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Abstract. Using the Kalinay and Percus projection method a new effective diffusion coefficient
is found. This diffusivity generalizes the well-known results previously reported in the literature.
Specifically, it is a coefficient that can be applied to two-dimensional asymmetrical channels
under an external gravitational-like potential. Furthermore, Brownian Dynamics simulations
are performed, and their agreement with the theoretical results is shown. Also, the Mean First-
Passage Time is studied for two-dimensional straight conical channels, where the analytical
results are analyzed to understand its applicability range using numerical methods, which
are compared with Brownian Dynamics simulations. A remarkable result is also presented:
the Mean First-Passage Time assumes a minimum at finite values of the external potential
amplitude.

1. Introduction
The diffusion coefficient is a quantity that can be used to describe transport in a system. For
a free system, it is customary to use a diffusion constant (D0). Once confinement or external
field influence is imposed, it is necessary to extend the model by using the effective diffusive
coefficient [1] (Deff or D(x)) that, in this case, depends on the x-coordinate. Second Fick’s
law provides us [2] with a basic description of free systems but Fick-Jacobs [3] and even better,
Fick-Jacobs-Zwanzig [4] equations improve the models. Later Reguera and Rubi proposed [5] a
new heuristically-found coefficient enhancing Zwanzig’s result. Kalinay and Percus used their
method [6], named projection method [7] to make an even better description of diffusive systems.
The last procedure was used by Kalinay himself [8] to describe a symmetrical channel under
transverse gravitational force.

Using the so-called projection method, we are looking to derive an effective diffusion coefficient
for narrow channels that generalizes previously reported results. This is, a position-dependant
diffusion coefficient for two-dimensional asymmetric channels under a transverse gravitational
external field [9]. To be consistent, it must contain the well-known previous results for symmetric
channels with external gravitational force, as well as asymmetrical cases where the transverse
field goes to zero, and also, the cases where the asymmetry of the system and external potential
fields are absent.

Instead of the experimental way to compare the theoretical models, a computational approach
can be used to verify their range of applicability [10]. For our kind of models, i.e., point-like
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and non-interacting particles, it is appropriate to use Brownian dynamics simulations [1] with
the addition of an external force which is the gravitational one.

2. Previous Works
For quasi-one-dimensional channels, one can map noninteracting point-like particle motion onto
an effective one-dimensional (1D) description in terms of the diffusion along the midline of
the channel y0(x), as a function of the longitudinal coordinate x. The so-called Fick-Jacobs
(FJ) approach consists of eliminating transverse stochastic degrees of freedom by assuming fast
equilibration in such a direction. The associated approximate description relies on the modified
Fick-Jacobs-like equation derived by Zwanzig (Zw) for the probability density in the channel
c(x, t) [4]

∂c(x, t)

∂t
=

∂

∂x

{
D(x)w(x)

∂

∂x

[
c(x, t)

w(x)

]}
, (1)

where D(x) is a position-dependent diffusion coefficient and w(x) the channel width. The
effective 1D probability density, c(x, t), is related to the 2D probability density ρ(x, y, t) by

c(x, t) =

∫
w(x)

ρ(x, y, t)dy. (2)

In fact, equation (1) is formally equivalent to the Smoluchowski equation [4]

∂ρ(x, y, t)

∂t
=

(
Dx

∂

∂x
e−βU(x,y) ∂

∂x
eβU(x,y) +Dy

∂

∂y
e−βU(x,y) ∂

∂y
eβU(x,y)

)
ρ(x, y, t). (3)

The expression for the position-dependent effective diffusion coefficient for a narrow 2D channel
of varying width that has a straight midline derived by Zw is as follows [4]:

D(x) ≈ DZw(x) =
D0

1 + 1
12w

′2(x)
, (4)

where w′(x) = dw(x)/dx. Later, Reguera and Rubi (RR) generalized Zwanzig’s expression, and
based on heuristic arguments, they suggested [5],

D(x) ≈ DRR(x) =
D0[

1 + 1
4w

′2(x)
]η , (5)

where η = 1/3 and 1/2, for 2D channels and three-dimensional tubes, respectively. For cases in
which the diffusion of a Brownian particle takes place in a narrow 2D channel with a non-straight
midline and varying width, i.e., an asymmetric channel, Bradley (Br) generalized Zwanzig’s
equation as follows [11]:

D(x) ≈ DBr(x) =
D0

1 + y′20 (x) +
1
12w

′2(x)
, (6)

where y0(x) is the center line of the channel. By setting y′(x) = 0 in equation (6), we arrive to
equation (4). When diffusion takes place into a tilted 1D line, by setting w′(x) = 0, equation
(6) reads as,

D(x) ≈ D1D(x) =
D0

1 + y′20 (x)
. (7)
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3. Projection Method
A brief outline of the projection method [1] will be stated in this section. The first step is to
take the 2D Smoluchowski Eq. (3), choosing for this particular case a gravitational-like potential
U(y) = Gy, where g ≡ βG. Now the one-dimensional density is calculated by taking the integral
of the particle density ρ(x, y, t)

c(x, t) =

∫ h2(x)

h1(x)
ρ(x, y, t) dy. (8)

This should be done inside the system’s boundaries. The next step is to obtain an equilibrium
solution for density by assuming Dy → ∞, this is a transverse-directional equilibrium. This
solution can be easily written as

ρ0(x, y, t) =
1

A(x)
e−gyc(x, t), (9)

where A(x) is a normalization function that contains boundaries and potential information
encoded inside. Now we can see ρ as the result of a perturbative series in ε ≡ Dx/Dy

ρ(x, y, t) = e−gy
∞∑
n=0

εnω̂n(x, y, ∂x)
c(x, t)

A(x)
. (10)

After applying the usual techniques for series solutions, the key assumption of a stationary
regime for long times (∂tc(x, t) = 0) is made, then we can find D(x).

3.1. Developments made with the projection method
Using the projection method, Kalinay and Percus (KP) obtained the following for a 2D channel
[7]:

D(x) ≈ DKP (x) =
arctan (w′(x)/2)

w′(x)/2
D0. (11)

Later, assuming that the channel width is a slowly varying function of x, |dw(x)/dx| = |w′(x)| �
1, Dagdug and Pineda (DP) obtained the following equation for an asymmetric channel [12]:

D(x) ≈ DDP (x) =D0

⎡
⎣arctan

(
y′0(x) +

w′(x)
2

)
w′(x)

−
arctan

(
y′0(x)− w′(x)

2

)
w′(x)

⎤
⎦ . (12)

This last equation generalizes KP’s result for symmetric to asymmetric channels and reduces
to the latter when the channel has a straight midline parallel to the x-axis, and y′(x) = 0,
Eq. (11). Moreover, the equation obtained by Bradley, Eq. (6), is a truncated expansion of
equation (12) when the Taylor series is kept up to the first order in w′(x) and y′0(x). By the same
means, Kalinay [8] obtained the following coefficient considering an entropic and gravitational-
like potential coexistence inside a symmetric channel:

DKg(x)

D0
≈1− h′2

sinh2 gh

(
1 + cosh2 gh− 2gh coth gh

)
+

h′4

sinh6 gh

(
sinh4 gh cosh2 gh− gh

2
sinh 2gh

× (
17 sinh2 gh+ 36

)
+ gh2

(
7 sinh4 gh+ 40 sinh2 gh+ 36

))
. (13)
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Inspired by RR’s work, Kalinay proposed to write Eq. (13) with the same structure as Eq. (5),
but with the exponent η dependent on gh(x), namely,

η(gh) =
1

sinh2 gh

(
1 + cosh2 gh− 2gh coth gh

)
, (14)

where η(gh(x)) goes from 1/3 to 1, from negligible G to the strong field case, respectively.

4. Brownian Dynamics Simulations
Simulations were performed using Fortran, and C codes, parallelizing the execution of the
programs. All realizations were made with Δt = 10−8 and 5.0 × 104 particles. The probe
channels have a period of L = 1 and external potential G = 0, 5, 10, 20, 50, (for n → w
also 105). The simulation realizations were conducted with channel boundaries’ defined by
h2(x) = λx+ 0.1 = −h1(x).

5. Results
5.1. Effective Diffusion Coefficient
Following the method proposed by KP, we found that the known results for two-dimensional
narrow channels could be generalized by

D(x)

D0
= 1− w′2

4 sinh2
[
1
2gw

] {
1 + cosh2

[
1

2
gw

]
− gw coth

[
1

2
gw

]}

− y′0

{
y′0 − w′ coth

[
1

2
gw

]
+

1

2
gww′ csch2

[
1

2
gw

]}
,

(15)

and approximately written using the RR interpolation formula (5) with

η =
1

sinh2
[
1
2gw

] {
1 + cosh2

[
1

2
gw

]
− gw coth

[
1

2
gw

]}

+ 4
y′0
w′2

{
y′0 − w′ coth

[
1

2
gw

]
+

1

2
gww′ csch2

[
1

2
gw

]}
.

(16)

Above equations contains the channel width w(x) = h2(x) − h1(x), the midline y0(x) =
[h1(x) + h2(x)] /2 and their respective derivatives.

5.2. Mean First-passage Time
The Mean First-passage time (MFPT) is the probability of a diffusing particle being absorbed
by a boundary for the first time. Considering a one-dimensional system, it satisfies the following
equation[13]:

1

A(x0)

d

dx0

[
D(x0) A(x0)

dτ(x0)

dx0

]
= −1, (17)

where τ(x0) is the MFPT, x0 is the initial position of the Brownian particle, and the
normalization function A contains information about the entropy and energy barriers.
Furthermore, for a two-dimensional system of length L and variable width w(x) under the
influence of a transverse gravitational-like external field G, where the boundaries define a straight
conical shape, we need to consider two separate cases, which are



3rd International Workshop on Statistical Physics
Journal of Physics: Conference Series 2839 (2024) 012004

IOP Publishing
doi:10.1088/1742-6596/2839/1/012004

5

τ(x0)→
{
τn→w = τ(x0 = 0→ L)

τw→n = τ(x0 = L→ 0)
, (18)

which represents the transitions of the particle from the narrow to the wide end of the channel
(n → w), and the transition from the wide to the narrow end of the channel (w → n),
respectively. Both cases are depicted in the panels of Figure 3.

Figure 1. MFPT for wide-to-narrow channels where the predicted theoretical (numerical) values
are shown as continuous lines, while the values obtained from Brownian dynamics simulations
are depicted as symbols. The channel of length L = 1 is formed by reflecting boundaries
h1(x) = −λx − 0.1 and h2(x) = λx + 0.1. The limiting case g → 0 is also shown by a black
dashed line. The left figure shows the MFPT as a function of the slope of the boundaries λ,
while the right figure shows the MFPT as a function of the strength of the external field g.

Figure 2. MFPT for narrow-to-wide channels where the predicted theoretical (numerical) values
are shown as continuous lines, while the values obtained from Brownian dynamics simulations
are depicted as symbols. The channel of length L = 1 is formed by reflecting boundaries
h1(x) = −λx − 0.1 and h2(x) = λx + 0.1. The limiting cases g → 0 and g → ∞ are also
shown by black dashed lines. The left figure shows the MFPT as a function of the slope of
the boundaries λ, while the right figure shows the MFPT as a function of the strength of the
external field g.
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The boundary conditions to solve the Eq. (17) are

τn→w(x0)

∣∣∣∣
x0=L

=
dτn→w(x0)

dx0

∣∣∣∣
x0=0

= 0, (19)

and

τw→n(x0)

∣∣∣∣
x0=0

=
dτw→n(x0)

dx0

∣∣∣∣
x0=L

= 0. (20)

The solutions for the equation (17) are found in terms of quadratures:

τn→w(x0) =

∫ L

x0

dx

D(x)A(x)

∫ x

0
A(y) dy, (21)

τw→n(x0) =

∫ x0

0

dx

D(x)A(x)

∫ L

x
A(y) dy. (22)

6. Conclusions
We obtained a theoretical expression for the MFPT, which has to be solved numerically because
of the complexity of the diffusivity. Also, Brownian dynamics simulations were performed to
check the agreement with the theoretical results in the narrow-to-wide and the wide-to-narrow
cases. Despite some deviations observed for the wide-to-narrow case at intermediate channel
boundary slopes and larger g values, the general predictions of the approximate Fick-Jacobs
equation (1D description) are validated.

In the narrow-to-wide setting a remarkable effect is observed as the MFPT is not bounded
by the limiting case g → ∞. This result can be interpreted as an optimum interplay between
the entropic potential exerted by the channel boundaries and the gravitational-like force acting

Figure 3. Depiction of a two-dimensional asymmetric conical channel with straight walls under
a gravitational-like (constant) force G represented as a downwards arrow. The upper boundary
is defined by h2(x) = λ2x+b, while the lower boundary is given by h1(x) = λ1x−b. The straight
midline of the channel is y0(x) = [h1(x)+h2(x)]/2, and its variable width is w(x) = h2(x)−h1(x).
The panel (a) is an expanding channel, this is, a narrow-to-wide (n → w) particle transition
and a reflected boundary is located at x = 0, and the particle is removed from the channel by
an absorbing boundary at x = L. Panel (b) shows a narrowing channel, where the particle’s
transition is from a wide-to-narrow ends (w → n), in such case, the hard reflecting boundary is
placed at x = L and the absorbing wall is present in the position x = 0.
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over the system. This interplay is not present in the case where the external force is very high
as the particle is pinned down to the channel wall vanishing the effect of the entropic force.

Control over exit time can be made by changing the boundaries and the external potentials
applied to the diffusive system. This may allow the development of applications such as particle
separation, gatting, catalysis, and fluid mixing, among others.
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[1] Dagdug L, Peña J and Pompa-Garćıa I 2024 Diffusion Under Confinement: A Journey Through

Counterintuition (Springer) ISBN 978-3-031-46474-4
[2] Fick D A 1855 London, Edinburgh Dublin Philos. Mag. J. Sci. 30–39
[3] Jacobs M H 1935 Diffusion Processes Diffusion Processes (Springer Berlin Heidelberg) p 145
[4] Zwanzig R 1992 J. Chem. Phys. 96 3926–3930
[5] Reguera D and Rub́ı J M 2001 Phys. Rev. E 64 061106
[6] Kalinay P and Percus J K 2005 J. Chem. Phys. 122 204701
[7] Kalinay P and Percus J K 2006 Phys. Rev. E 74 041203
[8] Kalinay P 2011 Phys. Rev. E 84 011118
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