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Abstract
We study the generalised Langevin equation (GLE) approach to anomalous dif-
fusion for a harmonic oscillator and a free particle driven by different forms of
internal noises, such as power-law-correlated and distributed-order noises that
fulfil generalised versions of the fluctuation-dissipation theorem. The mean
squared displacement and the normalised displacement correlation function
are derived for the different forms of the friction memory kernel. The corres-
ponding overdamped GLEs for these cases are also investigated. It is shown
that such models can be used to describe anomalous diffusion in complex
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media, giving rise to subdiffusion, superdiffusion, ultraslow diffusion, strong
anomaly, and other complex diffusive behaviours.

Keywords: anomalous diffusion, generalized Langevin equation,
mean squared displacement, correlation functions

1. Introduction

The behaviour of a test particle of mass m, that is coupled to a thermal bath of temperature,
T, can be described by Newton’s second law for a particle in the presence of a deterministic
external potential V(x) and a stochastically varying force ξ(t). When the friction acting on
the test particle is given by the constant value γ0, the resulting dynamic is described by the
standard Langevin equation for a Brownian particle [1–3],

mẍ(t)+mγ0ẋ(t)+
dV(x)
dx

= ξ (t) , ẋ(t) = v(t) , (1)

where x(t) is the particle displacement and v(t) is its velocity. The stochastic force, i.e. the
‘noise’, ξ(t) is Gaussian, has zero mean, and is white such that its autocovariance is δ-
correlated, ⟨ξ(t+ t ′)ξ(t)⟩= mkBTγ0δ(t ′) with thermal energy kBT. The mean-squared dis-
placement (MSD) encoded in the stochastic equation (1) scales quadratically (‘ballistically’)
at short times, at which it is dominated by inertial effects, and then crosses over to a linear
time dependence beyond the characteristic time scale 1/γ0.

In the following, we will consider generalisations of the stochastic equation (1) that include
‘memory’, by which we mean non-localities in time. A simple example giving rise to memory
is the Brownian harmonic oscillator (‘Ornstein-Uhlenbeck process’)

ẋ(t) = v(t) , mv̇=−mω2x(t)−mγ0v(t)+ ξv (t) , (2)

where ξv(t) is zero-mean white Gaussian noise. The subscript v denotes that this noise appears
in the equation for v̇(t). On purpose, we here use the phase space notation explicitly keeping
the velocity v(t) in the second equation. Suppose that v(0) = 0, so that we can integrate the
second equation from t= 0, yielding

v(t) =
ˆ t

0
e−γ0(t−t ′) (−ω2x(t ′)+ ξv (t

′)/m
)
dt ′. (3)

Substituting this result back into the first equation in (2), we find

ẋ(t) =−
ˆ t

0
K(t ′)x(t− t ′)dt ′ + ξx (t) , (4)

where we defined the memory kernel K(t) and the positional friction ξx(t),

K(t) = ω2e−γ0t, ξx (t) =
1
m

ˆ t

0
e−γ0t

′
ξv (t− t ′)dt ′. (5)

At sufficiently long times t≪ 1/γ0 (or when we start the process at t=−∞) the Ornstein-
Uhlenbeck process reaches equilibrium and satisfies the fluctuation–dissipation theorem
⟨ξx(t)ξx(t ′)⟩ ∼ ⟨x2⟩eqK(|t− t ′|) with the thermal value ⟨x2⟩eq = kBT/(mω2).

From our result (4), which is characterised by an exponential memory, one thus cannot
conclude that the underlying Ornstein–Uhlenbeck process is non-Markovian. However, we
showed a general property: namely, when integrating out Markovian degrees of freedom,
memory effects in the resulting equation for the test particle of interest emerges [2]. Indeed,
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much more pronounced memories, such as power-law forms, can be affected by eliminating a
quasi-continuum of Markovian degrees of freedom, see, e.g. [2, 4–6].

For a general friction memory kernel γ(t) the dynamics of a stochastic process is described
in terms of the generalised Langevin equation (GLE) [2]

mẍ(t)+m
ˆ t

0
γ (t− t ′) ẋ(t ′)dt ′ +

dV(x)
dx

= ξ (t) , ẋ(t) = v(t) . (6)

The second fluctuation-dissipation theorem (FDT) is then valid in a thermal bath of temper-
ature T, where fluctuations and dissipation come from the same source. The FDT relates the
friction memory kernel γ(t) with the correlation function ξ(t) of the random force [2, 7, 8].
The FDT allows one to write

⟨ξ (t+ t ′)ξ (t ′)⟩= C(t) = kBTγ (t) . (7)

Here the friction memory kernel is assumed to satisfy [9]

lim
t→∞

γ (t) = lim
s→0

sγ̂ (s) = 0, (8)

where the hat denotes the Laplace transform of γ(t), i.e. γ̂(s) = L {γ(t);s}=
´∞
0 γ(t)e−stdt.

We note that when the noise is external in the sense of Klimontovich [10], i.e. the noise is
not provided by a heat bath in a non-equilibrium systems, the relation (7) does not hold and
⟨ξ(t)ξ(t ′)⟩= C(t− t ′) is used instead. When we again consider the harmonic oscillator and
use the unit mass m= 1 (i.e. V(x) = ω2x2/2), then (6) can rewritten in the form [11]

x(t) = ⟨x(t)⟩+
ˆ t

0
G(t− t ′)ξ (t ′)dt ′, v(t) = ⟨v(t)⟩+

ˆ t

0
g(t− t ′)ξ (t ′)dt ′, (9)

where

⟨x(t)⟩= x0
[
1−ω2I(t)

]
+ v0G(t) , ⟨v(t)⟩= v0g(t)−ω2x0G(t) (10)

are the average particle displacement velocity, respectively, given the initial conditions x0 =
x(0) and v0 = v(0). Moreover, we introduced the so-called relaxation functions G(t), I(t) =´ t
0G(ξ)dξ and g(t) =

dG(t)
dt , which in the Laplace space read

Ĝ(s) =
1

s2 + sγ̂ (s)+ω2
, ĝ(s) = sĜ(s) , and Î(s) = s−1Ĝ(s) . (11)

These functions are used to calculate the following four fundamental quantities:

(i) the MSD [9]

⟨x2 (t)⟩= 2kBTI(t) = 2kBT
ˆ t

0
G(ξ)dξ; (12)

(ii) the diffusion coefficient D(t) = 1
2
d⟨x2(t)⟩

dt that, due to relation (12) can be expressed as

D (t) = kBTG(t) = kBT
dI(t)
dt

, (13)

compare the proof of relation (13) for the GLE in the free-force case in [8, 12];
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(iii) the normalised displacement autocorrelation function (DACF), that can be experimentally
measured which under the initial conditions ⟨x20⟩= kBT/ω2, ⟨x0v0⟩= 0, and ⟨ξ(t)x0⟩= 0,
can be represented as [13, 14]

CX =
⟨x(t)x0⟩
⟨x20⟩

= 1−ω2I(t) = 1−ω2
ˆ t

0
G(ξ)dξ. (14)

Different DACFs for fractional GLE are studied in [14];
(iv) the normalised velocity autocorrelation function (VACF) [9]

CV (t) =
⟨v(t)v0⟩
⟨v20⟩

= g(t) =
dG(t)
dt

=
d2I(t)
dt2

. (15)

In the large friction limit, we neglect the inertial term mẍ(t), and the resulting overdamped
GLE (6) has the formˆ t

0
γ (t− t ′) ẋ(t ′)dt ′ +

dV(x)
dx

= ξ (t) , ẋ(t) = v(t) . (16)

The solution of this overdamped equation is of particular interest due to its application in
modelling the anomalous dynamics of colloidal (micron-sized) test particles or the longer-
time internal motion of proteins. Large friction, which appears due to the liquid environment
means that the acceleration ẍ(t) is negligible in comparison to the effect of the friction term.
Single-particle tracking of colloidal particles in an optical tweezers trap [15–19] or the internal
motion of proteins can be considered as the effective motion in an harmonic potential [20, 21],
the motion is described by the GLEˆ t

0
γ (t− t ′) ẋ(t ′)dt ′ +mω2x(t) = ξ (t) , ẋ(t) = v(t) . (17)

The relaxation functions in the overdamped limit read

Go (t) = L −1

[
1

sγ̂ (s)+ω2
; t

]
, go (t) = L −1

[
s

sγ̂ (s)+ω2
; t

]
,and

Io (t) = L −1

[
s−1

sγ̂ (s)+ω2
; t

]
. (18)

For the case of a white Gaussian form for the noise ξ(t) the GLE (6) corresponds to the
classical overdamped Ornstein-Uhlenbeck process with friction coefficient γ0. In the force-
free case this further reduces to the Langevin equation (1) for a force-free Brownian particle.
At times t≫ 1/γ0 the MSD is then given by ⟨x2(t)⟩ ∼ 2[kBT/(γ0m)]t, and thus the diffusion
coefficient becomes D = limt→∞⟨x2(t)⟩/(2t) = kBT/(mγ0), whose physical dimensions are
[D] = length2 time−1. The latter result for the diffusion coefficient of a Brownian particle in
fact represents the Einstein-Smoluchowski-Sutherland relation [22–25].

Different forms for the friction memory kernel, particularly power-law forms [8, 9, 26–29]
and Mittag–Leffler (ML) forms [11, 13, 14, 30, 31] have been introduced to model anomalous
diffusion, for which the MSD scales non-linearly in time,

⟨x2 (t)⟩= 2Dµ

Γ(1+µ)
tµ, (19)
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where Dµ is the generalised diffusion coefficient with physical dimension [Dµ] =
length2 time−µ, and where α is the anomalous diffusion exponent. We distinguish the cases of
subdiffusion (0< µ < 1) and superdiffusion (1< µ) [32]. Anomalous diffusion of this power-
law form occurs in a multitude of systems across many scales [33–38] and it is non-universal
in the sense that the MSD (19) for a given µ may emerge from a range of different anomalous
stochastic processes [39–44]. We also mention that anomalous diffusion based on the GLE
with crossovers to a different µ exponent or normal diffusion can be modelled in terms of
tempered power-law kernels as introduced in [45] and applied to the anomalous diffusion of
lipids in bilayer membranes [46]. Similar crossovers can be achieved in terms of formulations
with distributed-order kernels as discussed below. We also note that non-Gaussian processes
with power-law correlated noise was shown to emerge from a superstatistical approach based
on the GLE [47, 48] and interactions of GLE dynamics with reflecting boundaries were ana-
lysed in [49].

In previous work [29] we considered the GLE for a free particle driven by a mixture of N
independent internal white Gaussian noises

ξ (t) =
N∑
i=1

αi ξi (t) , (20)

such that each has zero mean, ⟨ξi(t)ξj(t ′)⟩= 0 and correlation

⟨ξi (t)ξi (t ′)⟩= δij ζi (t
′ − t) , (21)

where δij is the Kronecker-δ. The correlation function of the additive noise ξ(t) is then [29],
see also [50],

⟨ξ (t)ξ (t ′)⟩=

⟨
N∑
i=1

αi ξi (t)
N∑
j=1

αj ξj (t
′)

⟩
=

N∑
i=1

α2
i ⟨ξi (t)ξi (t ′)⟩. (22)

From the second FDT (7) we thus see that the noise fulfils

N∑
i=1

α2
i ζi (t) = kBTγ (t) , (23)

where γ(t) is the associated friction memory kernel. In [29] the GLE with internal noises
of Dirac-δ, power-law and ML types were analysed, and various different diffusive regimes
obtained. Moreover, it was shown that friction memory kernels of distributed order can be
used to describe ultraslow diffusion with a logarithmic time dependence of the MSD. In what
follows we consider a stochastic harmonic oscillator driven by a mixture of internal noises,
from which we recover the results for a free particle in the limit of vanishing force constant.
The purpose of introducing a mixture of different noises is due to some experimental obser-
vations, showing that two types of noise are needed to model the motion of a tracked particle
in intracellular transport in biological cells [16, 51, 52].

Here we analyse the MSD and DACF for different forms of the friction memory kernel.
In section 2 we specify the GLE approach to anomalous diffusion. We analyse the relaxation
functions, MSD, and DACF for Dirac-δ, power-law, and combinations friction kernels. The
corresponding overdamped limits are analysed and the force-free limit recovered. Distributed-
order friction memory kernels are considered in section 3. It is shown that such kernels yield
ultraslow diffusion, strong anomaly, and other complex behaviours. The overdamped motion
of a harmonic oscillator driven by distributed-order noises is investigated in detail. A summary
is presented in section 5.
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2. GLE in presence of white and power-law noises

We study the GLE for both white and power-law noises and their combinations. At the end of
this section, we also derive the overdamped limit.

2.1. Additive white noises

The simplest case of the GLE is obtained for a test particle connected to a thermal bath of tem-
perature T effecting N additive internal white Gaussian and zero-mean noises, equation (20),
in which each component fulfils ζi(t) = δ(t) (i.e. ζ̂i(s) = 1). Physically such a joint noise may
stem from an environment with different components. As we assume that the noise is internal,
from the second FDT we conclude that the friction memory kernel is given by

γ̂ (s) =
N∑
i=1

α2
i

kBT
(24)

in Laplace space. From relation (11), we obtain the relaxation function G(t) in the form

G(t) = L −1

{
1

s2 +κs+ω2
; t

}
=

2√
κ2 − 4ω2

exp
(
−κt

2

)
sinh

( t
2

√
κ2 − 4ω2

)
, (25)

where κ=
∑N

i=1α
2
i /(kBT)> 2ω. The limit ω= 0 leads to the known result G(t) = [1−

exp(−κt)]/κ [29], i.e. a constant diffusion coefficient in the linear time dependence of the
MSD on time in the long time limit (t→∞),

⟨x2 (t)⟩ ∼ 2Dt, where D =
(kBT)

2∑N
i=1α

2
i

. (26)

We note that in the short time limit G(t)∼ t, leading to ⟨x2(t)⟩ ∼ t2, which means ballistic
motion. Writing κ= 2ωc in terms of the compound frequency ωc =

∑N
i=1α

2
i /(2kBT), then

D(t) = texp(−ωct), and the MSD is given by

⟨x2 (t)⟩= ω−2
c

[
1− (1+ωct)e

−ωct
]
. (27)

Therefore, the relaxation function I(t) from (14) with I(t) = ω−2 [1−CX(t)] is defined in
terms of

CX (t) = e−κt/2

[
cosh

( t
2

√
κ2 − 4ω2

)
+

κ√
κ2 − 4ω2

sinh
( t
2

√
κ2 − 4ω2

)]
. (28)

With our notation κ= 2ωc it is given by CX(t) = (1+ωct)e−ωct. The case κ < 2ω, i.e. the case
of underdamped motion, yields in the form

CX (t) = e−κt/2

[
cos
( t
2

√
4ω2 −κ2

)
+

κ√
4ω2 −κ2

sin
( t
2

√
4ω2 −κ2

)]
. (29)

Thus, the MSD in the long time limit approaches the equilibrium value ⟨x2(t)⟩eq = 2kBT/ω2.
A graphical representation of the NDCF CX(t) is given in figure 1. From panel (a) we conclude
that in the overdamped case, the NDCF shows a monotonic decay to zero, without zero cross-
ings. The underdamped case shows oscillatory behaviour of CX(t) with zero crossings (panels
(b) and (c)), where oscillations become more pronounced for increasing oscillator frequency.

6



J. Phys. A: Math. Theor. 57 (2024) 235004 Z Tomovski et al

Figure 1. Normalised displacement correlation function for κ= 1: (a) overdamped
motion κ > 2ω (28), ω = ωc = 1/2 (solid line), ω = 3/8 (dashed line); ω = 1/4 (dot-
dashed line); ω = 1/8 (dotted line); (b) underdamped motion (29), ω = ωc = 1/2 (solid
line), ω = 5/8 (dashed line); ω = 3/4 (dot-dashed line); ω = 7/8 (dotted line); (c)
underdamped motion (29), ω = ωc = 9/8 (solid line), ω = 11/8 (dashed line); ω =
13/8 (dot-dashed line); ω = 15/8 (dotted line).

Remark 1. Let us analyse the diffusion coefficient in this case somewhat further. We see that if
we consider a single internal white noise the diffusion coefficient is Di = (kBT)2/α2

i , for i =
1,2, . . . ,N. From relation (26), by using the relation between harmonic and arithmetic mean,
we obtain

D =
1∑N

i=1
1
Di

⩽
∑N

i=1Di

N2
. (30)

So we see that if the particular diffusion coefficients Di are identical and equal to D̄, the
diffusion coefficient for N independent internal white Gaussian noise terms scales inversely to
N, D = D̄/N.

If we write Di = a2/(2τi) in a random walk-like notation, where a2 represents the squared
lattice constant or the variance of the jump length PDF [39, 40, 53], we rewrite the compound
diffusion coefficient as

D =
1∑N

i=1
2τi
a2

=
a2

2
∑N

i=1 τi
=

a2

2N⟨τ⟩
=

D
N
. (31)

In this sense the equality in (30) always holds. We note that the mean time ⟨τ⟩ may be a
misrepresentation of the largest time scale τmmaxi{τi}, depending on the underlying set {τi}.

2.2. Different power-law noises

We now turn to generalising the results of [29], where the authors studied the GLE for free
particles and N independent internal noises, by using a harmonic potential, corresponding to
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the Hookean force F(x) =−mω2x, in the GLE (6). To this end we first recall the considerations
in [28], where the authors study the GLE for a harmonic potential and one internal noise,
and then generalise these results. We mention that in [28] complementary polynomials are
used to analyse the overdamped, underdamped, and critical behaviours of the oscillator. Here,
our investigation is based on multinomial Prabhakar-type functions, E(µ⃗),β(s; a⃗) (see [54] and
appendix A). Despite the somewhat complicated notation, their definition and use in analytic
calculations are in fact quite straightforward.

2.2.1. Power-law noises. We first consider the single-term internal power-law noise with
correlation function ζ1(t) = t−λ1/Γ(1−λ1) (i.e. ζ̂1(s) = sλ1−1) for λ1 ∈ (0,1). Thus, the fric-
tion memory kernel due to the second FDT (23) is given by γ1(t) = α2

1ζ1(t)/(kBT). Then the
GLE (6) reads (using unit mass)

ẍ(t)+
α2
1

kBT
CDλ1

t x(t)+ω2x(t) = ξ (t) , ẋ(t) = v(t) . (32)

Due to the power-law friction memory, the friction terms can be compactly written in terms of
the fractional Caputo derivative (CDλ1

t , and the GLE (32) is often referred to as the fractional
Langevin equation [27, 40]. The Caputo operator for λ1 ∈ (0,1) is defined via CDλ1

t x(t) =´ t
0 ẋ(t

′)(t− t ′)−λ1dt ′/Γ(1−λ1), see for example [50, 55]. The relaxation functions G1(t),
I1(t), and g1(t) are obtained by inverting the Laplace transform (11). They are given in terms
of the multinomial Prabhakar-type functions E(µ⃗),β(s; a⃗) = tβ−1E(µ⃗),β(−a1tµ1 , . . . ,−aNtµN)
where µ⃗= µ1, . . .µN and a⃗= a1, . . . ,aN (see [54] and appendix A) as

G1 (t) = L −1
{(
s2 +A1s

λ1 +ω2
)−1

; t
}
= E(2,2−λ1),2

(
t;ω2,A1

)
, (33)

and

I1 (t) = E(2,2−λ1),3

(
t;ω2,A1

)
, g1 (t) = E(2,2−λ1),1

(
t;ω2,A1

)
, (34)

where A1 = α2
1/(kBT). For t≫ 1 these functions are estimated by the two-parameter ML func-

tion, see (A.8), whose asymptotic behaviours follow from equation (A.10), such that

G1 (t)∼t→∞ A−1
1 tλ1−1Eλ1,λ1

(
−ω2tλ1/A1

)
∼t→∞ −A1

ω4

t−λ1−1

Γ(−λ1)
=
A1λ1
ω4

t−λ1−1

Γ(1−λ1)
, (35)

I1 (t)∼t→∞ A−1
1 tλ1Eλ1,λ1+1

(
−ω2tλ1/A1

)
∼t→∞

1
ω2

[
1− A1

ω2

t−λ1

Γ(1−λ1)

]
, (36)

and

g1 (t)∼t→∞ A−1
1 tλ1−2Eλ1,λ1−1

(
−ω2tλ1/A1

)
∼t→∞ −A1

ω4

t−λ1−2

Γ(−1−λ1)
. (37)

The same results can be obtained by calculating the appropriate overdamped relaxation func-
tions such that we have limt→∞G1(t) = Go;1(t), limt→∞ I1(t) = Io;1(t), and limt→∞ g1(t) =
go;1(t). From the result for the relaxation function I1(t) we conclude that the MSD in the long
time limit approaches the equilibrium (thermal) value ⟨x2(t)⟩eq = 2kBT/ω2 via a power-law
decay, i.e.

⟨x2 (t)⟩ ∼t→∞ ⟨x2 (t)⟩eq
[
1− A1

ω2

t−λ1

Γ(1−λ1)

]
. (38)

8



J. Phys. A: Math. Theor. 57 (2024) 235004 Z Tomovski et al

By asymptotic analysis in the short time limit ballistic motion is also observed since the MSD
behaves as ⟨x2(t)⟩ ∼ t2

2 −A1
t4−λ1

Γ(5−λ1)
.

For the force-free case (ω= 0) the MSD becomes

⟨x2 (t)⟩= 2kBTL−1

[
s−1−λ1

s2−λ1 +A1

]
= 2kBTt

2E2−λ1,3
(
−A1t

2−λ1
)
∼

{
t2 −A1

t4−λ1

Γ(5−λ1)
, t→ 0,

tλ1 , t→∞,
(39)

from which we conclude that from ballistic motion in the short time limit, the particle turns to
subdiffusion in the long time limit [29].

2.2.2. N power-law noises. The compound fractional Langevin equation, i.e. the GLE in
which we use N independent internal noises, for m= 1 reads

ẍ(t)+
N∑
r=1

Ar
CDλr

t x(t)+ω2x(t) = ξ (t) . (40)

The friction memory kernel γN(t) becomes
∑N

r=1 γr(t), where γr(t) is defined analogously to
γ1(t) above, but instead of a single internal noise we now have N. Here, we assume that 0<
λ1 < · · ·< λN < 1. Using short-hand notation we denote the relaxation functions gN(t),GN(t),
and IN(t) by the function FN;j(t) indexed by j = 1,2,3 such that FN;1(t) = gN(t) is obtained for
j= 1, FN;2(t) = GN(t) for j= 2, and FN;3(t) = IN(t) for j= 3. The auxiliary functions FN;j(t)
read

FN;j (t) = E(2,2−λ1,...,2−λN),j

(
t;ω2,A1, . . . ,AN

)
(41)

in terms of the Prabakhar-type function. Following [54] we check the behaviour of FN;j(t)
in (41) at long t. In this case we obtain that FN;j(t) tends to the relaxation function for
N= 1, i.e.

FN;j (t)∼t→∞ A−1
1 tλ1+j−3Eλ1,λ1+j−2

(
−ω2tλ1/A1

)
. (42)

Their further asymptotics in the long-time limit t→∞ depend on the value of j, such that for
j = 1,2,3 we get equations (35)–(37), respectively. Making use of equation (42) we calculate
the quantities (i) to (iv) defined in the introductory section is necessary to describe the time
evolution of stochastic systems coupled to a thermal bath.

Based on these results the MSD can be shown to be given by the expression

⟨x2 (t)⟩N = 2kBTE(2,2−λ1,...,2−λN),3

(
t;ω2,A1, . . . ,AN

)
. (43)

Thus, by asymptotic analysis, in the long time limit, we find the behaviour

⟨x2 (t)⟩N ∼t→∞ ⟨x2 (t)⟩eq
[
1− A1

ω2

t−λ1

Γ(1−λ1)

]
. (44)

The MSD approaches the equilibrium (thermal) value ⟨x2(t)⟩eq = 2kBT/ω2 in power-law fash-
ion, instead of the exponentially fast relaxation for the normal Ornstein-Uhlenbeck process.
Note that similar power-law relaxations are known from subdiffusive continuous time random
walks [32, 56] and from the time-averaged MSD of the fractional Langevin equation [17, 57]
in an external harmonic potential. From equation (44) we see that the noise with the smaller
exponent λ1 has the dominant contribution to the oscillator behaviour in the long time limit.We
also note that the same result for the MSD in the long time limit can be obtained by Tauberian

9
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theorems (see appendix B) if we analyse the behaviour of ÎN(s) in the limit s→ 0 [58]. The
short time limit t→ 0 yields IN(t)≃ t2/2−ANt4−λN/Γ(5−λN), so we conclude that the noise
with the largest exponent λN dominates the dynamic in the short time limit.

For the force-free case (ω= 0), we recover the result for the MSD obtained in [29], which
in the short time limit behaves as ⟨x2(t)⟩N ∼ t2 −A1

t4−λN

Γ(5−λN)
, while in the long time limit we

find ⟨x2(t)⟩N ∼ tλ1 . Thus, the highest exponent is the dominant contribution in the short time
limit, while the lowest exponent has the analogous role in the long time limit.

The DACF (14) in the case of thermal initial conditions ⟨x20⟩= kBT/ω2, ⟨x0v0⟩= 0, and
⟨ξ(t)x0⟩= 0, from equations (14) and (41), we obtain

CX (t) = 1−ω2E(2,2−λ1,...,2−λN),3

(
t;ω2,A1, . . . ,AN

)
. (45)

Its asymptotic behaviour in the long time limit via equation (36) reads

CX (t)∼t→∞ 1− ω2

A1
tλ1Eλ1,λ1+1

(
−ω

2

A1
tλ1

)
= Eλ1

(
−ω

2

A1
tλ1

)
∼t→∞

A1

ω2

t−λ1

Γ(1−λ1)
.

(46)

Thus we obtain a power-law decay, approaching the zero line from positive values for λ1 ∈
(0,1), and from negative values for λ1 ∈ (1,2), if we consider a memory kernel defined in
Laplace space as γ̂(s) =

∑N
i=1 s

λi−1, 1< λi < 2. Since Eα(−x) is a completely monotone
function for α ∈ (0,1) [59–62], we conclude that the normalised displacement correlation
function is completely monotone in the long time limit for λ1 ∈ (0,1). A more detailed ana-
lysis of CX(t) is provided in section 2.4 for the case of high damping, which has more prac-
tical application in the theory of anomalous dynamics in single particle tracking and pro-
tein dynamics. We mention that the equality in equation (46) was proven in [63] and [64,
remark 3].

2.3. Combinations of white and power-law noises

In the same way, as for the power-law noises, we can analyse the relaxation functions for a
mixture of δ- and power-law distributed noises. The approach given in [29] can be applied in
the case of a harmonic oscillator driven by P white noises and Q power-law noises (P+Q=
N) as well. Here we consider the special case γ(t) = B1δ(t)+B2t−λ/Γ(1−λ) where B1 =
α2/(kBT), B2 = β2/(kBT), and 0< λ < 1 [29, 65].

With the help of equation (A.2) we see that

G(t) = E(2,2−λ,1),2

(
t;ω2,B2,B1

)
. (47)

From equations (A.3) and (A.4) we can calculate the associated integral and derivative which,
respectively, lead to I(t) and g(t). Then, the MSD obtained from equation (12) reads

⟨x2 (t)⟩= 2kBTE(2,2−λ,1),3

(
t;ω2,B2,B1

)
. (48)

Notice that equation (48) in the force-free case ω= 0, after applying equation (A.15), can be
recognised as [29, equation (27) for λ1 = λ, λ2 = 1], namely,

⟨x2 (t)⟩= 2kBT
∞∑
n=0

(−B2)
n t(2−λ)n+2En+1

1,(2−λ)n+3 (−B1t) . (49)

10
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The asymptotic of the MSD at short and long times are calculated from equations (A.5)
and (A.6), yielding

⟨x2 (t)⟩ ∼t→0
t2

2
− t3

3!
− t4

4!
− t4−λ

Γ(5−λ)
(50)

for t→ 0, and for t≫ 1 we have

⟨x2 (t)⟩ ∼t→∞
2kBT
B2

tλEλ,1+λ

(
−ω

2

B2
tλ
)
∼t→∞

2kBT
ω2

[
1− B2

ω2

t−λ

Γ(1−λ)

]
, (51)

which means that the MSD has a power-law decay to the equilibrium value ⟨x2(t)⟩eq =
2kBT/ω2. We conclude that the power-law noise is dominant in the long time limit, and the
white noise in the short time limit, as naively expected. We note that in the force-free case
(ω= 0), in the long time limit the particle shows anomalous diffusion of the form ⟨x2(t)⟩ ∼ tλ,
while in the short time limit ballistic motion is observed. This means that the fractional expo-
nent has a dominant contribution in the long time limit [29].

For the DACF CX(t), we obtain from relation (14) that

CX (t) = 1−ω2 E(2,2−λ,1),3

(
t;ω2,B2,B1

)
, (52)

from where the long time limit follows,

CX (t)∼t→∞ 1− ω2

B2
tλEλ,1+λ

(
−ω

2

B2
tλ
)
∼t→∞

B2

ω2

t−λ

Γ(1−λ)
. (53)

We conclude that CX(t) in the long time limit is a completely monotone function since 0<
λ < 1, showing a power-law decay to zero.

Following the same procedure one may consider mixtures of white noises, power-law
noises, and ML type noises. The calculation of the relaxation function can be represented
in terms of multinomial Prabhakar functions [29, 54].

2.4. Overdamped limit

Next, we analyse the high-damping limit, in which the inertial term mẍ(t) can be neglected.
Then, the relaxation functions are defined by equation (18).

The case of a mixture of N internal white noises considered in section 2.1, for the MSD
⟨x2(t)⟩o = 2kBTIo(t) and the DACF CX,o(t) yields

⟨x2 (t)⟩o = 2kBTL −1

{
s−1

κs+ω2
; t

}
=

2kBT
ω2

[
1− exp

(
−ω

2

κ
t

)]
, (54)

CX,o (t) = exp

(
−ω

2

κ
t

)
= exp

(
−Dω2

kBT
t

)
, (55)

where κ is given below equation (25) and D is defined in equation (26). We find that CX,o(t)
has a monotonic exponential decay, as expected. In the short time limit the MSD has a linear
dependence on time, ⟨x2(t)⟩o ∼ t, as it is expected.

For the case of N power-law noises, it follows from relation (12) in the overdamped case
that

⟨x2 (t)⟩o =
2kBT
AN

E(λN,λN−λ1,...,λN−λN−1);λN+1

(
t,
ω2

AN
,
A1

AN
, . . . ,

AN−1

AN

)
, (56)

11
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CX,o (t) = 1− ω2

AN
E(λN,λN−λ1,...,λN−λN−1);λN+1

(
t,
ω2

AN
,
A1

AN
, . . . ,

AN−1

AN

)
. (57)

In the long time limit the particle shows a power-law decay of theMSD to the equilibrium value
of the form (44), which means that the lowest fractional exponent has a dominant contribution,
while in the short time limit anomalous diffusion of the form ⟨x2(t)⟩o ∼ tλN is observed, i.e. the
highest fractional exponent has the dominant contribution at short times. For the force-free
case (ω= 0) the MSD shows characteristic crossover from ⟨x2(t)⟩o ∼ tλN for short times to
⟨x2(t)⟩o ∼ tλ1 for long times, i.e. decelerating subdiffusion.

The DACF shows an asymptotic power-law decay in the long time limit, i.e.

CX,o (t)∼t→∞ Eλ1

(
−ω

2

A1
tλ1

)
∼t→∞

A1

ω2

t−λ1

Γ(1−λ1)
. (58)

Thus, we can use equation (16) in the overdamped limit case, which is simpler instead of the
GLE (6), to analyse the asymptotic behaviour of the harmonic oscillator in the long time limit.

A graphical representation of the DACF is presented in figure 2. From panel (a) we see
that by changing the values of the parameters λ1 and λ2 for fixed frequency ω there appears a
non-monotonic decay of CX,o(t) without zero crossings, approaching the zero line at infinity
(see solid line), a monotonic decay without zero crossings to zero at infinity (dashed line),
a non-monotonic decay without zero crossings approaching zero at a finite time instant and
at infinity (dot-dashed line), or a non-monotonic decay with zero crossings approaching zero
at infinity (dotted line). All long-time decays of the DACF are of power-law form to zero,
as it can be anticipated from relation (58). The behaviour of CX(t) for different values of the
frequency ω and fixed values of λ1 and λ2 is shown in figures 2(b) and (c). We see that there
are different critical frequencies, i.e. the frequency at which CX,o(t) changes its behaviour, for
instance, from non-monotonic to monotonic decay without zero crossings, or the frequency at
which CX,o(t) crosses the zero line. Such different types of critical frequencies were discussed
in [28].

Figure 3 depicts the MSD for unconfined and confined motion. For free motion the MSD
may havemonotonic, non-monotonic, and oscillatory behaviour, turning into a power-law form
in the long time limit. For the confined case the MSD has different behaviours at intermediate
times, and in the long-time limit, the MSD has a power-law approach to the equilibrium value
⟨x2(t)⟩eq = 2kBT/ω2.

In the same way as above, we obtain the following DACF for the case of a mixture of a
white noise a and power-law noise (see results 2.3),

CX,o (t) =
∞∑
n=0

(
−ω

2

B1

)n

tnEn1−λ,n+1

(
−B2

B1
t1−λ

)
, (59)

for 0< λ < 1, and

CX,o (t) =
∞∑
n=0

(
−ω

2

B2

)n

tλnEnλ−1,λn+1

(
−B1

B2
tλ−1

)
, (60)

for 1< λ < 2, where B1 and B2 are given at the beginning of section 2.3. These results are
equivalent to those obtained in section 2.3 in the long time limit for the GLE when the inertial
term is not neglected, as it should be.
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Figure 2. Normalised displacement correlation function (57) for the following cases
for N= 2: (a) ω= 1, λ2 = 3/2, λ1 = 1/8, (solid line), λ1 = 1/2 (dashed line), λ1 =
7/8 (dot-dashed line), λ1 = 5/4 (dotted line); (b) λ1 = 1/8, λ2 = 3/4, ω= 0.5 (solid
line), ω= 0.75 (dashed line), ω = 1.8959706 (dot-dashed line), ω= 2.5 (dotted line);
(c) λ1 = 3/4, λ2 = 3/2, ω= 1 (solid line), ω= 1.617 (dashed line), ω= 3 (dot-dashed
line).

3. Distributed-order Langevin equations

It has been shown that the distributed-order differential equations are suitable tools for mod-
elling ultraslow relaxation and diffusion processes [29, 55, 66–70]. In the case of distributed
order differential equations, one uses the following memory kernel (see for example [70])

γ (t) = (kBT)
−1
ˆ 1

0
p(λ)

t−λ

Γ(1−λ)
dλ, (61)

where p(λ) is a dimensionless, non-negative weight function with
´ 1
0 p(λ)dλ= c, where c is

a constant. When c= 1, p(λ) is normalised. The distributed order memory kernel mixes frac-
tional exponents from 0 to 1, and is obtained when the summation in the memory kernel in case
of N fractional power-law functions turns to integration. If we substitute the distributed-order
memory kernel in the GLE (6) we transform it to the following distributed-order Langevin
equation

ẍ(t)+
1
kBT

ˆ 1

0
p(λ)CDλ

t x(t)dλ+
dV(x)
dx

= ξ (t) , ẋ(t) = v(t) . (62)

Here we note that assumption (8) is satisfied for distributed-order Langevin equations since
lims→0 sγ̂(s)∼ lims→0

´ 1
0 p(λ)s

λdλ= 0. Thus we can use the representations of MSD, VACF,
time-dependent diffusion coefficient and DACFs in terms of the relaxation functions.
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Figure 3. MSD (56) for the following cases for N= 2: (a) ω= 0, λ1 = 1/2, λ2 = 1,
(solid line), λ2 = 5/4 (dashed line), λ2 = 3/2 (dot-dashed line), λ2 = 7/4 (dotted line);
(b) ω= 0, λ1 = 0.1, λ2 = 1, (solid line), λ2 = 5/4 (dashed line), λ2 = 3/2 (dot-dashed
line), λ2 = 7/4 (dotted line); (c) λ1 = 1/2, λ2 = 7/4, ω= 0 (upper solid line), ω= 1
(dashed line), ω= 1.5 (dot-dashed line), ω= 2 (dotted line), ω= 2.5 (lower solid line).

We now consider the distributed-order Langevin equation (62) in the presence of the con-
stant external force F. Then we have

ẍ(t)+
1
kBT

ˆ 1

0
p(λ)CDλ

t x(t)dλ−F= ξ (t) , ẋ(t) = v(t) , (63)

from which, by the Laplace transform method, we obtain

x(t) = ⟨x(t)⟩F+
ˆ t

0
G(t− t ′)ξ (t ′)dt ′, (64)

where ⟨x(t)⟩F = FI(t) and γ̂(s) is given by equation (61), and where

G(t) = L −1

{
1

s2 + sγ̂ (s)
; t

}
and I(t) = L −1

{
s−1

s2 + sγ̂ (s)
; t

}
. (65)

The latter expression corresponds to (11) for a free particle (ω= 0). Thus, we conclude that the
generalised Einstein relation ⟨x2(t)⟩F = [F/(2kBT)]⟨x2(t)⟩F=0 is satisfied for the distributed-
order Langevin equation (62), where ⟨x2(t)⟩F=0 = 2kBTL −1{s−1[s2 + sγ̂(s)]−1; t} is the
MSD for the case of a free particle.

3.1. Force-free case

We first consider the distributed-order Langevin equation for a free particle with ω= 0. Note
that a weight function of the form p(λ) =

∑N
i=1α

2
i δ(λ−λi) yields the fractional Langevin

equation and we have the compound white Gaussian noise, see section 2.2.2. For p(λ) = α2

we obtain the uniformly distributed noise [69]

14
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kBTγ (t) = α2
ˆ 1

0

t−λ

Γ(1−λ)
dλ, (66)

which was used by Kochubei in the theory of evolution equations. In [29] we analysed the
GLE for a free particle with friction memory kernel of distributed order (66) and showed that
the MSD in the long time limit is given by

⟨x2 (t)⟩ ∼t→∞
2(kBT)

2

α2
[C+ log t+ etE1 (t)] , (67)

whereC= 0.577216 is the Euler-Mascheroni (or Euler’s) constant, Ei(−t) =−
´∞
t (e−x/x)dx

is the exponential integral [71], and E1(t) =−Ei(−t). From the asymptotic expansion
E1(t)∼t→∞ t−1e−t

∑n−1
k=0(−1)kk!t−k [55], which has an error of order O(n!t−n), we obtained

that the particle shows ultraslow diffusion, i.e. ⟨x2(t)⟩ ∼t→∞ [2(kBT)2/α2](C+ log t) [29]. In
the short time limit, again ballistic motion is observed.

Consider now the power-law case p(λ) = α2βλβ−1, where β > 0. Then the frictionmemory
kernel becomes

kBTγ (t) = α2
ˆ 1

0
βλβ−1 t−λ

Γ(1−λ)
dλ. (68)

For the MSD in the long time limit, we obtain (see (65) based on Tauberian theorems)

⟨x2 (t)⟩ ∼t→∞
2(kBT)

2

α2

logβ t
Γ(1+β)

. (69)

From this result, we conclude that this power-lawmodel leads to ultraslow diffusion (for β= 1)
or a strong anomaly. In [72] a strong anomaly means the behaviour of form ⟨x2(t)⟩ ∼ logν t,
which for ν= 4 has the same form as the MSD of the Sinai diffusion model in a random force
field [73, 74], compare also to the discussion in [75]. We also note that the Sinai diffusion here
occurs due to the friction memory kernel, while in a quenched disorder landscape the Sinai
diffusion occurs due to the thermal random motion of a particle in a random potential [76, 77].
Thus the physics of the logarithmic anomalous diffusion is different in both cases. However,
as demonstrated in [73], the statistical behaviour in terms of the MSD and PDF are strikingly
similar. Result (69) for the MSD is equivalent to the one obtained by Eab and Lim [68], since
the long time limit considered here corresponds to the case of the overdamped limit (the inertial
term ẍ(t) is neglected) studied in [68]. The same result for the MSD can be obtained from the
distributed-order diffusion equation [67] in which the weight function corresponds to the one
considered in the memory kernel (68).

Next we consider the weight function p(λ) = α2/(λ2 −λ1) for 0⩽ λ1 < λ < λ2 ⩽ 1, and
p(λ) = 0 otherwise [66]. With the help of relation (65) the MSD yields in the form

⟨x2 (t)⟩= 2kBT

[
t2

2
+

∞∑
n=1

(
− α2

kBT

)n
1

(λ2 −λ1)
n

n∑
k=0

(
n
k

)
(−1)k

×µ(t,n− 1,(2−λ2)n+(λ2 −λ1)k+ 2)

]
,

(70)

which in the long time limit becomes (use the Tauberian theorem in equation (65))

⟨x2 (t)⟩ ∼t→∞
2(kBT)

2

α2

∞∑
n=1

tλ2−(λ2−λ1)n

Γ(λ2 − (λ2 −λ1)n+ 1)

×
[
ln tλ2−λ1 − (λ2 −λ1)ψ (λ2 − (λ2 −λ1)n+ 1)

]
,

(71)
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where we used the Volterra function µ(t,β,α) defined in appendix C, and ψ = Γ ′

Γ is the
digamma function. Thus, we conclude that in the long time limit the MSD has the ultraslow
form

⟨x2 (t)⟩ ∼t→∞
2(kBT)

2

α2

λ2 −λ1
Γ(1+λ1)

tλ1 ln t.

For λ1 = 0 and λ2 = 1 we arrive at the result (66) obtained for uniformly distributed noise with
a logarithmic MSD dependence on time. In the short time limit the particle performs ballistic
motion, as well.

Such relaxation patterns of logarithmic form and ultraslow diffusion have been observed in
the analysis of distributed-order relaxation and diffusion equations by Kochubei [69, 78–80]
as well as by Mainardi et al [55, 70].

3.2. Harmonic oscillator: overdamped limit

We nowmove on to consider the distributed-order GLE for a harmonic oscillator with different
weight functions in the overdamped limit. For the uniformly distributed noise (66) we obtain
the following form of the MSD

⟨x2 (t)⟩o = 2kBTL −1

{
s−1

α2

kBT
s−1
log s +ω2

; t

}
= 2kBTL −1

{
s−1 logs

ω2 logs+As−A
; t

}
, (72)

where A= α2/(kBT). From Tauberian theorems (see appendix B) we analyse the asymptotic
behaviour in the long and short time limits. At long times (t→∞, equivalent to s→ 0) it
follows that

⟨x2 (t)⟩o ∼t→∞
2kBT
ω2

L −1

{
s−1

1− A
ω2 log s

; t

}
∼t→∞

2kBT
ω2

L −1

{
1
s
+

A
ω2

s logs
; t

}

=
2kBT
ω2

[
1+

A
ω2
ν (t)

]
,

(73)

where ν(t) is the Volterra function, see appendix C. Thus, the DACF in the long time limit
becomes

CX,o (t)∼t→∞ − A
ω2
ν (t) . (74)

At short times (t→ 0, or s→∞), we find for the MSD and DACF that

⟨x2 (t)⟩o ∼t→0
2kBT
A

L −1

{
logs
s2

; t

}
=

2kBT
A

t

(
log

1
t
+ 1− γ

)
, (75)

and

CX,o (t)∼t→0 1−
ω2

A
t

(
log

1
t
+ 1− γ

)
, (76)

respectively.
Now consider the distributed-order noise (68). From the relaxation function Io(t) the MSD

becomes

⟨x2 (t)⟩o =
2kBT
ω2

L −1

{
s−1

A
ω2 ν

(
log 1

s

)−ν
γ (ν,− logs)+ 1

; t

}
, (77)
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where γ(a,σ) =
´ σ
0 t

a−1e−tdt is the lower incomplete Gamma function. Taking the long time
limit yields

⟨x2 (t)⟩o ∼t→∞
2kBT
ω2

{
1− A

ω2
Γ(1+ ν)L −1

{
1
s

(
log

1
s

)−ν

; t

]}

∼t→∞
2kBT
ω2

[
1− A

ω2

Γ(1+ ν)

logν t
; t

]
, (78)

from which we obtain the asymptotic behaviour of the DACF,

CX,o (t)∼t→∞
2kBT
ω2

A
ω2

Γ(1+ ν)

logν t
. (79)

In the short time limit, we find

⟨x2 (t)⟩o ∼t→0
2kBT
A

logν 1
t

Γ(1+ ν)
(80)

and

CX,o (t)∼t→0 1−
ω2

A

logν 1
t

Γ(1+ ν)
. (81)

Similarly, we obtain for the distributed-order noise (61) with weight function p(λ) =
α2/(λ2 −λ1) (0⩽ λ1 < λ < λ2 ⩽ 1, and p(λ) = 0 otherwise) the asymptotic forms of the
MSD:

⟨x2 (t)⟩o ∼t→∞
2kBT
ω2

{
1− A/ω2

(λ2 −λ1)
[ν (t,−λ2)− ν (t,−λ1)]

}
, (82)

in the long time limit, and

⟨x2 (t)⟩o ∼t→0
2kBT
A

∞∑
n=0

t(λ2−λ1)n+λ2

Γ[(λ2 −λ1)n+λ2 + 1]
(83)

×
[
log t−(λ2−λ1) − (λ2 −λ1)ψ ((λ2 −λ1)n+λ2 + 1)

]
in the short time limit. From here we can easily find the DACF.

From these results, we conclude that the distributed-order GLE may be used to model vari-
ous anomalous diffusive behaviours, such as ultraslow diffusion, strong anomaly, and other
complex diffusive regimes.

4. Further generalisations

4.1. LE with power-logarithmic distributed order noises

Let us consider the Langevin equation (6) with the logarithmically distributed-order friction
kernel

γ (t) = (kBT)
−1
ˆ 1

0
Γ(3/2−λ)

logλ−1 t√
t

dλ with γ̂ (s) =
π

kBT
s− 1√
s logs

, (84)
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which satisfies the condition (8). The relaxation function I(t) defined by equation (11) assumes
the form

I(t) = L −1

 s−1

s2 + π
kBT

s(s−1)√
s log s +ω2

; t

 . (85)

As it is challenging to calculate the exact form of equation (85) for general t> 0we concentrate
on the asymptotic behaviour for small s≪ 1, yielding

Î(s)∼s→0
s−1

ω2

1

1− π
kBTω2

s(1−s)√
s log s

≃ 1
ω2

[
s−1 +

π

kBTω2

1√
s logs

− π

kBTω2

√
s

logs

]
,

where we take the zeroth and first-order terms of the series expansion. If s tends zero then the
term

√
s/ logs can be neglected. Thus, we have

Î(s)∼s→0
1
ω2

[
s−1 +

π

kBTω2

1√
s logs

]
and I(t)∼t→∞

1
ω2

[
1+

π

kBTω2
ν (t,−1/2)

]
.

(86)

This allows us to find the MSD and DACF for t→∞,

⟨x2 (t)⟩ ∼t→∞
2kBT
ω2

+
2π
ω4
ν (t,−1/2) and CX (t)∼t→∞ − π

kBTω2
ν (t,−1/2) .

Note that for ω= 0 we get

⟨x2 (t)⟩= 2kBTL −1

 s−1

s2 + π
kBT

s(s−1)√
s log s

; t

∼t→∞ 2kBTL −1

 s−1

π
kBT

s(s−1)√
s log s

; t


∼t→∞

2(kBT)
2

π
L −1

{
logs

s3/2 (s− 1)
; t

}
∼t→∞

2(kBT)
2

π
L −1

{
log 1

s

s3/2
; t

}

∼t→∞
2(kBT)

2

π

1
Γ(3/2)

t1/2 log t=
4(kBT)

2

π3/2
t1/2 log t. (87)

We note that in the short time limit ballistic motion is observed, as well, due to the effect of
the inertial term.

4.2. Langevin equation with distributed-order Mittag–Leffler noise

In the next example, we study the GLE for a harmonic oscillator with the ML friction memory
kernel

γ (t) =
1
kBT

ˆ 1

0
Eλ

(
−tλ
)
dλ

(
γ̂ (s) =

1
kBT

log s+1
2

s logs

)
, (88)

which satisfies the condition (8). The long-time asymptotic of the relaxation function I(t)
involved in the MSD and the DACF can be calculated by use of the Tauberian theorem
(appendix B) in which we consider the limit s→ 0 of Î(s). Thus, we have
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I(t) = L −1

 s−1

s2 + 1
kBT

log s+1
2

log s +ω2
; t

∼t→∞
1
ω2

L −1

{
1
s
− 1
kBTω2

log2
s logs

; t

}

=
1
ω2

[
1− log2

kBTω2
ν (t)

]
. (89)

In the force-free case with ω= 0 we observe ultraslow diffusion, since the relaxation function
I(t) has a logarithmic time dependence,

I(t)∼t→∞
kBT
log2

L −1

{
log 1

s

s
; t

}
=

kBT
log2

log t= kBT log2 t. (90)

In the short time limit the relaxation function behaves as I(t)∼ t2.

4.3. Distributed-order Langevin equation with Caputo-Prabhakar derivative

In this part, we now consider the GLE (6) for a harmonic oscillator with the choice of the
distributed-order Prabhakar friction memory kernel

γ (t) =
1
kBT

ˆ 1

0
t−λEδ

ρ,1−λ (−tρ)dλ with γ̂ (s) =
1
kBT

s− 1
s logs

(
1+ s−ρ

)−δ
. (91)

We consider two cases, the first one for 0< ρ,δ < 1 and the second one for −1< ρ,δ < 0. In
both cases the condition (8) is satisfied. If we substitute the distributed-order Prabhakar friction
memory kernel in the GLE (6) we arrive to the following generalised Langevin equation

ẍ(t)+
1
kBT

ˆ 1

0

(
CDδ,λ

ρ,1,0+x
)
(t)dλ+

dV(x)
dx

= ξ (t) , ẋ(t) = v(t) , (92)

with regularised fractional derivative(
CDδ,λ

ρ,ω,0+f
)
(t) =

ˆ t

0
(t− t ′)

−λ
Eδ
ρ,1−λ

(
−ω [t− t ′]

ρ) d
dt ′

f(t ′) dt ′.

Using the Tauberian theorem we calculate the asymptotics of the relaxation function I(t).
(i) In the case 0< ρ,δ < 1 and for t→∞ we have

I(t)∼t→∞ L −1

{
s−1

ω2 + 1
kBT

s−1
log s (1+ s−ρ)

−δ
; t

}
∼t→∞ L −1

{
s−1

ω2 + 1
kBT

s−1
log s s

ρδ
; t

}

∼t→∞
1
ω2

L −1

 s−1

1+ 1
kBTω2

sρδ

log 1
s

; t

∼t→∞
1
ω2

L −1

{
1
s
− 1
kBTω2

s−1+ρδ

log 1
s

; t

}

∼t→∞
1
ω2

[
1− 1

kBTω2Γ(1− ρδ)

t−ρδ

log t

]
. (93)

From the asymptotic form of I(t) we obtain the long time behaviours of the MSD and DACF,

⟨x2 (t)⟩ ∼t→∞
2kBT
ω2

− 1
ω4Γ(1− ρδ)

t−ρδ

log t
(94)

and

CX (t)∼t→∞
1

kBTω2Γ(1− ρδ)

t−ρδ

log t
. (95)

19



J. Phys. A: Math. Theor. 57 (2024) 235004 Z Tomovski et al

In addition, note that in the free particle case (ω= 0) the long-time limit (or for the over-
damped case when we neglect the term with s2) becomes

I(t)∼t→∞ kBTL −1

{
s−1 (1+ s−ρ)

δ logs
s− 1

; t

}
∼t→∞ kBTL −1

{
logs

s1+ρδ (s− 1)
; t

}
∼t→∞ kBTL −1

{
s−1−ρδ log

1
s
; t

}
∼t→∞ kBT

tρδ

Γ(1+ ρδ)
log t. (96)

(ii) Replacing ρ by −ρ and δ by −δ in equations (91) and (92) we find

γ (t) =
1
kBT

ˆ 1

0
t−λE−δ

−ρ,1−λ

(
−t−ρ

)
dλ and γ̂ (s) =

1
kBT

s− 1
s logs

(1+ sρ)δ , (97)

where 0< ρ,δ < 1. The relaxation function I(t) for ω ̸= 0 reads

I(t)∼t→∞ L −1

{
s−1

1
kBT

s−1
log s (1+ sρ)δ +ω2

; t

}
∼t→∞ L −1

{
s−1

1
kBT

s−1
log s +ω2

; t

}

=
1
ω2

L −1

{
s−1

1− 1
kBTω2

1−s
log s

; t

}
∼t→∞

1
ω2

L −1

{
1
s
+

1
kBTω2

1
s logs

; t

}
=

1
ω2

[
1+

ν (t)
kBTω2

]
. (98)

For ω= 0 the long time asymptotic of I(t) is equal to

I(t) = kBTL −1

{
s−1

s−1
log s (1+ sρ)δ

; t

}
∼t→∞ kBTL −1

{
logs

s(s− 1)
; t

}
= kBT [C+ log t+ etE1 (t)] . (99)

Note that the relevant MSD is the same as obtained for the force-free case by using the
distributed-order fractional derivative, i.e. equation (67) for α= 1.

4.4. Langevin equation with distributed-order Volterra function

We consider the GLE for which the friction kernel is based on the Volterra functions ν(t,−α)
and µ(t,−β) for 0< α,β < 1, see appendix C. In the first case the friction memory kernel in
t and s reads

γ1 (t) =
1
kBT

ˆ 1

0
ν (t,−α)dα and γ̂1 (s) =

1
kBT

s− 1

s log2 s
, (100)

thus satisfying condition (8). For the GLE for the stochastic harmonic oscillator (ω ̸= 0) the
long time limit (t→∞) of the relaxation function I1(t) yields in the form

I1 (t) = L −1

{
s−1

s2 + 1
kBT

s−1
log2 s +ω2

; t

}
∼t→∞

1
ω2

L −1

{
1
s
+

1
kBTω2

1

s log2 s
; t

}
=

1
ω2

[
1+

µ(t,1)
kBTω2

]
. (101)
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In the force-free case (ω= 0) we obtain [60, equation (45)]

I1 (t) = L −1

{
s−1

s2 + 1
kBT

s−1
log2 s

; t

}
∼t→∞ kBTL −1

{
log2 s
s(s− 1)

; t

}

= kBT

[
−
(
C2 +π2/6

)
et+ 2tetΦ⋆,(1,1)

1;1 (−t,3,1)− 2(C+ log t)etE1 (t)

− (2C+ log t)(et+ 1)(log t)−C2 +π2/6

]
. (102)

Here Φ⋆,(1,1)
1;1 is the Hurwitz–Lerch function, see [81].

In the second case, the friction in t and s spaces turns out to be

γ2 (t) =
1
kBT

ˆ 1

0
µ(t,−β)dβ and γ̂2 (s) =

1
kBT

logs− 1
s(logs)(log logs)

. (103)

Here we consider only the force-free case, i.e. ω= 0. In that case we find the asymptotic of
I2(t) at long times. Using that log logs is a slowly varying function, by Tauberian theorems we
find that

I2 (t)∼t→∞ kBTL −1

{
(logs)(log logs)
s(logs− 1)

; t

}
= kBTL −1

 log logs

s
(
1− 1

log s

) ; t


∼t→∞ kBTL −1

{
1
s
log log

1
s−1

; t

}
= kBT log log

1
t
. (104)

Finally, we consider a memory kernel of distributed order in respect to both parameters in
the Volterra µ function:

γ3 (t) =
1
kBT

ˆ 1

0

ˆ 1

0
µ(t,β,α− 1)dβdα (105)

and

γ̂3 (s) =
1
kBT

ˆ 1

0

dα
sα

ˆ 1

0

dβ

logβ+1 s
=

1
kBT

(s− 1)(logs− 1)

s
(
log3 s

)
(log logs)

. (106)

For ω ̸= 0 the long time limit of the relaxation function I3(t) yields

I3 (t) = L −1

 s−1

s2 + 1
kBT

(s−1)(log s−1)
s(log3 s)(log log s)

+ω2
; t


∼t→∞

1
ω2

L −1

 s−1

1− 1
kBTω2

(1−s)(log s−1)
s(log3 s)(log log s)

; t


∼t→∞

1
ω2

L −1

{
1
s
+

1
kBTω2

1

s2
(
log2 s

)
(log logs)

; t

}
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∼t→∞
1
ω2

L −1

{
1
s
+

1
kBTω2

1

s2
(
log2 1

s

)(
log log 1

s−1

) ; t}

∼t→∞
1
ω2

{
1+

1
kBTω2

t(
log2 t

)(
log log 1

t

)} . (107)

5. Summary

We studied the GLE for an external harmonic potential and the free particle limit for various
cases of the friction memory kernel. In particular, we derived the associated MSD and DACF
for the different chosen forms for the friction memory kernel of Dirac delta, power-law, and
distributed-order forms. Various anomalous diffusive behaviours, such as subdiffusion, super-
diffusion, ultraslow diffusion, and strong anomaly, are observed. Special attention was paid
to distributed-order GLEs and distributed-order diffusion-type equation. For different forms
of the weight functions, we obtained ultraslow diffusion, strong anomaly, and other complex
diffusive behaviours.

It will be interesting to compare the results obtained here for the GLE to the case for
external noise [10], i.e. when the second FDT is not satisfied. In both cases, superstatistical
and stochastic variations of the diffusion coefficient and anomalous scaling exponent (Hurst
exponent) have been analysed recently [47, 82–86]. Studying such concepts in the frameworks
developed here will significantly enlarge our current range of stochastic models for disordered
systems. We also note potential generalisations with respect to subordinated GLEmodels such
as those studied in [87, 88], fractional GLE [14, 31], as well as the presence of stochastic reset-
ting [89] in the system, including resetting in the memory kernel [90, 91].
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Appendix A. Multinomial Prabhakar type functions E(µ⃗),β(t; a⃗)

The multinomial Prabhakar function E(µ⃗),β(t; a⃗) with µ1 > µ2 > · · ·> µm > 0, see [54], is
related to the multinomial ML function E(µ⃗),β(−a1tµ1 , . . . ,−amtµm) as follows

E(µ⃗),β (t; a⃗) = tβ−1E(µ⃗),β (−a1tµ1 , . . . ,−amtµm) . (A.1)
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Its Laplace transform reads

L
{
E(µ⃗),β (t; a⃗) ;s

}
=

sµ1−β

sµ1 + amsµ1−µm + . . .+ a2sµ1−µ2 + a1
. (A.2)

Theorem 2.3 from [54] implies that the following identities hold true:

ˆ t

0
E(µ⃗),β (ξ; a⃗)dξ = E(µ⃗),β+1 (t; a⃗) , (A.3)

d
dt
E(µ⃗),β (t; a⃗) = E(µ⃗),β−1 (t; a⃗) , β > 1. (A.4)

The asymptotic behaviours of the multinomial Prabhakar function for t≪ 1 and t≫ 1 are
equal to

E(µ⃗),β (t; a⃗) ∼t→0
tβ−1

Γ(β)
−

m∑
j=1

tβ−1+µj

Γ(β+µj)
, (A.5)

E(µ⃗),β (t; a⃗) ∼t→∞ a−1
2 tβ−µ2−1Eµ1−µ2,β−µ2

(
−a1a−1

2 tµ1−µ2
)
, (A.6)

respectively. Equation (A.1) implies the series representation of E(µ⃗),β(s; a⃗), that is

E(µ⃗),β (t; a⃗) =
∞∑
k=0

∑
k1+...+km=k
k1,...,km⩾0

(−1)k k!
k1! . . .km!

∏m
j=1 a

kj
j t

β−1+
∑m

j=0µjkj

Γ
(
β+

∑m
j=1µjkj

) (A.7)

from which it appears that we can represent the multinomial Prabhakar function by the sums
of the three-parameter ML function [92], i.e.

Eδ
µ,β (−λtµ) =

1
Γ(δ)

∞∑
r=0

Γ(δ+ r) (−λtµ)r

r!Γ(β+µr)
, (A.8)

whose the Laplace transform reads

L
{
tβ−1Eδ

µ,β (−λtµ) ;s
}
=

sµδ−β

(λ+ sµ)δ
. (A.9)

For δ= 1 the three-parameter ML function becomes a two-parameter ML function, while for
β = δ = 1 it becomes one parameter ML function. The asymptotic expansion of the three-
parameter ML function follows from the expression [93, 94]

Eδ
ρ,β (−z) =

z−δ

Γ(δ)

∞∑
n=0

Γ(δ+ n)
Γ(β− ρ(δ+ n))

(−z)−n

n!
, (A.10)

with z> 1, and 0< ρ < 2.
For example, for m= 2, we have

E(µ1,µ2),β (t;a1,a2) =
∞∑
j=0

(−a2)j tβ+µ2j−1E1+j
µ1,β+µ2j

(−a1tµ1) (A.11)

=
∞∑
j=0

(−a1)j tβ+µ1j−1E1+j
µ2,β+µ1j

(−a2tµ2) . (A.12)
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Moreover, equation (A.2) for m= 2 under condition |a1s−µ1 + a2s−µ2 |> 1 gives

E(µ1,µ2),β (t;a1,a2) =
∞∑
r=0

(−1)r

ar+1
1

tβ−µ2(r+1)−1Er+1
µ1−µ2,β−µ2(r+1)

(
−a2
a1
tµ1−µ2

)
(A.13)

=
∞∑
r=0

(−1)r

ar+1
2

tβ−µ1(r+1)−1Er+1
µ2−µ1,β−µ1(r+1)

(
−a1
a2
tµ2−µ1

)
. (A.14)

From equation (A.7) form= 3 after some laborious calculation can be derived, e.g. follow-
ing formula which is used in our manuscript

E(µ1,µ2,µ3),β (t;a1,a2,a3) =
∞∑
j=0

(−a3)j

j!

∞∑
k=0

(−a1)k

k!
(k+ j)!

× tβ−1+µ1k+µ3jEj+k+1
µ2,β+µ1k+µ3j

(−a2tµ2) .

(A.15)

Appendix B. Tauberian theorems [95]

If the Laplace transform pair r̂(s) of the function r(t) behaves like

r̂(s)∼ s−ρL
(
s−1
)
, s→ 0, ρ > 0, (B.1)

where L(t) is a slowly varying function at infinity, then r(t) has the following asymptotic
behaviour [95]

r(t)∼ 1
Γ(ρ)

tρ−1L(t) , t→∞. (B.2)

A slowly varying function at infinity means that

lim
t→∞

L(at)
L(t)

= 1, a> 0. (B.3)

The Tauberian theorem works also for the opposite asymptotic, i.e. for t→ 0.

Appendix C. The Volterra family functions

Volterra’s function is defined as follows [96–98]

µ(t,β,α) =
1

Γ(1+β)

ˆ ∞

0

tu+α uβ

Γ(u+α+ 1)
du, ℜ(β)>−1 and t> 0, (C.1)

whose particular cases are

α= β = 0 : ν (t) = µ(t,0,0) ,

α ̸= 0, β = 0 : ν (t,α) = µ(t,0,α) ,

α= 0, β ̸= 0 : µ(t,β) = µ(t,β,0) .

The Laplace transform of the Volterra’s function µ(t,β,α) is given by [98]

L {µ(t,β,α) ;s}= 1

sα+1 logβ+1 s
. (C.2)
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Appendix D. Derivation of equation (84)

Since,

ˆ ∞

0
e−stta

(
logλ−1 t

)
dt=

∂λ−1

∂aλ−1

ˆ ∞

0
e−sttadt=

∂λ−1

∂aλ−1

{
Γ(a+ 1)
sa+1

}
= I1−λ

0

{
Γ(a+ 1)
sa+1

}
=

Γ(a+ 1)
Γ(1−λ)

ˆ s

0
(s− t)−λ t−a−1dt=

Γ(a+ 1)Γ(−a)
sλ+aΓ(1−λ− a)

,

(D.1)

for a=−1/2, we getˆ ∞

0
e−stt−1/2

(
logλ−1 t

)
dt=

π

sλ−1/2Γ(3/2−λ)
, 0< λ < 1. (D.2)

Here I1−λ
0 denotes the Riemann–Liouville (fractional) integral, defined by [50, 55]

(Iµa f)(t) =
1

Γ(µ)

ˆ t

a

f(τ)

(t− τ)
1−µ

dτ, t> a, ℜ(µ)> 0. (D.3)

Then,

kBT γ̂ (s) =
ˆ 1

0
Γ(3/2−λ)dλ

[ˆ ∞

0
e−stt−1/2

(
logλ−1 t

)
dt

]
= π

√
s
ˆ 1

0

dλ
sλ

= π
s− 1√
s logs

.

(D.4)
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