displacement x5 () = /(x2(1))
playing the role of the length scale b(¢). This confirms the key
assumption of the scaling theory.

In addition to the integrated density, we have also studied
the (instantaneous) probability density P(x, ¢). Simulation re-
sults for @« = 1.5 are shown in Fig. 5(a). In agreement with the
notion that the interactions become negligible for long times,
P(x, t) agrees with the Gaussian distribution (23) of (noninter-
acting) FBM. Figure 5(b) confirms that the probability density

100

T T T T T T T

T
-25-20-15-10 =5 0 5 10
x/10°

T/ Trms

FIG. 4. (a) Integrated density Py (x,?) for « = 1.5, A = 1/40,
and several r. The data are averages over 120 ensembles of 64
random walkers each. To reduce the statistical noise in the figures, the
histograms have been rebinned using 50 bins over the nonzero part
of the histogram. The resulting statistical errors are much smaller
than the symbol size. The solid lines shown for t = 2% and 2%’
correspond to the result (24) for noninteracting FBM. (b) Scaled

integrated density Xoms P (X, 1)/t VS X/ Xgms With Xims = +/ (X2(2)).
fulfills the scaling form
PGty = 7| -~ (25)
U0 o)

with b(t) = xms(t) = +/{(x2(¢)) and Z being a dimensionless
scaling function. Of course, for noninteracting FBM, this fol-
lows directly from Eq. (23).

After having discussed the fractional-noise-dominated
regime o > 4/3, we now consider the interaction-dominated
regime o < 4/3. This regime is arguably more interesting,
because we expect the behavior of our process to differ quali-
tatively from that of noninteracting FBM. We have performed
extensive simulations for ¢« = 0.7 and 1.0 in the interaction-
dominated regime. In the following, we discuss the case o =
1.0 as an example.

Figure 6(a) shows the time-integrated density Py (x, t) for
o = 1.0 and several values of the time 7.

P, broadens with time, and its normalization increases,
as expected. The figure also presents (as a dashed line) the
integrated density (24) of noninteracting FBM for the same
a =1 at time t = 2%’. The data clearly show that the in-
teracting integrated density is much broader than that of
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FIG. 5. (a) (Instantaneous) probability density P(x,t) for o =
1.5, A = 1/40, and several ¢. The data are averages over 120 en-
sembles of 64 random walkers each. To reduce the statistical noise in
the figures, the histograms have been rebinned using 50 bins over
the nonzero part of the histogram. The resulting statistical errors
are about the symbol size. The solid lines shown for ¢ = 2% and
227 correspond to the Gaussian distribution (23) for noninteracting
FBM. (b) Scaled probability density X,;msP (X, 1) VS X /Xms With X;pns =

V(@)

noninteracting FBM, and it has a different shape (in partic-
ular, no cusp at x = 0). This agrees with the notion that, for
o < 4/3, the interactions dominate the time evolution and
lead to a more rapid expansion of the particle “cloud” than the
fractional Gaussian noise would. Nonetheless, the integrated
density fulfills the scaling form (11) with b(z) = x;ms(t) =

(x2(1)), as is demonstrated in Fig. 6(b). This confirms that
the key assumption of the scaling theory holds not just in the
fractional-noise-dominated regime but also in the interaction-
dominated regime.

Simulation results for the (instantaneous) probability
density P(x,t) for « = 1.0 are shown in Fig. 7(a). The
figure demonstrates that the probability density in the
interaction-dominated regime differs significantly from that
of FBM and is highly non-Gaussian. Interestingly, the max-
imum of P(x, t) is not at the center x = 0. Instead, there are
two symmetric maxima after which P(x, t) rapidly drops to
zero. This can be understood as follows. In the interaction-
dominated regime, the force terms in the recursion (6) push
the particles strongly away from the center region where the

10%

@
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0.1 A
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FIG. 6. (a) Integrated density Py (x,?) for « = 1.0, A = 1/40,
and several r. The data are averages over 120 ensembles of 64
random walkers each. To reduce the statistical noise in the figures, the
histograms have been rebinned using 30 bins over the nonzero part of
the histogram. The resulting statistical errors are much smaller than
the symbol size. For comparison, the dashed line shows the result
(24) for noninteracting FBM at time ¢ = 2%7. (b) Scaled integrated
density XomsPine (x, 1)/t VS X/ Xims With Xims = +/ (x2(2)).

integrated density (i.e., the density of the entire ensemble
of trajectories) accumulated during previous time steps. At
any given time, the “active” particles (i.e., the tips of the
trajectories) are therefore concentrated near the boundary of
the integrated density. For example, Fig. 6(a) shows that the
integrated density at t = 2?7 roughly extends to x = £10°.
Correspondingly, the maxima of the instantaneous probability
density in Fig. 7(a) for t = 2%7 are at positions x ~ £10°.

Despite its highly non-Gaussian form, the probability den-
sity in the interaction-dominated regime fulfills the scaling
form (25) with b(¢t) = xms(t) = +/(x2(¢)), as can be seen in
Fig. 7(b). The small deviations from perfect scaling collapse
for the shortest time in the figure can be attributed to finite-
time effects. Specifically, the force terms do not completely
dominate at + = 28, and the fractional Gaussian noise pro-
duces the small tails at large |x|.

We note that similar bimodal probability densities are ob-
served, for different physical reasons, in Lévy walks, certain
heterogeneous diffusion processes, fractional wave equations,
the end-to-end distance of semiflexible polymers, as well as
regular but confined FBM.
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FIG. 7. (a) (Instantaneous) probability density P(x,t) for o =
1.0, A = 1/40, and several ¢. The data are averages over 120 en-
sembles of 64 random walkers each. To reduce the statistical noise
in the figures, the histograms have been rebinned using 40 bins over
the nonzero part of the histogram. The resulting statistical errors are
about the symbol size. (b) Scaled probability density x,mP(x, 1) vs

x/xrms with Xrms = v/ (xz(z»'

VI. FINITE-N FLUCTUATIONS

So far, we have considered large particle numbers (N > 1).
In the limit N — oo, the integrated density of a given en-
semble of N particles becomes identical to its average over
all noise realizations, i.e., finite-N fluctuations of P, and
the resulting forces are suppressed. In this section, we study
the effects of a finite particle number (ensemble size) N. We
focus on the interaction-dominated regime o < 4/3 because
the forces do not affect the asymptotic behavior in the noise
dominated regime o > 4/3.

Figure 8 presents the mean-squared displacement for
o = 0.7 for particle numbers N = 1,2, 16, and 128. The
mean-squared displacement curve for N = 16 is essentially
indistinguishable from that for N = 128. The same holds
for N =32, and 64 (not shown in the figure for clar-
ity). We conclude that the results for N > 16 represent the
infinite-ensemble limit N — oo. The data for N < 16 show
some deviations from the N — oo behavior. However, all
curves (including the ones for N < 16) asymptotically follow
the same power law (x?) ~ t*/3. This indicates that the process
belongs to the same universality class for all N including
N =1.

— S
us N=128 ™
10 Mo
X N=16 o
6 _ A
10 " N=2 ixa‘u
5 v N: ,,’V‘N
10 o
PA
<10% 4
Re? g
10°} L
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102k
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1005 8 1,1 ) 3 " 3 5
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FIG. 8. Mean-squared displacement (x*>) of FBM with mean-
density interaction vs time ¢ for o« = 0.7, interaction strength A =
1/40 and different particle numbers N. The data are averages over
2048 ensembles (N = 1), 1024 ensembles (N = 2), 128 ensembles
(N = 16), and 16 ensembles (N = 128). The dashed lines are fits of
the long-time behavior for N = 1 and N = 128 with (x?) = ct¥/3.

This can be further illustrated by studying the integrated
density P, for different N. Figure 9 presents the integrated
density at time r =2% ~ 10% for @ =0.7 and particle
numbers N = 1, 2, 16, and 128. (As can be seen in Fig. 8, the
system has reached the asymptotic regime for all N at time
t = 10°.) The densities for N = 16 and N = 128 are almost
indistinguishable and represent the infinite-particle-number
limit. For smaller N, the density broadens, in agreement with
the observation that the mean-squared displacement in Fig. 8
increases with decreasing N at fixed . We have confirmed
that the density Py, fulfills the scaling form (11) for all N
with b(t) ~ %3, providing further evidence that the system
belongs to the same universality class for all N. However, the
shape of the scaling function Y is N-dependent. Analogous
behavior is expected for all « in the interaction-dominated
regime o < 4/3.

200_ N:128 i
x N=16
S N=2
150t N=1
B
& 100t
50t
-8000 -6000 -4000 2000 O 2000 4000 6000 8000
X

FIG. 9. Integrated density P, (x,t) at time t = 2% for o = 0.7,
interaction strength A = 1/40 and different particle numbers N. The
data are averages over 4096 ensembles (N = 1), 2048 ensembles
(N = 2), 256 ensembles (N = 16), and 32 ensembles (N = 128).
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VII. GENERALIZATIONS

In the preceding sections, we have analyzed motion in one
space dimension under the influence of a force that is propor-
tional to the gradient of the integrated density. It is interesting
to ask how the system behaves in higher dimensions and for
other functional forms of the density-dependent force. The
scaling theory of Sec. IV is easily generalized to d space
dimensions and forces that behave as the Ath power of the
gradient of Py (X, t,).

In d dimensions, the scaling form (11) of the integrated
mean density generalizes to

Pin (X, 1) = (26)

t X
—Y|—.
¥ (1) [b(t)}
If we again assume that the length scale b(¢) increases as t°
with unknown §, then the force term behaves as

A

~ phm(d+DEh

If(x,1)| = 'Aiﬁm(x, 1) 27
ox

In the force-dominated regime, the typical displacement is
obtained by integrating this force over time. It is thus expected
to behave as xyy, ~ 17~ (@+D% Self-consistency with the as-
sumption b(t) ~ t° requires 1 + A — (d + 1)1 = §. Solving
for the value of § yields

14+

BTN ERTTE (28)

For d = A = 1, we recover the result of Sec. IV, § = 2/3.

Repeating the arguments at the end of Sec. IV, we conclude
that the motion of FBM with mean-density interaction will
be interaction dominated if the FBM anomalous diffusion
exponent « is smaller than 2§. In this case the mean-squared
displacement is expected to behave as (x?) ~ ¢?. If, however,
o > 24, then the motion will be dominated by the fractional
Gaussian noise leading to (x?) ~ t*. Equation (28) shows
that 6 decreases with increasing space dimensionality d. This
implies that the marginal value of «, below which the inter-
actions dominate over the noise, decreases with increasing
d. The result that the interaction effects are strongest in one
dimension and decrease with increasing d is perhaps not
unexpected as crowding is more easily achieved in lower
dimensions.

Let us specifically consider the cases d = 2 and d = 3 for
linear gradient forces, A = 1. In two dimensions, Eq. (28)
reduces to § = 1/2. This implies that « =26 =1 is the
marginal value of « that separates the noise-dominated and
interaction-dominated regimes in two dimensions. We note
that this agrees with the finding that d =2 is the critical
dimension of the so-called “true” or myopic self-avoiding
random walk [38] discussed in Sec. VIII. Analogously, for
d =3, we find § =2/5 from Eq. (28), implying a critical
a=0.8.

Computer simulations of FBM with mean-density interac-
tion in higher space dimensions require a significantly larger
numerical effort. For this reason, a numerical test of the gen-
eralized scaling theory is relegated to future work.

VIII. CONCLUSIONS

In this paper, we have introduced FBM with mean-density
interaction, a process in which each particle of an ensemble
evolves under the influence of both fractional Gaussian noise
and a force proportional to the gradient of the time-integrated
density of the entire ensemble. This work was motivated by
the recent application of (reflected) FBM to the growth of
serotonergic fibers in vertebrate brains [29-31]. However, we
believe our model to be applicable to a much broader class of
anomalous diffusion processes in which the particles interact
with a (coarse-grained) density of the resulting trajectories.

The present paper has focused on exploring the basic
properties of this stochastic process in one space dimension.
Employing large-scale computer simulations as well as a one-
parameter scaling theory, we have found that the behavior
of unbounded FBM with mean-density interaction falls into
one of two regimes, depending on the value of the exponent
o characterizing the fractional Gaussian noise. For « > 4/3,
the long-time behavior is governed by the fractional Gaussian
noise, and the force terms become negligibly small. Conse-
quently, in this regime, the mean-squared displacement and
the probability density agree with the corresponding quan-
tities of noninteracting FBM for sufficiently long times. For
o < 4/3, in contrast, the long-time behavior of the model is
dominated by the interactions, and the fractional Gaussian
noise only makes subleading contributions. As a result, the
mean-squared displacement grows like 1*3 for all o < 4/3
and the probability density becomes highly non-Gaussian.

The stochastic process introduced in this paper is related to
the so-called “true” or myopic self-avoiding random walk that
was introduced into the physics literature by Amit, Parisi, and
Peliti [38] and further studied in Refs. [47—49]. The myopic
self-avoiding random walk is defined as the problem of a
particle that performs (uncorrelated) random steps on a lattice
but tries to avoid already visited sites. (Note that this process
is different from the usual self-avoiding walk and belongs to a
different universality class [38].) Pietronero [47] showed that
the mean-squared displacement of the myopic self-avoiding
random walk in one dimension behaves as (x?) ~ %3 which
agrees with our result for uncorrelated noise, « = 1. In general
dimension d, Pietronero found (x*) ~ t*/“*2 for d < 2 and
(x?) ~ t for d > 2. This agrees with the results of our gener-
alized scaling theory in Sec. VII for« = 1 and A = 1. We thus
conclude that normal Brownian motion with mean-density
interaction belongs to the same universality class as the my-
opic self-avoiding random walk. Our process constitutes a
generalization of this universality class to fractional noise,
and could therefore also be called “myopic self-avoiding frac-
tional Brownian motion” [50].

Our work suggests many interesting applications and ex-
tensions that may stimulate further research. These include
the questions of higher space dimensions and nonlinear forces
that we have already touched upon in Sec. VII. It is also
interesting to study what happens in applications in which the
particles are attracted rather than repulsed by regions of high
(integrated) density.

One important application is the problem that motivated
the present study, viz., the system of serotonergic fibers
in vertebrate brains. This application not only requires a
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generalization to three dimensions, it also implies simulations
in a complex geometry. We expect a nontrivial interplay be-
tween the mean-density interaction and the reflecting walls
that confine the process in the brain shape (or some other
finite or semifinite region of space). Specifically, we expect
that the interaction will cut off the unphysical divergence of
the density close to the wall observed for (noninteracting)
superdiffusive FBM, potentially providing an improved de-
scription of the fiber system. Due to the high dimensionality
and complex shape, these simulations are expected to require
a huge numerical effort and thus remain a task for future.

Our paper may also have interesting applications in ecol-
ogy. Many animals leave traces (e.g., pheromones) along their
paths which then affect the behavior of other animals. This is
an example of stigmergy, a mechanism of indirect interaction
between agents via their environment [51-54]. Our stochastic
process may provide a basis for modeling stigmergic phenom-
ena. Environmental traces often decay with time, this can be
accounted for via a decaying memory kernel in the interaction,
as discussed in Appendix A.
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APPENDIX A: INTERACTION WITH FINITE
DECAY TIME

In this Appendix, we consider a generalization of FBM
with mean-density interaction to cases in which the influence
of the density at previous times decays with time. This can be
modeled by introducing a memory kernel into the definition
of the integrated density. Specifically, we replace the total
integrated density P (x, t,) = NPy (x, t,) defined in Eq. (5)
with

N

n
Por(x, 1) = Y e/ 3" gl — x0],
m=1

j=1

(AL)

where t, is the decay time. This implies that the effect of past
densities on the current force decays exponentially with time.
The theory developed in the main part of the paper is recov-
ered for t; — oo. It is clear that the decaying memory kernel
weakens the forces compared to the t; = oo case. Thus, the
results for « > 4/3 will not be affected qualitatively by the
memory kernel. For long times the motion will remain to
be noise-dominated with (x?) ~ . In contrast, the long-time
behavior for « < 4/3 (which is force-dominated for 7; = c0)
is expected to change for finite t,.

To analyze this, let us first discuss how the scaling theory
of Sec. IV is modified by this change. We need to distin-
guish times ¢ < 74 and ¢ > 7,4. For short times, ¢ < 14, the
exponential decay factor in Eq. (A1) can be neglected. The re-

TABLE 1. Behavior of the mean-squared displacement (x?) of
one-dimensional FBM with mean-density interaction in the presence
of a finite decay time t,. 7, is the initial crossover time to interaction-
dominated behavior discussed in Secs. III and IV.

o t<Ty T, <t <Ty t>1y
a>4/3 te e 1
2/3 <a <4/3 t* 143 I
a<2/3 1o 43 123

sulting theory is thus identical to the theory of Sec. IV. In one
dimension and for o < 4/3, the mean-squared displacement
is thus expected to behave as (x?) ~ t*/3 for t « 1, (after
the initial crossover at 7, to interaction-dominated behavior
discussed in Secs. III and IV).

For long times, ¢ > 7, the scaling theory changes. Specif-
ically, the scaling ansatz (11) needs to be replaced by

_ [ x
Fiue, £) = b(t)Y[ba)]

because the space integral (normalization) of Py (x, t) is pro-
portional to t, rather than ¢. Following the steps outlined in
Sec. IV yields that the time-dependence of typical force varies
as 12 with time. If these forces dominate over the noise,
then they produce a typical displacement xyy () ~ 1172, Self-
consistency requires that xy, () behaves as b(t). This implies
§=1—-250ré=1/3.

We therefore conclude that a new critical value of «
emerges in the long-time regime ¢ > 7;. For o < 2/3, the
long-time behavior remains force-dominated even after t,,
and the mean-squared displacement increases as (x?) ~ t2/3,
For o > 2/3, the noise dominates over the forces, leading to
(x?) ~ t%. The expected behaviors of the mean-squared dis-
placement in the different regimes of one-dimensional FBM
with mean-density interaction in the presence of a finite decay
time are summarized in Table 1.

To test these predictions of the scaling theory, we have
performed computer simulations of one-dimensional FBM
with mean-density interaction for several values of the de-
cay time 7;. We have focused on the regimes o < 2/3 and
2/3 < o < 4/3 because no change in behavior is expected for
o > 4/3 (where the motion is already noise-dominated in the
absence of the decaying memory kernel).

Figure 10 presents the mean-squared displacements for
o = 0.4 and 1.0 for several values of the decay time ;. To
ensure that the three time regimes predicted by the scaling
theory (see Table I) are well separated, we have chosen a
comparatively strong interaction, A = 1/5, for these simu-
lations. This reduces the crossover time t, from the initial
FBM regime to the interaction-dominated regime. The data
for « = 0.4 (shown in the upper panel of the figure) clearly
feature the three predicted regimes. Initially, for time r < 7, ~
10, the mean-squared displacement follows the FBM relation
(x?) ~ 194 At 1., it crosses over to the interaction-dominated
behavior (x?) ~ ¢*/3 established in the main part of the paper.
After the second crossover at t = t,, the long-time behavior
reaches the second interaction-dominated regime with (x?) ~

(A2)
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FIG. 10. Mean-squared displacement (x?) of FBM with mean-
density interaction vs time ¢ for « = 0.4 and 1.0 with interaction
strength A = 1/5 for several values of the decay time t,. The data
for noninteracting FBM are shown for comparison. The data are
averages over 16 ensembles of 1024 random walkers each. The solid
and dashed lines are power-law fits, for details see text.

t?/3. This can be seen clearly in the figure where the solid line
for 7; = 10 represents a power-law fit with the exponent 2/3.

The data for @« = 1.0 (shown in the lower panel of Fig. 10)
feature similar behavior. For ¢ < 7, = 200, the mean-squared

displacement is governed by the FBM relation (x?) ~ 0.
Force-dominated behavior, (x?) ~ t*3, is observed between
7, and t;. For times ¢t > t;, the behavior becomes noise-
dominated again and crosses back over to (x?) ~ t'*. This
differs for the case of o = 0.4 discussed above where the
long-time behavior remains interaction-dominated.

The computer simulations thus fully confirm the predic-
tions of the scaling theory for both « = 0.4 and o = 1.0.

APPENDIX B: INTEGRATED DENSITY OF FBM

In this Appendix, we sketch the derivation of expression
(24) for the integrated density of (noninteracting) FBM. Equa-
tions (21) and (22) imply that the integrated density simply is
a sum over the (instantaneous) probability densities,

Pu(x, 1) = ) P(x, 1)

m=1
As we are interested in the continuum limit # >> ¢ = 1 (or
n > 1), the sum can be replaced by an integral which reads

(BD)

t
P, 1) = / dtP(x, 7)
0

t

1 x2 )
= | dr———exp(—-2—). B2
0o 2molte P ( 202t

Substituting z = x?/(20>1%) leads to

|x|2/rx—1

= /w —l/a—l/Ze—z
an1/2(202)1/0‘ x2/(2021%)

Pp(x, 1) = dzz

(B3)

The integral over z yields the upper incomplete I" function,
which concludes the derivation of Eq. (24). It is worth em-
phasizing that expression (24) fulfills the scaling form (11)
with b(t) = xms(t) = ot%/2. This can be seen explicitly by
rewriting Eq. (24) as

t X
Pule.t) = —— ¥ (—5). (B4)
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