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Aging and confinement in subordinated fractional Brownian motion
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We study the effects of aging properties of subordinated fractional Brownian motion (FBM) with drift and in
harmonic confinement, when the measurement of the stochastic process starts a time ta > 0 after its original
initiation at t = 0. Specifically, we consider the aged versions of the ensemble mean-squared displacement
(MSD) and the time-averaged MSD (TAMSD), along with the aging factor. Our results are favorably compared
with simulations results. The aging subordinated FBM exhibits a disparity between MSD and TAMSD and is
thus weakly nonergodic, while strong aging is shown to effect a convergence of the MSD and TAMSD. The
information on the aging factor with respect to the lag time exhibits an identical form to the aging behavior
of subdiffusive continuous-time random walks (CTRW). The statistical properties of the MSD and TAMSD
for the confined subordinated FBM are also derived. At long times, the MSD in the harmonic potential has a
stationary value, that depends on the Hurst index of the parental (nonequilibrium) FBM. The TAMSD of confined
subordinated FBM does not relax to a stationary value but increases sublinearly with lag time, analogously to
confined CTRW. Specifically, short aging times ta in confined subordinated FBM do not affect the aged MSD,
while for long aging times the aged MSD has a power-law increase and is identical to the aged TAMSD.
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I. INTRODUCTION

Anomalous diffusion processes have been widely observed
in diverse systems of physics, chemistry, biology, and hydro-
geology [1–12], featuring a power law form

〈x2(t )〉 = 2Dρtρ (1)

of the mean-squared displacement (MSD), where the gener-
alized diffusion coefficient has physical dimension [Dρ] =
length2/timeρ , and the anomalous diffusion exponent dis-
tinguishes the regimes of subdiffusion with 0 < ρ < 1 and
superdiffusion with ρ > 1, including the special cases of
Brownian motion with ρ = 1 and ballistic diffusion with
ρ = 2 [13–15]. Inter alia, subdiffusion was observed for the
passive motion of submicron tracers in living biological cells
[16–19], of lipids and proteins in membranes [20–24], bacte-
ria in biofilms [25], or water diffusion in rat brain tissues [26].
Superdiffusion fueled by molecular motors was observed for
virus motion in cells [27], messenger ribonucleoproteins in
neuronal cells [28], vacuoles in amoeba cells [29], amoeba
cells themselves [30,31], in mussel colonies [32], tracer dis-
persion in aquifers [33,34], or for water absorption in swelling
soil [35].

Anomalous diffusion may emerge from a variety of physi-
cal stochastic processes, including the famed continuous-time
random walk (CTRW) and fractional Brownian motion
(FBM). The CTRW model introduced by Montroll and Weiss

*Contact author: liangyj@hhu.edu.cn
†Contact author: weiwangnuaa@gmail.com
‡Contact author: rmetzler@uni-potsdam.de

[36] generalizes a random walk in such a way that the particle
waits for a random time between jumps. When the mean
waiting time diverges, subdiffusion emerges, and the anoma-
lous diffusion exponent ρ equals the scaling exponent α of
the waiting-time probability density function (PDF) ψ (t ) �
t−1−α . Such subdiffusive CTRW was found in highly het-
erogeneous media such as amorphous semiconductors [37],
live cell membranes [24], glass-forming liquids [38], and sand
columns [39]. Power-law waiting times were discussed in the
context of transmission errors in telephone circuits by Berger
and Mandelbrot in 1963 [40]. CTRWs with power-law waiting
times were considered by Montroll and Scher in 1973 [41],
see also the work by Shlesinger [42]. For more details we
refer to the review by Bouchaud and Georges [43] and the
book by Hughes [44]. The FBM model originally devised by
Kolmogorov [45] and further developed by Mandelbrot and
van Ness [46], is a non-Markovian process driven by zero-
mean, stationary Gaussian noise with long-range correlations.
FBM has been applied to describe anomalous diffusion in
complex liquids [47,48], living cells [49], brain fibers [50],
and financial markets [51]. In a comparative study dissecting
the observed motion in terms of the Mandelbrot scaling expo-
nents, a diverse range of processes, from molecular diffusion
to the motion of larger animals such as storks or vultures,
long-range dependencies, were detected [52,53].

There exist a growing number of data from single-particle
tracking studies [54–58] indicating that the observed motion
corresponds to a stochastic process featuring more than a sin-
gle generating mechanism. Therefore, compound processes
with more multifaceted statistical characteristics are required.
In particular, we here mention systems in which CTRW
and FBM exist simultaneously. These include the motion of
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insulin granules in living MIN6 insulisoma cells [59], of nico-
tinic acetylcholine membrane receptors [60], nanosized tracer
objects in the cytoplasm [10], drug molecules confined by
silica slabs [58], and of voltage-gated sodium channels on the
surface of hippocampal neurons [61]. A process combining
FBM and CTRW was recently studied [61] in terms of a
subordination concept [62–64], i.e., FBM subordinated via
a stable subordinator. In our previous work, the statistical
properties of this stochastic process with an external drift
were studied, revealing features of non-Gaussianity and non-
ergodicity [65]. Here we address the question on the aging
properties and confinement of such a process.

Particular focus in our study will be put on aging prop-
erties. Aging in the sense pursued here is the response to
the observed dynamics to a time delay between the original
initiation of the physical process at t = 0 and the start of the
observation at some time ta > 0. Aging is a key property of
glassy systems [66] but was also rationalized in polymeric
semiconductors [67], living MIN6 insulisoma cells [59], the
surface of hippocampal neurons [61], groundwater systems
[33,34], and quantum dots [68]. The CTRW model is an aging
process [69], contrasting the nonaging of FBM [15]. Here we
will analyze the aging properties of subordinated FBM. Apart
from free motion and motion in the presence of a drift, we here
also consider the motion in a harmonic potential. Pure FBM
and CTRW in an external harmonic potential were studied
previously [70–79]. In particular, it was shown that the en-
semble MSD and time-averaged MSD (TAMSD) for confined
FBM initially grows as a free FBM and reaches a stationary
plateau at long times [70]. The ensemble MSD of confined
subdiffusive CTRW initially grows as a free CTRW and
reaches a plateau at long times; in contrast to FBM, however,
the behavior of the TAMSD is different: instead of reaching
a plateau it continues to grow as a power law with scaling
exponent 1 − α [73,78]. We here investigate analytically and
numerically the statistical properties of aging subordinated
FBM with drift and confined in a harmonic potential.

This paper is organized as follows. In Sec. II, subordinated
FBM with drift and its properties are introduced. Section III
focuses on the aging effects on MSD, TAMSD, and the aging
factor of subordinated FBM. Section IV investigates the statis-
tical properties of MSD and TAMSD of confined subordinated
FBM. Finally, in Sec. V we conclude.

II. SUBORDINATED FBM WITH DRIFT

We start with a primer on the main properties of sub-
ordinated FBM with drift in the absence of aging [61,65].
Subordination here means that a process defined in terms of
the operational time s is then transformed to the process in real
time t , i.e., x(t ) ≡ x(s(t )), in terms of the coupled stochastic
Langevin equations [80–84]

dx(s)

ds
= v +

√
2DζH (s),

dt (s)

ds
= ε(s), (2)

where v, if different from zero, is the constant drift velocity.
Without loss of generality we set D = 1/2. ζH (s) is the so-
called fractional Gaussian noise with zero mean, defined by
its correlation function for t1 �= t2,

〈ζH (t1)ζH (t2)〉 ∼ H (2H − 1)|t1 − t2|2H−2. (3)

Here H denotes the Hurst exponent 0 < H < 1. For pure
FBM the Hurst exponent H gives rise to the ensemble MSD
Eq. (1) with ρ = 2H .

ε(s) is the one-sided Lévy stable noise [85], which is the
formal derivative of the Lévy stable subordinator t (s) with
stability index 0 < α � 1. The Lévy stable subordinator is a
nondecreasing Lévy process with stationary and independent
increments. The one-sided Lévy stable distribution is defined
in terms of its Laplace transform [86]

L̂+
α (p) =

∫ ∞

0
L+

α (t ) exp(−pt )dt = exp (−pα ). (4)

The inverse subordinator s(t ) is defined as s(t ) = inf{s > 0 :
t (s) > t} and is called the hitting time or first-passage time
process [87], which can be considered as the limit process of
the CTRW with a heavy-tailed waiting time PDF. The inverse
subordinator s(t ) is responsible for the subdiffusive behavior
with long rests of the particle and the parental process x(s)
above introduces FBM with drift. Both of x(s) and s(t ) deter-
mine the properties of subordinated FBM.

The moments 〈xn(t )〉 of x(t ) defined in Eq. (2) are [86]

〈xn(t )〉 =
∫ ∞

0
〈xn(s)〉h(s, t )ds, (5)

where 〈xn(s)〉 represent the moments of the parental FBM
process, and the PDF of the inverse stable subordinator s(t )
reads

h(s, t ) = t

αs1+1/α
L+

α

(
t

s1/α

)
, (6)

in terms of the one-sided Lévy stable distribution L+
α . For the

general distribution L+
α in Eq. (6) the first and second moments

were obtained in the form [65]

〈x(t )〉 = v

�(1 + α)
tα (7)

and

〈x2(t )〉 = �(1 + 2H )

�(1 + 2Hα)
t2Hα + 2v2

�(1 + 2α)
t2α. (8)

The MSD of the subordinated process is then given by

〈�x2(t )〉 = �(1 + 2H )

�(1 + 2Hα)
t2Hα

+
(

2

�(1 + 2α)
− 1

�(1 + α)2

)
v2t2α, (9)

in which the drift term does not cancel out and will asymptot-
ically dominate. We note that for 1/2 < α < 1 this dominant
behavior is superdiffusive, a finding known from biased
subdiffusive CTRWs [37,88]. Intuitively, this behavior is a
consequence of the fast transport of mobile particles, sepa-
rating rapidly from the particles still trapped at the origin. In
contrast to biased Brownian motion for which the relative par-
ticle spread becomes ever sharper,

√
〈�x2(t )〉/〈x(t )〉 � t−1/2

[37,88], in subdiffusive CTRW this quantity converges to a
constant, i.e., the process remains smeared out—effecting the
power-law shape of the first-passage times [89]. In our case
here we see that for α = 1 the ballistic term in the MSD
Eq. (9) vanishes and, similarly,

√
〈�x2(t )〉/〈x(t )〉 � tH−1 de-

cays as function of time.
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The TAMSD is defined as [4,15]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt, (10)

where T is referred to as the measurement time (length of
the time series) and � is called the lag time which defines
the width of the window slid along the time series x(t ).
The TAMSD is thus the appropriate statistical observable to
evaluate single-particle trajectories [4] when only few but
long trajectories are available from experiment. Ergodicity is
here understood in the Boltzmann-Khinchin-Birkhoff sense
that for sufficiently long trajectories the magnitudes of the
MSD and the TAMSD in the limit �/T → 0 are identical
[13,15,73].

For subordinated FBM [65], the explicit increment reads

〈[x(t + �) − x(t )]2〉

= 2v2

�(α)�(2 + α)
2F1

(
1, 1 − α; 2 + α; −�

t

)
�1+α

t1−α

+ �(1 + 2H )

�(α)�(2 − α + 2Hα)

× 2F1

(
1, 1 − α; 2 − α + 2Hα; −�

t

)
�1−α+2Hα

t1−α
.

(11)

Here 2F1 denotes the hypergeometric function [90]. In the
limit of short lag times �/T � 1, the TAMSD becomes [65]

〈δ2(�)〉 ∼ 2v2

α�(α)�(2 + α)

�1+α

T 1−α

+ �(1 + 2H )

α�(α)�(2 − α + 2Hα)

�1−α+2Hα

T 1−α
. (12)

The disparity between the TAMSD and the ensemble MSD
reflects the weak ergodicity breaking caused by the diverging
waiting-time scale in subdiffusive CTRW [15,91].

III. AGING EFFECTS IN SUBORDINATED
FBM WITH DRIFT

We now turn to the effects of aging, when the observa-
tion starts a time ta > 0 after the system initiation. Without
limiting generality we use the convention that the system is
prepared at t = 0.

A. Mean-squared displacement

The aging MSD in subordinated FBM can be derived in the
form [92,93]〈
x2

a (ta, t )
〉 = 〈[x(ta + t ) − x(ta)]2〉

= 2v2

�(α)�(2 + α)
2F1

(
1, 1 − α; 2 + α; − t

ta

)
t1+α

t1−α
a

+ �(1 + 2H )

�(α)�(2 − α + 2Hα)

× 2F1

(
1, 1 − α; 2 − α + 2Hα; − t

ta

)
t1−α+2Hα

t1−α
a

.

(13)

FIG. 1. MSD for aged subordinated FBM with drift v = 1 and
different values of the Hurst exponent H and the waiting-time scaling
exponent α. The data points with the corresponding color correspond
to different aging times ta. The dashed curves in the same colors
represent Eq. (13), and the dashed black curves of the asymptotic
forms t1+α are derived from Eq. (14), while t2α is derived from
Eq. (15). Parameters: trajectory lengths T = 104, elementary time-
step dt = 0.1, and number of trajectories n = 300.

When aging is pronounced, t � ta, the aging MSD takes on
the limiting form

〈
x2

a (ta, t )
〉 ∼ 2v2

�(α)�(2 + α)

t1+α

t1−α
a

+ �(1 + 2H )

�(α)�(2 − α + 2Hα)

t1−α+2Hα

t1−α
a

. (14)

When α = 1, both expressions (13) and (14) reduce to the
nonaging MSD Eq. (8). This case α = 1 with finite charac-
teristic waiting time, as expected, does not exhibit any aging
effects, analogous to standard FBM [75,93,94] or Brownian
motion when H = 1/2 [91].

In the opposite case t � ta, the aged MSD is

〈
x2

a (ta, t )
〉 ∼ 2v2

�(1 + 2α)
[t2α + (α − 1)tat2α−1]

+ �(1 + 2H )

�(1 + 2Hα)
[t2Hα + (α − 1)tat2Hα−1]. (15)

Thus, when the aging time ta is small as compared to the
process time t , the ensemble MSD Eq. (15) is the same as
the nonaged MSD in Eq. (8).

Figure 1 shows the analytical results along with stochastic
simulations of the aged MSD with drift v = 1 for the Hurst
exponents H = 0.2 and H = 0.8, and for the waiting-time
scaling exponents α = 0.2 and α = 0.8. The analytical results
are in nice agreement with the simulations. In particular, for
progressively longer aging times ta the crossover from the
aging-controlled scaling t1+α to the anomalous scaling t2α is
nicely visible in the aged MSD with drift.

In Fig. 2 we depict the results of our analytical calculations
and stochastic simulations of the aged MSD without drift.
The values of the aged MSD grow faster with time for aged
subordinated FBM with drift as compared to the same motion
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FIG. 2. MSD for aged subordinated FBM without drift v = 0.
The dashed curves in the same colors represent Eq. (13), while the
dashed black curves of the asymptotic forms t1−α+2Hα are derived
from Eq. (14), t2Hα from Eq. (15). Other parameters as in Fig. 1 (in
this and all other plots of the main text, if not specified otherwise).

in absence of the drift. For longer aging times ta the crossover
from the aging-controlled anomalous scaling t1−α+2Hα to the
anomalous scaling t2Hα is clearly observed in the aged MSD
without drift.

B. Time-averaged mean-squared displacement

The aged TAMSD is defined as

δ2(�; ta) = 1

T − �

∫ ta+T −�

ta

[x(t + �) − x(t )]2dt, (16)

where, as before, T is the measurement time and � is the time
lag.

Following the above physical measurement scenario, the
mean of the aged TAMSD

〈δ2(�; ta)〉 = 1

N

N∑
i=1

δ2
i (�; ta) (17)

over N trajectories labeled with the index i, for � � T can be
derived as

〈δ2(�; ta)〉 ∼ 2v2

α�(α)�(2 + α)
�1+α (ta + T )α − taα

T

+ �(1 + 2H )

α�(α)�(2 − α + 2Hα)
�1−α+2Hα

× (ta + T )α − taα

T
. (18)

When ta � T we recover the known result given in Eq. (12)
in the absence of aging. In the limit ta � T of strong aging,
the TAMSD in Eq. (18) reduces to the form

〈δ2(�; ta)〉 ∼ 2v2

�(α)�(2 + α)

�1+α

t1−α
a

+ �(1 + 2H )

�(α)�(2 − α + 2Hα)

�1−α+2Hα

t1−α
a

. (19)

FIG. 3. TAMSD for aged subordinated FBM with drift v = 1.
The colored dashed curves represent Eq. (18), and the dashed black
curves show the asymptotic form �1+α derived from Eq. (18).

In the limit of strong aging, the aged TAMSD is equivalent
to the aged MSD Eq. (14), and thus ergodicity is restored,
as already observed for aging CTRW [93] and aging-scaled
Brownian motion [95]. This can be understood because in
this limit, when measurement time T is much shorter than
the aging time ta, the increments in the TAMSD Eq. (16),
x(t + �) − x(t ), t ∈ [ta, ta + T − �] change only marginally
and are almost identical to x(ta + �) − x(ta). However, we
note that due to its nonstationary nature the system still ex-
plicitly depends on the aging time ta even in the limit when ta
tends to infinity.

Figure 3 shows the results of our analytical calculations
and stochastic simulations of the aged TAMSD with drift v =
1. The simulated aged TAMSD reveals good agreement with
the analytical form Eq. (18). The anomalous scaling � �1+α

is accurately captured.
In Fig. 4 we present the results of our analytical calcu-

lations and stochastic simulations of the aged MSD without
drift. The values of the aged TAMSD grow much faster with

FIG. 4. TAMSD for aged subordinated FBM without drift, v =
0. The colored dashed represent Eq. (18), the dashed black curves
show the asymptotic form �1−α+2Hα derived from Eq. (18).
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FIG. 5. Aging factor for aged subordinated FBM with drift v = 1
and for different measurement times T . The solid dark curves repre-
sent Eq. (20).

time for aged subordinated FBM with drift as compared to the
same motion in absence of the drift. The anomalous scaling
� �1−α+2Hα is nicely visible.

C. Aging factor

The aging factor 
(ta/T ) describes the ratio of the aged
versus the nonaged TAMSDs [92,93]. Based on Eq. (18), the
aging factor follows the asymptotic form


(ta/T ) = 〈δ2(�; ta)〉
〈δ2(�; ta = 0)〉

∼ (1 + ta/T )α − (ta/T )α. (20)

We find that this result is the same as that for pure subdiffusive
CTRW motion [92,93], as expected. Note that the same form
is also obtained for other anomalous diffusion processes, such
as scaled Brownian motion [95] or heterogeneous diffusion
processes [96]. Here we conclude that subordinated FBM in-
herits the aging properties from the scale-free CTRW process.
In the nonaging limit, we see that 
(0) = 1, and in the limit
of very strong aging, limz→∞ 
(z) = 0. It emerges that the
particles move into areas with low diffusivity, in which they
will encounter more and more long waiting times during the
aging period. Such scenarios may be found in amorphous
semiconductors or groundwater tracer motion [69,97], or for
cement fluidity studies with different ages [98].

Figures 5 and 6, respectively, show the results of analytical
calculations and stochastic simulations of the aging factor for
subordinated FBM with drift v = 1 and without drift v = 0.
The agreement of the simulations with Eq. (20) is good, par-
ticularly for cases with larger values of α.

IV. CONFINED SUBORDINATED FBM

We finally turn to confined subordinated FBM in an exter-
nal harmonic potential of the form U (x) = kx2/2, where k is
the stiffness of the trap. This causes a linear restoring force
on the process x(s). The corresponding coupled Langevin

FIG. 6. Aging factor for aged subordinated FBM without drift
v = 0 and different measurement times T . The solid dark curves
represent Eq. (20).

equations read

dx(s)

ds
= −kx(s) + ζH (s),

dt (s)

ds
= ε(s). (21)

For the initial condition x(0) = 0, the MSD of the parental
FBM process in operational time s is [70]

〈x2(s)〉 = γ (2H + 1, ks)

2k2H
+ s2H e−ks − k

4H + 2
s2H+1e−2ks

× M(2H + 1, 2H + 2, ks), (22)

where γ (x, y) is the lower incomplete Gamma function [99]

γ (x, y) =
∫ y

0
ux−1e−udu, (23)

and M(x, y, z) is the Kummer function of the first kind [100],

M(x, y, z) = �(y)

�(x)�(y − x)

∫ 1

0
ezuux−1(1 − u)y−x−1du.

(24)

The MSD 〈x2(t )〉 of the subordinated process then follows
from application of Eq. (5). This MSD can be calculated
numerically. For the special case H = 1/2, the MSD can be
explicitly calculated as [78]

〈x2(t )〉 = 1

2k
− 1

2k
Eα (−2ktα ), (25)

where Eα (−z) = ∑∞
i=0(−z)i/�(1 + αi) is the Mittag-Leffler

function [101]. At short times the MSD for arbitrary H co-
incides with free-subordinated FBM as given in Eq. (8) with
v = 0, and at long times it arrives at the stationary value

〈x2(t )〉st ∼ �(2H + 1)

2k2H
. (26)

We note that this value is independent of α. This is due to the
fact that subdiffusive CTRWs relax towards the equilibrium
Boltzmann density in confinement [13,77]. FBM, in contrast,
is a nonequilibrium process driven by external noise [102] and
therefore 〈x2(t )〉st explicitly depends on H [103].
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FIG. 7. MSD for confined subordinated FBM. The colored solid
curves represent Eq. (5) with Eqs. (6) and (22). The colored dashed
curves are from Eq. (8), and the dashed black lines are from Eq. (26).
Inset: enlargement of the MSD for H = 0.2. Parameters: k = 0.1,
α = 0.8, trajectory lengths T = 103, elementary time-step dt = 0.1,
and number of trajectories n = 300.

Figure 7 shows the results of our analytical calculations
and stochastic simulations of the MSD for confined subordi-
nated FBM with the Hurst exponents H = 0.2, H = 0.5, and
H = 0.8, and for the waiting-time scaling exponent α = 0.8.
The analytical results are in nice agreement with the simu-
lations. At short times t � k−1/α the MSD is the same as
that of free-subordinated FBM as given by Eq. (8), while at
long times t � k−1/α (independent of H) it saturated to the
stationary value given by Eq. (26). In particular for H = 0.2,
the subdiffusive particle overshoots before a decrease back
to the stationary value (see inset in Fig. 7). This interesting
feature of the relaxation dynamics on intermediate time scales
was also found for confined pure FBM [70,75,76].

To calculate the TAMSD for confined subordinated FBM,
we follow the strategy based on the autocorrelation function
given in our previous work [65]. At short times the TAMSD
is the same as the one for free-subordinated FBM as given in
Eq. (12) with v = 0. Different from the asymptotic plateau
of the MSD, at long lag times � � k−1/α the TAMSD of
confined subordinated FBM is sublinearly dependent on lag
time �:

〈δ2(�)〉st ∼ �(2H + 1)

k2H

sin(απ )

α(1 − α)π

(
�

T

)1−α

. (27)

This is a direct extension of the behavior of confined subdif-
fusive CTRWs [73,93,104].

Figure 8 shows the results of stochastic simulations of
the TAMSD for confined subordinated FBM with the Hurst
exponents H = 0.2, H = 0.5, and H = 0.8, along with the
waiting-time scaling exponent α = 0.8. At short times the
behavior is the same as the one for free-subordinated FBM as
given by Eq. (12), while it increases sublinearly with lag time
as given by Eq. (27). This contrasts the stationary state of con-
fined FBM attained at long times. Note, however, that even for

FIG. 8. TAMSD for confined subordinated FBM. The colored
dashed curves represent Eq. (12) with v = 0, the colored solid curves
are from Eq. (27). Parameters: k = 0.1, α = 0.8, length of trajec-
tories T = 2 × 104, elementary time-step dt = 0.1, and number of
trajectories n = 300.

FBM there exists a nonergodic behavior in the relaxation to
the plateau: the ensemble MSD has an exponential relaxation,
while it is a slower power law for the TAMSD [48,70].

Figure 9 shows the aged MSD and TAMSD of confined
subordinated FBM. For ta � k−1/α , the aging time ta has
no effect on the aged MSD and we find the approximation
[Fig. 9(a)] 〈

x2
a (ta,�)

〉 ≈ 〈x2(�)〉, (28)

while for ta � k−1/α , the aged MSD shows a monotonic in-
crease with the power-law scaling �1−α and is identical to the
aged TAMSD [see in Fig. 9(b)]〈

x2
a (ta,�)

〉 = 〈δ2(�; ta)〉. (29)

Concurrently, from aging renewal theory [93] we find that the
aged TAMSD for T � � can be rewritten as

〈δ2(�; ta)〉 = 〈δ2(�)〉 × 
(ta/T ) (30)

valid for all ta. The aging factor 
(ta/T ) is given by expres-
sion (20). Ergodicity is thus restored from Eq. (30) due to
the fact that the confined subordinated FBM process arrives
at the stationary state when ta becomes very large and thus the
increment x(ta + �) − x(ta) solely depends on the lag time �.

V. CONCLUSIONS

We studied theoretically and numerically the aging behav-
ior of subordinated FBM. We paid specific emphasis on the
comparisons between the cases with and without drift for
aging subordinated FBM. When an external drift is present the
aging effects are Hurst exponent-independent at long times
for both aged MSD and aged TAMSD. The aging factor is
also Hurst exponent independent both with and without drift,
which is similar to that of aged subdiffusive CTRW. In the
strong aging cases, the ergodicity is restored (equivalence of
MSD and TAMSD), while it is nonergodic for weak aging.
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FIG. 9. Aged MSD and TAMSD of confined subordinated FBM
for (a) ta = 10−1 and (b) ta = 104. Parameters: k = 0.1, α = 0.8,
length of trajectories T = 104.

Interestingly, with the characteristic relationships between
different regimes of measurement time and aging time, the
current results provide a useful tool to probe the underlying
stochastic mechanism for aged systems. And the actual age ta
of the system can be estimated based on the explicit results,
which will be of interest in the analysis of systems without
known age [97].

For confined subordinated FBM, at short times the MSD
and TAMSD are the same as those for the free-subordinated

FBM, while at long times the MSD quickly approaches a
stationary value, contrasting the sublinear power-law increase
in lag time of the TAMSD. Interestingly, the results of the
MSD are similar to those of confined FBM and those of the
TAMSD are similar to a confined CTRW. Short aging times ta
have no effect on the aged MSD, while at long aging times the
aged MSD shows a power-law increase and is identical to the
aged TAMSD.

We also note that the external force considered in the
Langevin equation (21) in this study only influences the dy-
namical behavior at the instants of jumps, as proposed for
the original CTRW process [37]. There, the traps are con-
sidered so deep that the external force does not affect the
trapping-time statistic. In contrast, the force may keep acting
on the system all the time, even when the particle is trapped
as given in recent works [74,78,79] and the relevant Langevin
equation is

dy(t )

dt
= F (y(t )) + ζ̄H (t ), (31)

where ζ̄H (t ) = ∫ +∞
0 ζH (s)δ[t − t (s)]ds. Driven by the force

F (y) = −ky, the process y(t ) is rapidly damped towards zero
position when the particles are waiting for the next jump
during long-trapping events. This effects a decrease of the
MSD to zero at sufficiently long times t � k−1 [79]. The
mean TAMSDs will arrive at a plateau which is different from
the MSD Eq. (26) and the TAMSD Eq. (27) of the process
x(t ) with external force acting only on the jumps given by the
Langevin equation (21).

The results reported here contribute to the development of
aging and confined diffusion processes and can be used to
detect the exact stochastic mechanism underlying experimen-
tal single-particle trajectories in complex systems. It will be
important to include compound processes as the one studied
here in efforts to identify the underlying stochastic process(es)
and the associated parameters from data [105,106], such as
by using classical observables [52,53] as well as Bayesian
[107,108] or machine learning approaches [109–112]. In par-
ticular, the effect of static and dynamic noise should be studied
for the subordinated FBM model [112].
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