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The diversity of diffusive systems exhibiting long-range correlations characterized by a stochastically
varying Hurst exponent calls for a generic multifractional model. We present a simple, analytically tractable
model which fills the gap between mathematical formulations of multifractional Brownian motion and
empirical studies. In our model, called telegraphic multifractional Brownian motion, the Hurst exponent is
modeled by a smoothed telegraph process which results in a stationary beta distribution of exponents as
observed in biological experiments. We also provide a methodology to identify our model in experimental
data and present concrete examples from biology, climate, and finance to demonstrate the efficacy of our
approach.
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When creating the mathematical basis of the theory of
locally homogeneous isotropic turbulence [1], Kolmogorov
introduced a new class of random processes called “Wiener
spirals,” which are Gaussian self-similar processes with
stationary, power-law correlated increments [2,3]. The
theory of Wiener spirals has received further development
in mathematical literature [4–6]; however, the theory
remained almost unknown to a broader scientific commu-
nity until 1968, when Mandelbrot and van Ness [7]
presented an explicit integral representation for such
process that they called “fractional Brownian motion”
(FBM). FBM has become a paradigmatic example of a
Gaussian random process whose scaling properties are
characterized by a unique index H called Hurst exponent
(0 < H < 1) [8]. It exhibits persistent behavior (i.e.,
supporting the existing tendency) when 1=2 < H < 1,
and antipersistent behavior (supporting the opposite ten-
dency) when 0 < H < 1=2. In anomalous diffusion theory
the diffusion exponent characterizing the time dependence
of the mean squared displacement (MSD) for FBM equals

2H, thus reflecting either fast (super-), or slow (sub-)
diffusion for H > 1=2 and H < 1=2, respectively [9–12].
The case H ¼ 1=2 corresponds to ordinary Brownian
motion, or the Wiener process BðtÞ [9]. Numerous phe-
nomena exhibiting FBM-like behavior were found in
diverse fields, from telecommunications, engineering
[13,14], and image processing [15] to astrophysics [16],
climate [17,18], underground water transport [19], and
from movement ecology [20,21], intracellular motion
[11,22,23], and paths of nerve fibers [24] to financial
mathematics [8,25].
However, both hallmarks of FBM, power-law correla-

tions and self-similarity, imply strong idealizations which
often are not realized in practice. As a generalization of
FBM, multifractional Brownian motion (MBM) was intro-
duced in the mathematical literature: a random process
characterized by a function HðtÞ which can be either
deterministic or random [26–33]. Indeed, in many exper-
imental observations there is evidence that the Hurst
exponent H randomly varies from realization to realization
or even along a single sample path. Such doubly stochastic
behavior was observed in financial data [34–36], segmen-
tation of images [37], pollution data [38], and recently in
several single-particle tracking (SPT) experiments [39–54].
Therefore, it is likely a generic feature of a certain class of
systems. However, to the best of our knowledge, there is an
absence of generic analytical models of MBM to compare
with the empirical observations.

*Contact author: thapa@pks.mpg.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 134, 197101 (2025)

0031-9007=25=134(19)=197101(9) 197101-1 Published by the American Physical Society

https://orcid.org/0000-0003-3637-5501
https://orcid.org/0000-0002-4340-5900
https://orcid.org/0000-0002-1754-4472
https://orcid.org/0000-0001-6921-6094
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0001-9750-1351
https://orcid.org/0000-0002-3803-1174
https://ror.org/008fyn775
https://ror.org/01bf9rw71
https://ror.org/0022nd079
https://ror.org/03bnmw459
https://ror.org/0095xwr23
https://ror.org/00183pc12
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.197101&domain=pdf&date_stamp=2025-05-12
https://doi.org/10.1103/PhysRevLett.134.197101
https://doi.org/10.1103/PhysRevLett.134.197101
https://doi.org/10.1103/PhysRevLett.134.197101
https://doi.org/10.1103/PhysRevLett.134.197101
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this Letter we aim at filling the gap between
mathematical formulations of MBM with random Hurst
exponent and experiments by introducing telegraphic
multifractional Brownian motion (TeMBM), a simple
generic analytical model mimicking smooth variations of
the Hurst exponent along the sample path. We provide a
methodology to distinguish between three classes of power-
law correlated random processes, namely FBM (with fixed
Hurst exponent), FBM with Hurst exponent varying
between different realizations, and TeMBM. We present
examples from biology, climate, and finance to demonstrate
the efficacy and applicability of our approach.
We define MBM with random Hurst exponent via the

spectral representation [27–29,31]

BHðtÞ ¼ CðHðtÞÞ
Z

∞

−∞

eiωt − 1

jωjHðtÞþ1=2
dBðωÞ; t ≥ 0; ð1Þ

where dBðωÞ is “the Fourier transform” of the white noise
dBðtÞ with hdBðω1ÞdBðω2Þi ¼ δðω1 þ ω2Þdω1dω2 [33],
and HðtÞ is a stationary process which is independent
of BðtÞ. Its probability density function (PDF) pðhÞ is
defined on the interval 0 ≤ h ≤ 1. The prefactor CðHðtÞÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2HðtÞ þ 1Þ sinðπHðtÞÞp

=
ffiffiffiffiffiffi
2π

p
is chosen such that the

MSD conditional on HðtÞ is hðBHðtÞ − BHð0ÞÞ2i ¼ t2HðtÞ.
The autocovariance function (ACVF) of BHðtÞ condi-

tional on HðtÞ thus takes the form

hBHðtÞBHðsÞi ¼ DðHðtÞ;HðsÞÞ�tHðtÞþHðsÞ þ sHðtÞþHðsÞ�
−DðHðtÞ;HðsÞÞjt − sjHðtÞþHðsÞ; ð2Þ

where the function Dðx; yÞ is defined as (see Sec. I in
Supplemental Material [55] for more details)

Dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2xþ 1ÞΓð2yþ 1Þ sinðπxÞ sinðπyÞp

2Γðxþ yþ 1Þ sinðπðxþyÞ
2

Þ
: ð3Þ

Note that if HðtÞ is constant, Eq. (2) reduces to the well-
known ACVF which uniquely defines the Kolmogorov-
Mandelbrot FBM. The PDF of BHðtÞ is given by

Pðx; tÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞

exp f−x2=ð2t2hÞg
th

pðhÞdh; ð4Þ

where pðhÞ is defined below.
To go further we need to specify the process HðtÞ. Here

we propose to model the temporal variability of the Hurst
exponent with a stationary smoothed telegraph process
defined through the stochastic differential equation

dHðtÞ
dt

¼ −HðtÞ þHTPðtÞ
τ

; ð5Þ

where τ is the relaxation time and HTPðtÞ is a tele-
graph process, i.e., a stationary dichotomic Markov process
that jumps between the two values H1 and H2,

0 ≤ H1 < H2 ≤ 1, with mean rates λðH1 → H2Þ ¼ λ12
and λðH2 → H1Þ ¼ λ21. We call the resulting process
BHðtÞ TeMBM. We note that the telegraph process and
its extensions are useful to model financial market dyna-
mics [62–65] as well as the dynamics in biological systems,
for example, gene expression [66,67] or when myosin
motors exert contractile forces on the cytoskeleton network
[68–72]. Our proposed choice of HðtÞ is advantageous for
several reasons. Formally, it results in bounded and smooth
variations of the random Hurst exponent. Furthermore, in
the stationary state the PDF is given by the beta distribution
(see [73] and Sec. II in Supplemental Material [55])

pðhÞ ¼ ðh −H1Þλ12τ−1ðH2 − hÞλ21τ−1
ðH2 −H1Þ2λτ−1Bðλ21τ; λ12τÞ

; ð6Þ

where H1 ≤ h ≤ H2, λ ¼ ðλ12 þ λ21Þ=2 and Bðx; yÞ is the
beta function. As can be seen from Eq. (6), this distribution
has four typical shapes (see Fig. 1 in Supplemental Material
[55]), which ensures sufficient flexibility for different
applications. Remarkably, the PDFs of the Hurst exponent
extracted from soft matter [42] and biological [47] exper-
imental data were previously fitted with the bell-shaped
unimodal beta distribution with λ12τ; λ21τ > 1 [74]. In what
follows we basically restrict ourselves to such a shape,
however for the sake of comparison we also study the
bimodal case corresponding to λ12τ; λ21τ < 1. Notably, a
bimodal distribution of the Hurst exponents were reported
in biological SPT experiments [48]. The mean of HðtÞ is
given by

hHðtÞi ¼ H1λ21 þH2λ12
2λ

; ð7Þ

while the ACVF is a combination of exponentials (see, e.g.,
[73] and Sec. III in Supplemental Material [55]),

hðHðtÞ − hHðtÞiÞðHðsÞ − hHðsÞiÞi

¼ λ12λ21ðH2 −H1Þ2
4λ2ð4λ2τ2 − 1Þ

�
2λτe−jt−sj=τ − e−2λjt−sj

�
: ð8Þ

We note that other choices of HðtÞ, for instance the
Ornstein-Uhlenbeck process or the squared Ornstein-
Uhlenbeck process, also result in an exponentiallike decay
of the ACVF (see Sec. IX in Supplemental Material [55]).
However, unlike the smoothed telegraph process, for those
choices ad hoc boundary conditions need to be specified so
that H remains bounded. Moreover, our choice is physi-
cally motivated due to the resultant stationary beta dis-
tribution ofH and its flexibility to account for both uni- and
bimodal distributions.
In Fig. 1(a) we show exemplary trajectories of HðtÞ,

while in Fig. 1(b) we demonstrate the corresponding
TeMBM trajectories. In addition, we present sample
trajectories of FBM with three different Hurst exponents.
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The simulation algorithms to generate the trajectories of
HðtÞ and BHðtÞ are presented in Sec. IV in Supplemental
Material [55]. The intermittent behavior of the trajectory
BHðtÞ in the bimodal case is contrasted with that of the
unimodal case. Indeed, it might be difficult to visually
distinguish TeMBM in the unimodal case from FBM [see,
e.g., the blue curve vs the pink curve in Fig. 1(b)].
FBM with random Hurst exponent (FBMRE) is a special

case of MBM such thatHðtÞ is constant for each trajectory
but changes randomly from trajectory to trajectory. Such an
approach is in the spirit of superstatistics [75,76]. The
properties of FBMRE with a beta distribution of the Hurst
exponent were investigated in [74]. Apparently, the PDF
and MSD of such FBMRE and TeMBM are the same for
stationary HðtÞ.
While analyzing stochastic time series, how can one

distinguish TeMBM from the hierarchically lower level
processes, namely, FBM and FBMRE, all of which exhibit
power-law correlations? Before addressing this issue we
suggest a method that allows the estimation of the random

Hurst exponent from the time averaged mean squared
displacement (TAMSD). We recall, for a time series
X ¼ fX1; X2;…; XNg, where Xi ¼ XðtiÞ are the observa-
tions recorded at time ti, the TAMSD is defined as

δ2ðΔÞ ¼ 1

N − Δ

XN−Δ

j¼1

ðXjþΔ − XjÞ2; ð9Þ

where Δ is the lag time. This widely used observable is
routinely measured, e.g., in SPT experiments [12]. In the

case of FBM and FBMRE the TAMSD behaves as δ2ðΔÞ ∝
Δ2H [77,78], where H is the Hurst exponent of the
trajectory for which the TAMSD is computed. Therefore,
H can be estimated as the slope of the log-log plot of
TAMSD vs lag time. By segmenting a trajectory into
multiple segments with overlapping length, we extend this
procedure also to obtain estimates of the Hurst expo-
nent that changes along the trajectory (see Sec. V in
Supplemental Material [55]). Figure 2 validates this

(a) (b)

FIG. 1. (a) Single trajectories of HðtÞ with the following parameters: λ12 ¼ 1, λ21 ¼ 1.5, τ ¼ 3 (unimodal), τ ¼ 1
4
(bimodal), and the

levels H1 ¼ 0.1, H2 ¼ 0.8. Insets: the corresponding PDFs given by Eq. (6). (b) Single trajectories corresponding to (from top to
bottom) TeMBM (unimodal case), TeMBM (bimodal case), FBM with H ¼ 0.1, FBM with H ¼ 0.4, and FBM with H ¼ 0.8. The
individual trajectories are shifted with respect to each other for better visibility.

(a) (b)

FIG. 2. PDFs of estimated values of the Hurst exponent for (a) unimodal case, (b) bimodal case. The parameters are the same as used in
Fig. 1. See text for details.
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approach. More precisely, it shows that for both the uni-
modal [Fig. 2(a)] and bimodal [Fig. 2(b)] cases the
distribution of estimated Hurst exponents from simulated
TeMBM trajectories (“TeMBM”) agrees well with the
distribution (“Simulated”) of the ground truth values of
Hurst exponents which generated the simulated trajectories,
and also agrees with the analytical stationary distribution
(“Analytical”).
To distinguish the processes we analyze the sample

ACVF (calculated for sample trajectories) of the estimated
Hurst exponents (see Sec. VI in Supplemental Material
[55]). For FBM, the Hurst exponent is a constant value for
each time point, resulting in a zero ACVF of the Hurst
exponent. In the case of FBMRE, for each trajectory the
Hurst exponent takes on a random value, thereby resulting
in a constant, nonzero ACVF equal to the variance of H.
Finally, for TeMBM, the Hurst exponent is the smoothed
telegraph process and the corresponding ACVF is given by
a decaying function [see Eq. (8)]. Importantly, this clas-
sification procedure is applicable for discerning any MBM
process from FBMRE and FBM.
Figure 3(a) demonstrates the utility of this scheme for

simulated TeMBM (unimodal case), FBMRE (unimodal
case), and FBM trajectories. The parameters are the same as
in Fig. 1. The dashed black vertical line at Δ̃ ¼ 1 depicts
the value of the lag time Δ normalized by the segment
length used in the algorithm (see Sec. VI in Supplemental
Material [55]). We note that although segmentation is not
required to estimate the Hurst exponent from FBM and
FBMRE trajectories, in our analysis we follow the same
procedure for all trajectories without a priori assuming the
underlying model. Indeed, as expected, the ACVF of the
estimated Hurst exponents saturates at the zero level for
FBM, saturates at a constant, nonzero value for FBMRE,
while it decays exponentially in the case of TeMBM for the

chosen values of the parameters. Although the TAMSD-
based method slightly underestimates the ACVF of H for
FBMRE and TeMBM, Fig. 3(a) shows that the simulation
results are very close to the analytical expressions.
In Fig. 3(b) we present the results of the classification

procedure applied to different experimental datasets.
Dataset 1 consists of the time series of the cumulative
sum of temperature anomalies obtained from mean daily
temperature data, in the period from 1955-01-01 to 2020-
12-31, collected at 10 different meteorological stations in
Germany [79,80]. Temperature anomalies are the devia-
tions of the daily temperature at a given calendar day of the
year from the average daily temperature at that particular
calendar day, where the average is over all years consid-
ered, i.e., from 1955 to 2020 [81]. Dataset 2 are trajectories
of quantum dots tracked in the cytoplasm of mammalian
cells [47] and dataset 3 consists of trajectories of micron-
sized beads tracked in mucin hydrogels at acidic conditions
(pH ¼ 2) and with zero salt concentration [42]. Dataset
4 corresponds to the day-ahead electricity price in the
year 2022 from the bidding zone between Germany and
Luxembourg [82]. “Bidding zone” here refers to the
largest area or region within which electricity producers
and consumers submit their bids and offers without any
technical constraints. We refer to Sec. VII in Supplemental
Material [55] for details on these datasets, and particularly
how ensembles of trajectories are created in case of dataset
1 and dataset 4. Figure 3(b) shows that for dataset 1 the
sample ACVF of the estimated Hurst exponents is around
zero, which we also observe for FBM trajectories in
Fig. 3(a). This FBM-like behavior is consistent with
previous analyses of such daily temperature data [17,83].
For dataset 2 and dataset 3 one can see that the sample
ACVFs for the estimated Hurst exponents stabilize at some
nonzero levels, which indicates the correspondence of these

(a) (b)

FIG. 3. (a) Sample ACVFs as function of the rescaled lag time Δ̃ for the estimated Hurst exponent from 5,000 trajectories of TeMBM
(unimodal case), FBMRE (unimodal case) and FBM with H ¼ 0.1. The parameters of the processes are the same as used in Fig. 1 (see
the figure caption for more details). Note that the analytical expression of ACVF for TeMBM is given by Eq. (8) which, upon setting
t ¼ s, also gives the analytical expression of ACVF for FBMRE with beta-distributed H. (b) Results of the process-distinguishing
procedure for real data sets. The shaded regions in both (a) and (b) correspond to 95% confidence intervals. See text for a description of
the datasets.
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datasets to the FBMRE case. This is consistent with the
results presented in [74], where we identified beta distri-
butions for the estimated Hurst exponents. For the elec-
tricity prices in dataset 4, we clearly see the decay of the
sample ACVF of the estimated Hurst exponents, which
indicates the multifractional case. In Fig. 3(b) we present
the sample ACVF with the first observation on Wednesday.
In Fig. 2 in Supplemental Material [55] we show similar
results for other starting points which highlights the robust-
ness of the results with regard to the choice of the
starting point.
One may ask why it is necessary to distinguish between

the three classes of processes. With regards to SPT experi-
ments, FBM with fixed Hurst exponent describes the
dynamics of identical particles in homogeneous, viscoelas-
tic media. FBMRE corresponds either to the dynamics of a
heterogeneous ensemble of non-identical particles [44,46]
or the dynamics in a heterogeneous medium when each
particle moves in a domain characterized by its own
microstructure properties [41,84,85]. However, the most
general cases, which can be mimicked by TeMBM,
correspond to media or particle properties that vary in
time, or to the situation when a tracked particle explores a
large spatial domain characterized by different Hurst
exponents. TeMBM is sufficiently generic to describe
the case of stochastically varying Hurst exponents while
resulting in the observed beta distribution. For experiments
with identical particles, distinguishing between FBMRE
and TeMBM allows us to separate fluctuations of the
environment in time and in space.
As for financial applications, estimates of the Hurst

exponent often strongly suggest that a single parameter
representing the long-term dependence is insufficient to
capture the intricacies of the price evolution. The consid-
erable variation in estimates can be succinctly explained by
assuming that the degree of correlations undergoes fluctu-
ations over time [35,86]. This contradicts the efficient
market hypothesis (EMH) which, within the paradigm of
an ordinary Brownian setting, dictates that market prices
incorporate all available information instantaneously
[87,88]. Indeed, as a consequence, this has led to the
development of qualitative models such as behavioral
finance [89,90], which is based on the study of psycho-
logical influence on the behavior of market practitioners, or
adaptive market hypothesis [91], which relies on the
concepts of evolutionary biology. Our proposed model
could serve as a quantitative tool complementary to the
qualitative models. It could allow the analytical assessment
of how much the market prices deviate from EMH at any
given time. Fluctuations of HðtÞ at the same time could
describe the different market consequences and the invest-
ors’ beliefs [35]. Indeed HðtÞ can be understood as the
weight assigned at a given time t by an investor to past
prices: HðtÞ ¼ 1=2 indicates an efficient market, HðtÞ >
1=2 is indicative of a market whose future prices strongly

depend on past prices and reacts slowly to new informa-
tion (underreaction), while HðtÞ < 1=2 denotes the
belief that future prices will contradict the current prices
and the market reacts strongly to new information
(overreaction) [35].
Going back to physical systems, we note that TeMBM

cannot account for all possible physical mechanisms and
manifestations of heterogeneity. Our assumption that HðtÞ
is a stationary process independent of BðtÞ ensures that the
resultant TeMBM is self-similar (see Theorem 4.1 in [30]),
but restricts its applicability to model aging dynamics
[92,93]. It is nevertheless an important step in the direction
of research focused on the comprehension and implications
of heterogeneity in SPT experiments which started with the
seminal articles on Brownian yet non-Gaussian diffusion
[94,95] and the subsequent development of models with
diffusing diffusivity [96–108]. More advanced models
should combine stochastic diffusivity with stochastic
Hurst exponent. Moreover, while in this Letter we consider
a class of self-similar, power-law correlated processes, in
light of the apparent heterogeneity in a wide variety of
systems exhibiting anomalous diffusion, there is a need to
generalize relevant anomalous diffusion models to include
stochastic parameters [109,110]. When establishing such
generalizations, some care needs to be taken how the time
dependence of the Hurst exponent and the diffusivity are
incorporated, as shown for FBM-type processes with deter-
ministic protocols [47,111–113]. Concurrently, advanced
data analysis methods such as those based on Bayesian
statistics [114–116] or machine learning [117–119] need to
be developed to identify the best model given some
empirical data.
To summarize, we propose a generic, relatively simple

analytical model of the multifractional process, namely
telegraphic multifractional Brownian motion, that describes
the temporal fluctuations of the system during its evolution.
The Hurst exponent of this motion undergoes the smoothed
telegraph process whose stationary PDF is given by the
beta distribution. Such a choice is in agreement with Hurst
exponent PDFs obtained in bio- and soft-matter experi-
ments. We provide a methodology to distinguish between
three classes of power-law correlated random processes,
namely FBM (with fixed Hurst exponent), FBM with Hurst
exponent varying between different realizations, and tele-
graphic multifractional Brownian motion. The examples of
the processes taken from biology, climate, and finance
illustrate the effectiveness of our approach.
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