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Abstract
Transitions between long-lived states are rare but important. The statistic of
successful transitions is considered in transition path theory. We here consider
the transition path properties of a generalized Langevin equation with built-
in memory. The general form of the approximate theoretical solutions to the
transition path time distribution, mean transition path time, and coefficient of
variation are obtained from the generalized Smoluchowski equation. Then, the
accuracy of our theoretical results is verified by the Forward Fluxing Sampling
scheme. Finally, two examples are worked out in detail. We quantify how
the potential function and the memory parameters affect the transition path
properties. The short time limit of transition path time distribution always has
an exponential decay. For the parabolic potential case, the memory strongly
affects the long-time behavior of the transition path time distribution. Our
results show that the behavior of the mean transition path time is dominated
by the smaller of the two memory times when both memory times exceed the
intrinsic diffusion time. Interestingly, the results also show that the memory
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can effect a coefficient of variation of transition path times exceeding unity, in
contrast to Markovian case.

Keywords: transition path properties, generalized Langevin equation,
transition path time, transition path time distribution, memory

1. Introduction

Random disturbances inevitably exist in various systems, inducing various stochastic dynamic
phenomena, such as early warning concepts in high-amplitude noise-induced oscillations [1],
stochastic bifurcations [2], coherence resonance [3], tipping delay [4], and the exit problem [5],
to name but a few. Specifically, the phenomenon of the noise-driven exit problem has gained
increasing attention. The original treatment of thermal noise-driven escape from a potential
well was due to Kramers [6]. There, in the small-noise or high-potential barrier limit, the wait-
ing time of particles near a stable state is quite long, while the exit process is completed (com-
paratively) instantaneously. In other words, this process is an exit problem with a rather small
probability, a rare event [7, 8]. Transition path theory, instead, considers only the successful,
fast trajectories across the barrier [9–11]. In general, given a region (xA, xB), a ‘transition path’
trajectory connects the initial point at the bottom of the well to the final point across the barrier,
without revisits to the transition region.

The transition path [9–11] contains the key information of the exit problem, capturing the
rare escape events. It is vital in protein configuration analysis, engineering safety design, clin-
ical drug development, inter alia [12]. The transition path time (TPT) [13, 14] is the duration
of the transition path, which describes the time spent during the exit dynamics. Usually, the
TPT is considerably shorter than the exit time (the inverse of the Kramers rate). The transition
path time distribution (TPTD) [15, 16] is a specific measure for the transition path properties.
The width of the transition and exit time distributions contains vital information about the
dynamic of the system. Thus, the short-time behavior of first-exit distributions reveal inform-
ation about kinetic intermediates [17]. In turn, long time tails of TPTD indicate the possible
existence of a trap in the transition path region [18]. In the case of escape of particles across
a potential barrier, the width of the TPTD of a higher potential barrier cannot be broader
than a single-exponential [19]. The coefficient of variation (COV) is applied to quantify the
width of a distribution and is used in various fields from engineering to economics. The value
of the COV is small for narrower distributions, while a heavy-tailed distribution has a COV
exceeding unity, and the variation coefficient of an exponential distribution equals unity [20].
Moreover, the COV of a TPTD reveals the dimensionality of the underlying free energy land-
scape. A coefficient of variation exceeding unity is also a characteristic of multidimensional
dynamics [19, 21].

Interestingly, there exists a series of results concerning the transition path behavior of one-
dimensional Markovian systems. Since the solution and analysis of transition path properties
involve the solution of the Fokker–Planck-Kolomgorov equation (forward and backward) of
the system [22, 23], the corresponding research work is mainly carried out on the transition
path of one-dimensional systems from numerical methods points of view, the establishment
of basic transition path theory [24, 25], the exploration of approximate theoretical methods,
and the analysis of noise mechanism, etc. Generally, it is necessary to extract the statistical
data of the transition path according to the sampling of rare events [26]. In the small-noise or
high-potential barrier limit, rare events have the characteristics of long waiting times and short
durations, resulting in a short duration of the transition path itself, which is thus difficult to
capture [27]. Therefore, a series of simulation algorithms are proposed, such as the transition
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interface sampling method [28], the umbrella sampling scheme [29], or the string method [30],
which are suitable for equilibrium steady-state systems. The Forward Flux Sampling (FFS)
method [31, 32] is proposed to realize simulations of rare events in the non-equilibrium case.
Subsequently, the FFS scheme was also extended to one-dimensional Markovian system under
Gaussian colored noise [7]. In recent years, neural network algorithms for the prediction of
stochastic dynamical systems and the capture of dynamical behavior are flourishing [33–36].
Neural network algorithms enable accelerated sampling of system transition paths, which is
an additional tool for numerical studies of system transition path dynamics [37].

The theoretical calculation of transition path properties can be reduced to the solution
of second-order partial differential equations with two absorbing boundary condition [38].
However, the types of partial differential equations that can be solved by approximate theory
are quite limited [39]. Much work has been devoted to this issue for transition path proper-
ties. The basis for theoretical calculations of the transition path properties of one-dimensional
diffusion systems is presented in [9, 10]. One-dimensional diffusive systems that can provide
approximate theoretical results of transition path properties are quite diverse. For instance,
the approximate theoretical form of transition path properties of a tip barrier, conical tube,
over-damping cases and rough potentials were considered [40–42]. Many interesting transition
path properties are beginning to emerge. The transition path properties of equilibrium systems
exhibit forward and backward symmetry [43]. Surprisingly, some noisy and non-equilibrium
systemsmay result in the breakdown of transition path properties symmetry, such as dichotom-
ous, Lévy-stable, and Poisson white noises [44–46]. The COV obtained from the TPTD cannot
possibly exceed unity for any one-dimensional diffusive model with an arbitrary potential [21],
whereas for the trapping site model, it may exceed unity [47]. We mention that all the above
studies are based on the transition path properties based on the Langevin equation.

Actually, the Langevin equation can only portrays Brownianmotion, and it is a critical prob-
lem to describe the many stochastic processes in nature that exhibit anomalous diffusion phe-
nomena. Considering the viscoelasticity of many systems and the memory of their friction, the
generalized Langevin equation (GLE) [48] was generalized to an integral form with a friction
memory kernel to obtain the generalized Langevin equation that can characterize anomalous
diffusion phenomena [49]. In particular, the friction term in GLE is determined by the time-
varying memory kernel [50], and the common friction memory kernels are power-lawmemory
[51, 52], tempered memory [53], positive Prony memory [54, 55], bi-exponential memory [56]
and other special forms [57]. It has been revealed that the GLE with friction memory kernel
can generate many special and complex dynamical behaviors of stochastic dynamic systems.
Changes due to GLE with friction memory kernel include escape behavior [58], stochastic
resonance [59], anomalous behavior [60, 61], ergodicity [62, 63] and special transition path
properties. A consistent description of protein-folding dynamics must account for memory of
GLE friction effects [64], and memory effects in the friction significantly speed up peptide
folding and unfolding kinetics [65]. The lower barriers result in broader distributions of TPT
for GLE with a power-law-type memory kernel [66], memory can lead to a decrease in the
TPT [67]. Meanwhile, it also strongly affect the short time behavior of TPT distribution [68].
Usually, coefficient variation of TPT distribution is small than 1 for GLE with exponential
memory [19, 69], but whether the same conclusion holds for more complicated memory ker-
nels in an open question [20, 21]. Therefore, considering the special properties of the GLE
with memory, this article is concerned with the transition path behaviors of GLE with more
complicated memory which has a form of a finite Prony series. However, as memory kernels
become more complex, it may lead to an increase in the dimensionality of the system, thus the
theoretical solution of the transition path properties will face great challenges, while numer-
ical simulation will be also rather time-consuming. In this paper, we focus on the theoretical
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portrayal of the transition path dynamics of the generalized Langevin equation with built-in
memory. Therefore, for the numerical study of the transiton path properties of this system, we
choose the efficient FFS algorithm with which we are more familiar.

The remainder of this paper is organized as follows. In section 2, the associated approx-
imate description based the generalized Smoluchowski equation is presented. Subsequently,
section 3 illustrates the simulation technique used to verify the approximate solution of the
TPTD and the mean TPT. The specific derivation of the approximate solution of the TPTD,
mean TPT and variation coefficient for two prototypical examples are unfolded in section 4.
Then, section 5 the approximate approach are applied to two examples in detail, from which
the application and effectiveness of the approximate theoretical solution of transition path
properties are demonstrated. The results and perspectives are discussed in section 6.

2. Transition path time and coefficient of variation

Extending the friction term of the standard Langevin equation to a non-local formulation in
time with a memory kernel, we obtain the generalized Langevin equation [70, 71]. Depending
on the kernel of this equation, this model includes the description of anomalous diffusion
phenomena. In this spirit we consider a one-dimensional differential equation with memory
kernel, based on the generalized Langevin equation

mẍ(t)+
ˆ t

0
ξ (t− t ′) ẋ(t ′)dt ′ + f(x) = ϵ(t) , (1)

where x(t) is the time dependent reaction coordinate, m is the effective mass of x(t), and
ẋ(t), ẍ(t) are the first and second order derivatives with respect to time t, respectively. The
force is f(x) =−dU(x)/dx in terms of the external potential U(x), where we mainly focus on
two basic potentials shown in figure 1, namely, the parabolic and inverted parabolic poten-
tial U(x) =±kx2/2 with force constant k> 0. We define the transition region of particle
as (xA,xB) = (−1,1). Such reaction coordinates could be the relative distance between two
aminoacids in a protein [72] or the number of monomers of a polymer already translocated
through a pore in a membrane [73]. We assume that the stochastic force ϵ(t) in equation (1)
has zero mean, ⟨ϵ(t)⟩= 0 and fulfils the second fluctuation-dissipation relation ⟨ϵ(t)ϵ(s)⟩=
kBTξ(|t− s|) with the friction kernel, where ⟨·⟩ denotes an ensemble average (average over
realizations). Moreover, kB is the Boltzmann constant and T is the absolute temperature of the
environment. The system is therefore at equilibrium.

We consider equation (1) with a memory kernel of the form of a finite Prony series [74, 75],
i.e.

ξ (t) = 2α0δ (t)+
α1

τ1
exp

(
− t
τ1

)
+

α2

τ2
exp

(
− t
τ2

)
, (2)

where δ(t) is the Dirac delta function, τ 1 and τ 2 are twomemory time scales, andα1 andα2 are
the corresponding friction coefficients. Specifically, if α0 = 0, ϵ(t) reduces to thermal band-
passing colored noise [56]. We define α= α1 +α2 as the total friction coefficient. For the
subsequent discussion of the effect of the two memory time scales τ 1 and τ 2 on the transition
path properties, we introduce the intrinsic time scales [76],

τm =
m
α
, τD = βx2Bα, (3)

where we call τm the inertial time and τD is the intrinsic diffusion time.
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Figure 1. External parabolic and inverted parabolic potentials U(x) considered in this
article. (a) U(x) = kx2/2, (b) U(x) =−kx2/2 for k> 0.

In the approach chosen in this work, we neglect inertial effects in the stochastic differential
equation (1) and consider the ‘overdamped’ generalized Langevin equation

−f(x) =−
ˆ t

0
ξ (t− t ′) ẋ(t ′)dt ′ + ϵ(t) . (4)

We will consider the transition path properties of this stochastic differential equation.

2.1. Transition path time distribution

We first study the distribution of TPTs with the transition region (xA,xB), where xA =−1 and
xB = 1 are two absorbing boundaries. To determine the TPT distribution, we consider the
Green’s function of equation (4), which satisfies the following ‘generalized Smoluchowski
equation’ (GSE) [77]

∂P(x, t|x0,0)
∂t

= D(t)
∂

∂x

(
−βf(x)+

∂

∂x

)
P(x, t|x0,0) , (5)

where P(x, t|x0,0) is the conditional probability that a particle is located at x at time instance
t, given that it was released at x0 at the initial time t= 0, i.e. P(x, t|x0,0) is the solution of
equation (5) for the initial condition P(x, t|x0,0) = δ(x− x0), given the absorbing boundary
conditions P(xA, t|x0,0) = P(xB, t|x0,0) = 0. β = 1/kBT is the Boltzmann coefficient, andD(t)
is a time-dependent diffusion coefficient to be specified. D(t) is given by [78]

D(t) =−⟨x2 (0)⟩ d
dt

(log [Λ(t)]) , (6)

whereΛ(t) is the so-called normalized reaction coordinate,Λ(t) = ⟨x(t)x(0)⟩/⟨x2(0)⟩.We note
that the GSE (5) is only an approximation, time-dependent coefficients cannot fully replace
correaltions in the GLE, the real process described by such effective diffusion equations is
actually scaled Brownian motion, in which the Langevin equation is characterised by D(t)∝
tα3−1 (mean squared displacement ⟨x2(t)⟩ ∼ 2Kα3 t

α3 , Kα3 is anomalous diffusion coefficient).
However, we will show from stochastic simulations that it provides a rather good description
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of the process. Generally, non-Markovian processes cannot be completely characterized by
corresponding Fokker–Planck equations while the process is completely characterized in terms
of the generalized Langevin equation [79, 80].

The TPTD ρ(t) is proportional to the flux of trajectories and specifically defined via [42]

ρ(t) = lim
θ→0

q(xB, t|xA+ θ,0)´∞
0 q(xB, t|xA+ θ,0)dt

, (7)

where πB(xA) =
´∞
0 q(xB, t|xA,0)dt is the so-called splitting probability [42]. Moreover,

q(xB, t|xA,0) is the flux from xA to xB, that follows

q(xB, t|xA,0) =−D(t)

(
−βf(x)+

∂

∂x

)
P(x, t|xA,0)

∣∣∣∣
x=xB

. (8)

Finally, the TPTD ρ(t) of the particles in the transition region from point xA to xB can be
obtained from the flux q(x, t|x0,0) near the point xB,

ρ(t) =
q(xB, t|xA,0)

πB (xA)
∝ lim

θ→0
q(xB, t|xA+ θ,0) . (9)

In what follows, we take xA =−1 and xB = 1.

2.2. Coefficient of variation

We use the coefficient of variation CV to analyze the width of the TPTD ρ(t), i.e.

CV =
1

⟨tTP⟩
(
⟨t2TP⟩− ⟨tTP⟩2

)1/2
, (10)

where ⟨tTP⟩ and ⟨t2TP⟩ are the mean and the second moment of the TPT from xA(xB) to xB(xA),
given the absorbing boundary conditions at xA and xB. These moments are generally defined
as

⟨tnTP⟩=
ˆ ∞

0
tnρ(t)dt, (11)

for integer n. We note that broad distributions have a large CV.

3. Algorithm for calculating the transition path times

Equation (4) is simulated by first transforming the generalized Langevin equation into a system
of ordinary differential equations containing Gaussian white noise, and then using the Runge
Kutta algorithm [81]. For our simulations, we use the FFS to obtain the TPTD ρ(t), then CV
is derived from equations (10) and (11). The random force ϵ(t) can be produced from two
Ornstein–Uhlenbeck noises driven by the same white Gaussian noise η(t) of unit strength,

ϵ(t) = ϵ1 (t)+ ϵ2 (t) , (12a)

ϵ̇1 (t) =− 1
τ1
ϵ1 (t)+

1
τ1

√
2kBTα1η (t) , (12b)

ϵ̇2 (t) =− 1
τ2
ϵ2 (t)+

1
τ2

√
2kBTα2η (t) . (12c)
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Then, we can convert equation (4) into a system of two Markovian Langevin equation by
introducing the variables

y1 (t) = α1

ˆ t

0

1
τ1

exp

(
− t− s

τ1

)
ẋ(s)ds− ϵ1 (t) , (13a)

y2 (t) = α2

ˆ t

0

1
τ2

exp

(
− t− s

τ2

)
ẋ(s)ds− ϵ2 (t) . (13b)

Substituting equations (12) and (13) into equation (4) we obtain

ẋ(t) =− 1
2α0

(y1 (t)+ y2 (t)+ f(x)) , (14a)

ẏ1 (t) =−α1 + 2α0

2α0τ1
y1 (t)−

α1

2α0τ1
y2 (t)−

α1

2α0τ1
f(x)− 1

τ1

√
2kBTα1η (t) , (14b)

ẏ2 (t) =−α2 + 2α0

2α0τ2
y2 (t)−

α2

2α0τ2
y1 (t)−

α2

2α0τ2
f(x)− 1

τ2

√
2kBTα2η (t) . (14c)

Based on this Markovian formulation, simulations using the Runge–Kutta method and the
FFS scheme can be employed to obtain the transition path properties of equation (4).

4. Approximate theoretical solution of the transition path time distribution and
the mean transition path time

4.1. Transition path time distribution

For the two different potentials, we now discuss the associated transition path properties. For
the inverted parabolic potential U(x) =−kx2/2, the time-dependent diffusion coefficient is
given by [77]

D(t) =
1
βk

d
dt

log(χ(t)) , (15)

where χ(t) has the form

χ(t) = L −1

{
ξ̂ (s)

sξ̂ (s)− k

}
. (16)

Here L −1 {·} denotes the inverse Laplace transform, and according to equation (2), we have

ξ̂ (s) = α0 +
α1

1+ τ1s
+

α2

1+ τ2s
, (17)

ξ̂(s) is the Laplace transform of the friction kernel ξ(t), ξ̂(s) = L {ξ(t)}=´∞
0 ξ(t)exp(−st)dt.
In the opposite case of the parabolic potential U(x) = kx2/2, the time-dependent diffusion

coefficient reads

D(t) =− 1
βk

d
dt

log(χ(t)) , (18)
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and χ(t) is given by

χ(t) = L −1

{
ξ̂ (s)

sξ̂ (s)+ k

}
. (19)

We now define F(s) = ξ̂(s)/[sξ̂(s)− k], and then combine with equation (17), we obtain

F(s) =
α0τ1τ2s

2 + [α0 (τ1 + τ2)+α2τ1 −α1τ2]s+α0 +α2 −α1

α0τ1τ2s3 + [α0 (τ1 + τ2)+α2τ1 −α1τ2 − kτ1τ2]s2 + [α0 +α2 −α1 − k(τ1 + τ2)]s− k
.

(20)

Given the chosen system parameters, via factorizaion equation (20) can be brought to the form

F(s) =
K1

s−P1
+

K2

s−P2
+

K3

s−P3
, (21)

where the Pi (i = 1,2,3) are three solutions of the equation sξ̂(s)− k= 0, and Ki =
(s−Pi)F(s)|s=Pi , (i = 1,2,3). The same approach can be used for equation (19), except that
the values of Ki and Pi are different in this case. For the system parameters we chose, Pi are
all real roots. Hence, we can write the general form

χ(t) = K1e
P1t+K2e

P2t+K3e
P3t, (22)

for both parabolic and inverse-parabolic potentials.
When the potential barrier is high, it is highly unlikely that a particle leaving the region (xA,

xB) will return into this interval if we replace the absorbing boundary conditions with natural
boundary conditions, i.e. lim|x|→∞P(x, t|x0,0) = 0. Therefore, the solution of equation (5)
obtained for natural boundary conditions is expected to be a good approximation of our
case here with two absorbing boundaries. For natural boundary conditions the solution of
equation (5) with U(x) =−kx2/2 has the Gaussian form [77]

P(x, t|x0,0) =
(
2π
βk

[
ξ2 (t)− 1

])−1/2

exp

(
−βk [x− ξ (t)x0]

2 [ξ2 (t)− 1]

)
. (23)

Conversely, for U(x) = kx2/2, we have

P(x, t|x0,0) =
(
2π
βk

[
1− ξ2 (t)

])−1/2

exp

(
−βk [x− ξ (t)x0]

2 [1− ξ2 (t)]

)
. (24)

Combined with equation (8), for the case of U(x) =−kx2/2, we find

q(xB, t|xA,0) =
√

βkx2B
2π

χ̇(t)

(χ(t)− 1)
√

χ2 (t)− 1
exp

(
−βkx2B

2

[
χ(t)+ 1
χ(t)− 1

])
. (25)

Similarly, for U(x) = kx2/2,

q(xB, t|xA,0) =−
√

βkx2B
2π

χ̇(t)

(1−χ(t))
√

1−χ2 (t)
exp

(
−βkx2B

2

[
1+χ(t)
1−χ(t)

])
. (26)

8
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To gain more insight into the exact behavior of the one-side TPTD, we proceed to analyze
the shape of the distribution in the short-time and long-time limits. From equations (9) and (25),
at short times (t→ 0),

− log(ρ(t))∼−
√

βkx2B
2π

− log(χ̇(t))+ log(χ(t)− 1)+
1
2
log

(
χ2 (t)− 1

)
+

βkx2B
2

[
1+

2
χ(t)− 1

]
, (27)

and the leading term is

− log(ρ(t))∼ βkx2B
2

[
1+

2
χ(t)− 1

]
∼ βkx2Bt

−1

K1P1 +K2P2 +K3P3
, (28)

forU(x) =−kx2/2. In the opposite caseU(x) = kx2/2, the short-time behavior is derived from
equation (26),

− log(ρ(t))∼−βkx2B
2

[
2

1−χ(t)
− 1

]
∼− βkx2Bt

−1

K1P1 +K2P2 +K3P3
. (29)

For the case U(x) =−kx2/2, we find the long-time (t→∞) asymptote from equation (9),

log(ρ(t))∼ log
(
K2e

P2t
)
− log

(
K2P2e

P2t
)
− 1

2
log

(
K2

2P2e
2P2t

)
∼−P2t. (30)

However, the long-time behavior of the TPTD for the parabolic potentialU(x) = kx2/2 is more
involved. For our parameters we find that for t ∈ (0,0.2),

log(ρ(t))∼ log(−χ̇(t))∼ log
(
−K1e

P1t
)
∼ P1t, (31)

while for t ∈ (0.2,6),

log(ρ(t))∼ log(−χ̇(t))∼ log
(
−K3P3e

P3t
)
∼ P3t, (32)

and for t ∈ (14,+∞),

log(ρ(t))∼ log(−χ̇(t))∼ log
(
−K2P2e

P2t
)
∼ P2t. (33)

This is very different from the long-time behavior of the TPTD for the inverted parabolic
potential case.

4.2. Transition path time

We now proceed to consider the mean TPT. To this end we introduce the absorption function
QA(t), defined by [16]

QA (t) =
ˆ ∞

x0

P(x, t|x0,0)dx. (34)

9
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The value of QA(t+△t)−QA(t) is the fraction of the trajectories that the particles cross x0 in
the interval [t, t+△t], thus the TPTD ρ(t) can be approximated as [16]

ρ(t)≈ N
dQA (t)

dt
, (35)

with the normalization factor N . From the normalization of the TPTD, we then find
ˆ ∞

0
ρ(t)dt= N [QA (∞)−QA (0)] , (36)

and QA(0) = 0. Hence, N = 1
QA(∞) , and QA(∞) = lim

t→∞
QA(t).

For the case U(x) =− 1
2kx

2, combining equations (23) and (34) we obtain

QA (t) =
1
2
[1− erf(G(t))] , (37)

where erf(x) = (2/
√
π)
´ x
0 exp(−t2)dt is the error function and

G(t) =
√
βE

√
χ(t)+ 1
χ(t)− 1

. (38)

Here we used the abbreviation E= kx2B/2. The function G(t) is monotonically decreasing in
time t. In this case, QA(∞) = (1/2)

[
1− erf(

√
βE)

]
.

Hence, according to equation (35), the TPTD (9) can be rewritten in the form

ρ(t) =− 2√
π

Ġ(t)e−G2(t)

1− erf
(√

βE
) . (39)

Therefore, the mean TPT assumes the form

⟨tTP⟩=
ˆ ∞

√
βE
t(G)e−G2

dG

/ˆ ∞

√
βE
e−G2

dG. (40)

We can get the approximate solution for the mean TPT for βE≫ 1 when the integrals are
determined by the large t-limit of G(t). According to equation (38), we then obtain

t=
1
P2

log

(
1
K2

G2 +βE
G2 −βE

)
. (41)

We then use the integral variable substitution, and define x= G2 −βE,

⟨tTP⟩=− 1
P2

ˆ ∞

0
[log(2)+ log(βE)+ log(1+ x/ [βE])− log(K2)− log(x)]e−x

×
(
1+

x
βE

)−1/2

dx

/ˆ ∞

0

1√
1+ x

βE

e−xdx

≈ 1
P2

log

(
2βEeC

K2

)
+O

(
1
βE

)
, (42)

10
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O is the Landau symbol and C=−
´∞
0 log(x)e−xdx≈ 0.577215 is the Euler–Mascheroni

constant.
For the case U(x) = 1

2kx
2, according to equation (26) we define

G(t) =
√
βE

√
1+χ(t)
1−χ(t)

, (43)

and we obtain t= (1/P2) log
(

1
K2

G2−βE
G2+βE

)
from equation (43). In the large t-limit of G(t), we

can also determine the approximate solution of the mean TPT for βE≫ 1,

⟨tTP⟩=
ˆ ∞

√
βE
t(G)e−G2

dG

/ˆ ∞

√
βE
e−G2

dG

= (1/P2)

ˆ ∞

0
[log(x)− log(2)− log(βE)− log(1+ x/ [βE])− log(K2)]e

−x

×
(√

1+
x
βE

)−1/2

dx

/ˆ ∞

0

1√
1+ x

βE

e−xdx

≈− 1
P2

log
(
2K2βEe

C
)
+O

(
1
βE

)
. (44)

This completes our approximate derivation of the mean TPT for the two external potentials in
the limit βE≫ 1.

5. Results

We now present a detailed study of the transition path properties for the two generic examples
of the external potential, the parabolic and the inverted parabolic potentials. In particular, we
compare our approximate analytical results with stochastic simulations using the FFS sim-
ulation method, reporting good agreement. For increasing force constant k the agreement
improves progressively. In the discussion of the coefficient of variation we find that it can
exceed unity in the parabolic potential case.

5.1. Transition path time distribution

The effect of the system parameters on the TPTD of the (inverted) parabolic potentials is
shown in figures 2–4. Panels (a) and (b) in figure 2 show the variation of the TPTD with the
force constant k. It is distinct that k strongly affects the TPTD. As the strength of the potential
increases, the peak value of the TPTD grows, while the TPT corresponding to the maximum
is shifting to lower values. Thus the height of the potential barrier accelerates the onset of the
particle escape behaviour. The shape of the TPTD narrows as the potential barrier increases.
We performed simulations of the TPTD using the FFS algorithm. As seen from the figures,
the agreement between our approximative theory and the FFS simulations is excellent for the
two sample potentials. Particularly, as expected we see that the deviations between theoretical
and numerical results diminish as k decreases.

Panels (c) and (d) of figure 2 display the short-time and long-time behavior of the TPTD
for a range of k values of the parabolic potential, while panels (e) and (f) show the results for
the inverted parabolic potential. Note the negative logarithm in panel (c) versus inverse time

11



J. Phys. A: Math. Theor. 57 (2024) 355201 H Li et al

Figure 2. (a) TPTD for parabolic potential U(x) = kx2/2 with k= 4, k= 8, and k= 16.
The lines are theoretical results from equations (9) and (26). (b) TPTD for inverted
parabolic potential U(x) =−kx2/2 for the same k-values, the lines are theoretical res-
ults from equations (9) and (25). In (a) and (b), these symbols are also the simulation
results. (c) Short-time exponential behaviour in the parabolic potential. The lines are
analytic results in equation (29), the symbols represent the results from equation (9). (d)
Long-time exponential behaviour in the parabolic potential, the lines are analytic res-
ults in equations (9) and (31)–(33), the symbols represent the FFS results. (e) Short-time
exponential behaviour for the inverted parabolic potential, the lines are analytic results
from equation (28), the symbols represent the theoretiacl results from equation (9). (f)
Long-time exponential behaviour for the inverted parabolic potential, the lines are ana-
lytic results in equation (30), the symbols represent the numerical results. The insets
of panels (c) and (e) show the short-time behavior of the TPTD. The inset of panel (d)
reveals the long-time behavior of the TPTD of the parabolic potential case.
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in panels (c) and (e). In panel (c) it is evident that the growth of the force constant k leads to an
increase in the TPTD, in analogy to the behavior for the inverted parabolic potential in panel
(e): an increase in the height of the potential barrier leads to an increase of the amplitudes in the
TPTD at short times. Note that in panels (c) and (d) symbols denote the results of equation (9)
and green lines in the insets are the approximate short-time results of equations (28) and (29).
For the case U(x) = kx2/2 the long-time asymptotic behavior of the TPTD is shown in panel
(d), corresponding to equations (31)–(33), depicted by black dashed lines, while the black solid
lines represent the approximate theoretical results of equation (9). Note that for clarity we only
show the comparison over all times for the case k= 16. Similarly, panel (f) shows the results
for the inverted parabolic potential, in comparison with equation (30) (black dashed line). We
note again that the agreement is improving for increasing potential strength.

In figure 3we display the variation of the TPTDwith the system parameters for the parabolic
potential case. Panels (a)–(d) show the TPTD for various values of the parameters α0, β, α1,
and α2. As shown in panel (a) the height of the TPTD peak decreases as α0 increases. The
same influence of β, α1, and α2 on the height of the TPTD can be seen in panels 3(b)–(d).
From panels (c) and (d) we conclude that the effect of α2 on the TPTD is stronger as that of
α1. While the effect is not too strong, we see that increasing values of α1 and α2 lower the time
for the most likely TPT and thus accelerate the transition dynamics. As presented in panels
(e) and (f), the effect of increasing τ 1 and τ 2 on the TPTD peak leads to a decrease of the
TPTD peak while the tails become heavier. From all panels we conclude that the effect of the
parameters α0, β, τ 1, and τ 2 is a deceleration. We note that, again, the agreement between
theoretical results and simulations is very good.

Figure 4 is the inverted parabolic potential case. We similarly consider the effect of the
system parameters on the TPTD. The trend of the effects is consistent with the results presented
in figure 3. In particular, we chose the same parameter values and it can be noticed that for the
parabolic potential function case, the influence of α1, α2, τ 1, and τ 2 on the TPTD is stronger
than for the inverted parabolic potential case.

5.2. Mean transition path time and coefficient of variation

We now turn to the behavior of mean TPT. In figure 5, we show simulations results for the
mean TPT obtained from the FFS scheme as a function of βE for the two potential scenarios
and compare them with the theoretical results from equations (11), (42) and (44). We see that
as βE increases, the approximate theoretical results (42) and (44) show an improving match
to equation (11). Moreover, the comparison with the simulations shows that our approximate
theoretical result is reproducing the dynamics of the system adequately.

We now turn to the influence of the two decay times τ 1 and τ 2 on the mean TPT, while
we choose α1 = α2. Based on equation (11), we consider the asymmetric case when τ1 ̸=
τ2 in figure 6. Panels (a) and (b) show how the mean TPT for U(x) = kx2/2 varies with τ 1

when τ2 ≪ τ1. Panel (a) shows ⟨tTP⟩/τD as a function of τ1/τD for fixed τ2/τD = 10 and some
varying values of τm/τD. For τ1 ≫ τ2 and τ1 > τD, it can be seen that the mean TPT becomes
asymptotically independent of τ 1. We also observe a similar trend in panel (b), where we fixed
τm/τD = 0.01: here the mean TPT also becomes independent of τ 1 when τ1 ≫ τ2 and τ1 > τD.
As we chose α1 = α2, if we assume that τ2 > τD and τ2 ≫ τ1 and then consider the variation of
⟨tTP⟩/τD with τ2/τD, we could obtain consistent results with panels (a) and (b), with the mean
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Figure 3. TPTD for U(x) = kx2/2 with k= 8 for different system parameters. (a)
Varying α0 for β= 0.2: α1 = 1, α2 = 1, and τ1 = 10 and τ2 = 2. (b) Varying β for
α0 = 0.2, α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2. (c) Varying α1 for α0 = 0.2, β= 0.2,
α2 = 1, τ1 = 10, and τ2 = 2. (d) Varying α2 for α0 = 0.2, β= 0.2, α1 = 1, τ1 = 10, and
τ2 = 2. (e) Varying τ 1 for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and τ2 = 2. (f) Varying τ 2

for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and τ1 = 10. In the figures, the lines are analytic
results, the symbols represent the numerical results.
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Figure 4. TPTD for U(x) =−kx2/2 with k= 8 for different system parameters. (a)
Varyingα0 for β= 0.2,α1 = 1,α2 = 1, τ1 = 10, and τ2 = 2. (b) Varying β forα0 = 0.2,
α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2. (c) Varying α1 for α0 = 0.2, β = 0.2, α2 = 1,
τ1 = 10, and τ2 = 2. (d) Varying α2 for α0 = 0.2, β= 0.2, α1 = 1, τ1 = 10, and τ2 = 2.
(e) Varying τ 1 for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and τ2 = 2. (f) Varying τ 2 for
α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and τ1 = 10. The lines are analytic results, the sym-
bols represent the numerical results.
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Figure 5. (a) Mean TPT for U(x) = kx2/2 with α0 = 0.2, α1 = α2 = 1, τ1 = 0.1, τ2 =
0.05, β= 3, and k= 2 : 0.5 : 18. (b)Mean TPT forU(x) =−kx2/2 withα0 = 0.2,α1 =
α2 = 1, τ1 = 10, τ2 = 2, β= 3, and k= 2 : 0.5 : 18.

TPT becoming progressively independent of τ 2. The black dotted horizontal lines at higher
τ1/τD values in figure 6 demonstrate the dependence of the mean TPT on τ 1. Panels (c) and
(d) display the case of U(x) =−kx2/2. If we define τ1 ≫ τ2 and take τ1 > τD, the mean TPT
becomes almost independent of τ 1. Therefore, we conclude that the mean TPT is dominated
by the smaller of the two time scales τ 1 and τ 2 when τ1 > τD and τ2 > τD.

We now continue to consider the coefficient of variation for the TPTD. In figure 7 we show
various examples for the (inverted) parabolic potential along with the corresponding TPTD.
Thewidth of the TPTDbecomes narrower as the potential barrier increases forU(x) =−kx2/2.
However, for U(x) = kx2/2 case, we see exactly the opposite trend. The tail of the TPTD for
the parabolic potential function is heavier than for the inverted parabolic potentiel.

For the parabolic potential case, we see from figure 8 how the coefficient of variation of the
TPTD depends on the system parametersα0, β,α1,α2, τ 1, and τ 2. We see that in all considered
cases the coefficient of variation by far exceeds unity. Moreover, it is a monotonic function of
the potential stiffness k. Panel (a) shows, for our chosen parameters, that CV is increasing with
increasing k, and it also becomes smaller for increasing α0. Panels (b)–(d) revearl the same
trend for different β, α1, and α2 values. Panel (b) portraysCV as a function of k for fixed values
of α0 = 0.2, α1 = α2 = 1, τ1 = 10, and τ2 = 2. With an increase of k, CV also increases. The
effect of α1 and α2 on CV is studied in panels (c) and (d), showing that CV increases with a
growing α0, β, α1, and α2. This behavior is quite different from the effect of τ 1 and τ 2 on CV.

The variation of CV with the system parameters is further considered in figure 9 for the
U(x) =−kx2/2 case. From panel (a) it can be seen that CV gets larger as α0 increases. This
is consistent with the effect of α1 and α2 on CV shown in panels (c) and (d). Panels (b), (e)
and (f) show that CV is decreasing as β, τ 1 and τ 2 increase. Specifically, CV is decreasing with
increasing k. For the parameters chosen here, figure 9 demonstrates that CV can also be less
than unity.
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Figure 6. (a) Mean TPT for U(x) = kx2/2 as function of τ1/τD with fixed τ2/τD = 10,
α0 = 0.2, and τ2 = 10. (b) Mean TPT as function of τ1/τD with fixed τm/τD = 0.01 for
U(x) = kx2/2, α0 = 0.2, β= 0.2, and k= 8. (a) and (b) are the theoretical results from
equations (9), (11) and (26). (c) Mean TPT for U(x) =−kx2/2, as function of τ1/τD
with fixed τ2/τD = 10, α0 = 0.2, and τ2 = 10. (d) Mean TPT as function of τ1/τD with
fixed τm/τD = 0.01 forU(x) =−kx2/2,α0 = 0.2, β= 0.2, and k= 8. (c) and (d) are the
theoretical results from equations (9), (11) and (25). The vertical dashed line indicates
the value of τ1 = τ2 in (a) and (c).

Finally, we also try to generalize our approximate theoretical results to the case of bi-stable
potential functions. We consider the mean TPT of the bi-stable potential function for some
special regions. As shown in figures 10(a)–(d), we compare the case of overlap between the
bi-stable potential function and the inverted parabolic potential function in the transition region
(−1,1). We find that the overlap improves as the height of the potential increases. This being
the case, can the theoretical results of mean TPT of the inverted parabolic in the region (−1,1)
be used as an approximation for this bi-stable potential function case? Thus, we compared the
theoretical results of equations (11) and (42) for the inverted parabolic potential function with
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Figure 7. (a) Parabolic potential barrier and potential well for different values of the
force constant k. (b) TPTD for the potentialsU(x) with the two characteristic shapes from
(a) for the parameter values α0 = 0.2, τ1 = 10, τ2 = 0.8, α1 = 1, α2 = 1, and β= 0.4.

the numerical results for the bistable potential function. As shown in figures 10(e) and (f), the
fit improves when the height of the potential increases. Therefore, it can be concluded that our
theoretical results on the properties of the transition path of this region are acceptable as an
approximation to the bistable potential function case.

6. Conclusions

We studied the transition path properties of a one-dimensional non-Markovian stochastic
model. In particular, we developed an approximate analytical approach when the memory ker-
nel has a local and two different exponential contributions, to the transition path dynamics for
the limit of suffiently high potential barriers. From our discussion of the results and compar-
ison with simulations these approximations are validated. Specifically, we discussed in detail
the results for the TPTD and mean TPT for the cases of a parabolic and an inverted parabolic
potential. For the parabolic case, the TPTD shows a long tail, becomes more significant as the
height of the potential decreases. Concurrently, the mean TPT is independent of the larger of
the characteristic time scales τ 1 and τ 2 when the two memory times τ 1 and τ 2 are larger than
the intrinsic diffusion time. Furthermore, by controlling the system parameters, we find that
for the parabolic potential function, the coefficient of variation of the TPTD exceeds unity, a
phenomenon that we ascribe to the inherent multidimensional nature of the dynamics of the
system. It is worth mentioning that our theoretical results can also be used as an approximation
to the properties of the transiiton path in the case of bi-stable potential functions. As we know,
when the potential barrier is relatively high, the bi-stable potential function coincides exactly
with the inverted parabolic potential function in certain transition path regions. Therefore, the
theoretical results of the transition path properties for the inverted parabolic case can be used
as an approximation for the bistable potential function case.
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Figure 8. Coefficient of variation of the TPTD for U(x) = kx2/2 with respect to the
potential stiffness k. (a) Varying α0 for β= 0.4, α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2.
(b) Varying β for α0 = 0.2, α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2. (c) Varying α1 for
α0 = 0.2, β= 0.2, α2 = 1, τ1 = 10, and τ2 = 2. (d) Varying α2 for α0 = 0.2, β= 0.2,
α1 = 1, τ1 = 10, and τ2 = 2. (e) Varying τ 1 for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and
τ2 = 2. (f) Varying τ 2 for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and τ1 = 10. The lines are
analytic results from equations (9)–(11) and (26).
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Figure 9. Coefficient of variation of the TPTD for U(x) =−kx2/2 as function of the
potential stiffness k. (a) Varying α0 for β= 0.1, α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2.
(b) Varying β for α0 = 0.3, α1 = 1, α2 = 1, τ1 = 10, and τ2 = 2. (c) Variung α1 for
α0 = 0.2, β= 0.3, α2 = 1, τ1 = 10, and τ2 = 2. (d) Varying α2 for α0 = 0.2, β= 0.2,
α1 = 1, τ1 = 10, and τ2 = 7. (e) Varying τ 1 for α0 = 0.2, β= 0.2, α1 = 1, α2 = 1, and
τ2 = 2. (f) Varying τ 2 for α0 = 0.3, β= 0.2, α1 = 1, α2 = 1, and τ1 = 10. The lines are
analytic results from equations (9)–(11) and (25).
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Figure 10. Barrier potential consisting of an inverted parabolic potential U1(x) =
−kx2/2 and bi-stable potential function U2(x) = ax4 − bx2. (a) a= 0.1,b= 1.1,k= 2;
(b) a= 0.1,b= 2.1,k= 4; (c) a= 0.1,b= 4.1,k= 8; (d) a= 0.1,b= 8.1,k= 16. The
blue lines in figures (a)–(d) is the bi-stable potential functionU1(x) = ax4 − bx2, and the
red lines are the inverted parabolic potential functionU2(x) =−kx2/2, and the insets of
panels (a)–(d) are plots of the two potential functions in the transition region [−1,1]. (e)
α0 = 0.2, α1 = α2 = 1, τ1 = 0.1, τ2 = 0.05, β= 1.5, and k= 2 : 0.5 : 18,b= 1.1 : 1 :
9.1,a= 0.1. (f)α0 = 0.2,α1 = α2 = 1, τ1 = 10, τ2 = 2,β= 3, and k= 2 : 0.5 : 18,b=
1.1 : 1 : 9.1,a= 0.1. The two dashed lines in (e) and (f) are theoretical results for the
inverted parabolic potential function from equations (11) and (42), and the symbols are
numerical results for the bi-stable potential function case from FFS simulation.

21



J. Phys. A: Math. Theor. 57 (2024) 355201 H Li et al

Our results clarify how to approach non-Markovian systems with specified time scales that
can then be rewritten as a higher-dimensional system of Markovian dynamic equations. It will
be interesting to see how this approach can be generalized to systems with many time scales,
as, e.g. used in the Markovian embedding for systems with finite-range inverse power-law
memory kernels, or when different shapes of the potentials are used.
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