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Anomalous diffusion of active Brownian particles in responsive elastic gels:
Nonergodicity, non-Gaussianity, and distributions of trapping times
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Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels—such
as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels—has far-reaching
consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus
on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the
dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles
comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at
relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to
the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport
regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate
times. The distributions of trapping times of the tracers escaping from “cages” in our quasiperiodic gel often
reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales
become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on
the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and
nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as
anisotropy of the particles, different topologies of the gel network, and various interactions between the particles
(also of a nonlocal nature) to be considered.

DOI: 10.1103/PhysRevE.110.044609

I. INTRODUCTION

A. Active particles: Phenomena and models

Natural and man-made active particles [1–15] typically
perform out-of-equilibrium [16], externally driven motion.
They are ubiquitously used as a paradigmatic model of ac-
tive and living matter [17]. The broad palette of theoretical
models [1,2,4]—ranging from all-atom computer simulations
to continuous descriptions—utilized to describe active-matter
behaviors, have to account for the absence of detailed bal-
ance, for irreversibility of active processes in time, and for
(often present) multibody long-ranged interactions of particles
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(e.g., of hydrodynamic nature [12,18,19] such as in aqueous
“wet”-active-matter environments). These models target often
specific physical mechanisms and principles of active or facil-
itated transport. Its features are decisively different from those
of thermally driven passive Brownian motion (BM) [20], a
process with a Gaussian probability-density function (PDF)
of displacements [21,22].

In recent years, this area of active-particles research led
to a flurry of approaches to investigation of active matter,
with a multitude of applications at different length- and time-
scales. Active tracers can be realized as, e.g., swimming
[23] and swarming [24] bacteria [25–33], persistently mov-
ing motor proteins [34–38], both pro- and eukaryotic motile
cells of various types [7,39,40]. For their self-locomotion,
some active particles harness energy from internal chemical
reactions, such as of ATP hydrolysis. Further examples of
actively propelled “particles” include some algae [18,41,42],
amoebae [7,43,44], slime molds [45], protozoa [46],
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run-and-tumble bacteria [47,48], hydra [49], some flagel-
lated locomotive eukaryotic cells [50], fish-keratocyte cells
[51], and spermatozoa [52,53]. On much larger scales, the
motion of birds [54], of schools of fish [55], and of land-
bound animals [56–58] also relies on active motion. Artificial
active systems—such as chemically, acoustically, or mag-
netically powered micro-robots and micro-swimmers [6,59–
61]—have also been recently developed for potential applica-
tions in medicine, security, and environmental sustainability
[62,63]. Inside biological cells, active motor-driven motion
is largely responsible for distant and controlled transport
of larger cargos, while smaller entities can be effectively
transported by—often uncontrolled and nondirectional—
passive-diffusion-based motion.

From a modeling perspective, the migration of self-
propelled particles (SPPs) through porous media has been
explored in a number of previous studies [64–67], revealing,
e.g., intermittent trapping and escape events via hopping from
pores or cavities present in a network. In Refs. [68–71] the dy-
namical behavior of SPPs in viscoelastic [72] and in complex
fluids was examined, with a conclusion of finding enhanced
translational and/or rotational [33,73–75] dynamics. The ef-
fects of crowding [76–78] on the dynamics of membrane
constituents [79,80] and onto the looping kinetics of polymer
chains were also reported [81,82]. The translational and rota-
tional diffusion of SPPs—as well as of nonspherical passively
diffusing particles [74]—in densely packed glass-forming col-
loidal suspensions [83–85] was the subject of several studies
as well. These investigations of SPPs predominantly revealed
an enhanced motion of active tracers at packing fractions be-
low those of the glass transition, while a dynamically arrested
state of the probe was noted at densities above those of the
glass transition.

The diffusion of particles is generally called anomalous
when it is described by the ensemble-averaged mean-squared
displacement (MSD) of a power-law form [21,22,76,86–91]

〈x2(t )〉 ∝ tν, (1)

where ν �= 1, as compared to BM with ν = 1 [20]. This law
has been firmly established over the past two decades, largely
attributed to advances in single-particle-tracking techniques
[92,93]. Examples of such systems encompass macromolec-
ular diffusion in cyto- and nucleo-plasmatic environments,
the transport of vesicular cargos inside living cells, protein
translocation through nuclear nanopores, the dynamics of pro-
teins on the cell membranes, to mention a few cell-related
examples; see Refs. [22,94].

The diffusion of SPPs in dilute and semidilute polymer-
based solutions was studied in Refs. [95–97], capturing a
variety of anomalous dynamical behaviors (1). Particularly,
the motion was found to exhibit non-Gaussian characteris-
tics, with an enhanced diffusivity at higher activity of SPPs.
In some cases, intermediate subdiffusion was attributed to
a stickiness of the SPPs to medium’s components, to high
densities of crowding agents, and to certain caging effects
induced by surrounding polymer chains. In contrast, transient
superdiffusion was naturally found to dominant at higher ac-
tivities of the diffusing SPPs [95,97].

Although known already since the work of Fürth [1] for
longer than a century, during the last decade or so the study

of SPPs exhibits a renaissance. We mention here only some
recent representative studies from experimental [11,13,83,98–
101], theoretical [3–6,14,102–120], and computer-simulation
[17,33,66,82,121–133] communities. Active particles are
driven out of equilibrium due to a continuous energy intake,
yielding the statistics of motion (often) violating the princi-
ples of detailed balance [134,135]. The dynamics of active
particles in the presence of external potentials [102,136–139]
and with mutual interactions [4,140–143] can potentially give
rise to self-organization [12]. Chiral [144,145] active particles
[146,147], chiral active disks [115], active particles in shear
flows [148], and the effects of active motion on the preci-
sion of signaling [149,150] were also considered recently.
The transition from active motion to anomalous diffusion for
Bacillus subtilis confined in hydrogel matrices was recently
studied [151].

Unlike passive motion, active tracers can move persistently
in a specific direction over a certain timescale, the so-called
persistence time. While free diffusion of SPPs is well un-
derstood within a framework of multiple theoretical models
[4], investigations on actively driven motion in real-world
environments—often characterized by a number of complicat-
ing features (such as porosity, crowding, heterogeneity [152],
various interactions, and some disorder) as well as responsive-
ness of the medium—are still ongoing [5].

B. Anomalous diffusion and elastic gel networks

In heterogeneous or/and crowded environments [76,153]—
such as those inside the cell cytoplasm, in the extracellular
matrix, in solutions of polyelectrolytes [154], or in a biofilm—
the tracer dynamics often exhibits (at least transiently) some
anomalous-diffusion features. One of the primary reasons
for this is a complicated and heterogeneous architecture of
diffusion media being formed, e.g., by a cross-linked, flexi-
ble, and responsive polymeric network [155,156] or a gellike
formation [157]. Some long-range correlations [54] can also
contribute. This hinders motions of larger tracers passing
through such a meshwork, both via formation of restricted
cavities, topological constraints, and also via specific particle-
network interactions.

The study of diffusion of tracers in gels has gained signifi-
cance in the past decade, owing to its potential applications in
various fields, including rheology [157], medicine [158,159],
and materials engineering [160,161]. For instance, by tracking
the trajectories of tracers embedded in a gel, one can obtain
valuable information about the microstructure of the network
and its viscoelastic properties [162–164]. As a concrete ex-
ample, tracking and examining trajectories of the tracers in
hydrogels composed of mucin proteins (mucus [165]) re-
cently enabled the researchers to categorize the degree of
non-Gaussianity and of nonergodicity of diffusion, as a func-
tion of varying pH levels of the medium [157,164,166,167].
Moreover, the presence of tracers inside the meshwork can
modify its rheological and electromagnetic properties; this
can be used, e.g., to design novel hybrid materials [168]. With
a specific knowledge of the mesh dimension to the tracer size,
of mutual tracer-network affinities, and of elastic properties
of the gel one can employ effective and fairly selective sep-
aration of macromolecules. The latter can, e.g., be used for
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the development of clinical diagnostic tools for targeted drug
delivery [159].

A number of theoretical, simulations-based, and experi-
mental studies have been devoted to investigations of thermal
motion of passive tracers in various polymeric networks
[157,169–176]. They have often confirmed a transient subd-
iffusive behavior, with 0 < ν < 1, particularly for particles of
sizes comparable to or larger than the mesh size of the gel
and for tracers featuring a higher affinity to the monomers of
polymer chains [170,173]. The propulsion of active particles
in responsive polymeric networks is much less studied [128].
It is thus very relevant to consider the dynamics of active
tracers of variable sizes and activities in polymer-based gel
networks. This is the main subject of our current study.

Most recently, the dynamics of SPPs in a polymer network
has been investigated by computer simulations for networks
of a well defined, regular structure—such as that of a cubic
or a diamond lattice—with each lattice point being occu-
pied by a single gel bead [177–179]. The nearest gel beads
were modeled [177–179] to be connected by springs, by
double springs, or by short polymer chains. These studies
have captured the interplay between activity and confinement
effects onto the dynamics of mesh-sized SPPs in such a
network (modeled within several theoretical models). Particu-
larly, the self-correlation function for the mesh-sized active
Ornstein-Uhlenbeck particles (AOUPs) was found [177] to
be oscillatory at intermediate times, which eventually was
shown to turn smoother and to become Gaussian in the long-
time limit. Depending on the activity of the particles, their
spreading dynamics was shown to have distinct dynamical
patterns at different timescales. Below a certain activity, it was
demonstrated [177] that confinement-induced subdiffusion
was followed by a normal-diffusion regime. Above a certain
activity, the dynamics was found to be initially superdiffusive
and later diffusive [177].

In a similar study [179], an intermediate subdiffusive
regime was observed for sticky active Brownian particles,
whereas the dynamics was found to be superdiffusive for
nonsticky particles. The trapping and hopping mechanisms
were discussed in Ref. [177], revealing an exponential dis-
tribution of durations of trapping events. Furthermore, three
distinct scaling behaviors of the long-time diffusivity with
varying activity of the particles were identified by simulations,
reflecting likely different underlying transport mechanisms.

One of the interesting features of passive diffusion of
tracers in elastically responsive gels studied in Ref. [170]
was the fact that—due to collective fluctuations (“breathing”
events) of the gel structure—particles measurably larger than
the meshwork size were still able to “advance” in the gel via
subdiffusion. Our intention here for the dynamicvs of SPPs
is to unravel an intricate interplay of obstructions imposed
by the interconnected beads of the gel, of the persistence
of SPP-tracers, and of cage-opening events due the internal
dynamics of the gel. These effects are expected to be most
pronounced for softly connected and highly responsive gels.

C. Outline of the article

In this paper, we extend the studies of diffusion of passive
tracers in flexible gellike networks to propagation of actively

FIG. 1. Simulated 3D gel network at Péclet number Pe = 1, with
the gel beads and tracers represented by small red and large blue
spheres, respectively. The bonds between the lattice-neighboring gel
beads—extending along the principal axes of the lattice and each
having a fluctuating length—are shown as black springs. Video files
of tracer motion for the model of AOUPs and RTPs at different Péclet
numbers are provided in the Supplemental Material [180]. Note that
abrupt jumps of a tracer from one side of the simulation cell to the
opposite one (visible in videos) are visual artifacts of the implemen-
tation of periodic boundary conditions in all three dimensions.

driven particles in polymeric gels. The study [170] serves
as a basis for our current examination. Here, we consider
the motion of spherical SPPs inside a three-dimensional (3D)
cross-linked flexible polymeric network; see Fig. 1. This gel
network forms a cubic lattice, with all gel beads separated by
one lattice spacing and connected via springs. The latter are
parameterized by the Morse potential. Thus, the gel acts as a
meshwork of geometrical obstacles for a diffusing tracer. The
local mesh size of the gel can, however, fluctuate in response
to a propagating tracer, with the degree of relative bond-length
fluctuations that depends on the particle activity, the network
elasticity and the tracer-to-gel affinity.

The rest of the article is organized as follows. In Sec. II
the details of the model, the simulation scheme, and the dy-
namical variables are introduced and presented. In Sec. III
we discuss the main results of the performed computer sim-
ulations, based on the extensive analysis of the behavior of
a number of standard and of some new statistical quantifiers.
Finally, we underline the physical consequences of the main
findings. In Sec. IV we present a discussion and summarize
the main conclusions.

II. MODEL

A. Dynamics of the tracers

In free 3D space, the dynamics of a single SPP in the
overdamped limit (no inertia; see Ref. [181] for treatment of
inertial effects) under the action of force F is described by the
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TABLE I. List of model parameters used in simulations.

Parameter Notation Value Dimension

Thermal energy kBT 4.114 pN nm
Dispersion energy of the bead-tracer LJ potential εtg 1.5 kBT
Dispersion energy of the bead-bead LJ potential εgg 1.0 kBT
Diameter of the gel bead σg 1 µm
Diameter of the tracer σt 5 σg

Diffusion coefficient of the gel bead Dg 1.0 σg/
√

εgg

Thermal diffusivity of the tracer Dt 0.2 σg/
√

εgg

Active diffusivity of the tracer Dact Variable σg/
√

εgg

Péclet number Pe Variable 1
Equilibrium bond distance req 5 σg

Cutoff distance of the Morse potential rc 1.2 req

Energy parameter of the Morse potential εM 2.5 kBT
Reciprocal-width parameter of the Morse potential hM 1/

√
2 σ−1

g

Activity parameter fact Variable 1/
√

εgg

Simulation time step �t 10−4 σg
√

εgg

Langevin equation

dr(t )/dt = F/ζt + ηth(t ) + ηact(t ), (2)

where ηth,i(t ) and ηact,i(t ) are, respectively, the thermal and
active noise along the direction {i,j} = {x, y, z}. Here ζt =
6πζ (σt/2) is the drag coefficient of the tracer (ζ is the dy-
namical viscosity of the solvent, σt is the diameter of a tracer
particle, and kBT is the thermal energy). The indices responsi-
ble for the space directions are kept on purpose roman, not to
be confused with the italicized indices for the particle number.
Thermal noise features delta-type correlations in time, zero
mean, and absence of correlations with respect to different
axes, that mathematically can be expressed as

〈ηth,i(t ) · ηth,j(t
′)〉 = 2Dthδi,jδ(t − t ′). (3)

Here Dth is the thermal diffusivity related to the ambi-
ent temperature T (denoted here slanted not to be mixed
with the trajectory length T used below) via the Einstein-
Smoluchowski relation,

Dth = kBT /ζt. (4)

For convenience of the reader, the main parameters of our
model and of computer simulations are listed in Table I.
To describe the self-propulsion of the tracer, an additional
active-noise term ηact(t ) with physical dimensions of velocity
is introduced in Eq. (2). Such self-propulsion forces can arise,
e.g., due to a metabolic activity in the form of ATP hydrolysis
in cells and they drive the system out of equilibrium.

B. AOUPs versus RTPs

We consider two models of active tracers: (i) AOUPs
and (ii) run-and-tumble particles (RTPs). These acronyms
are related to the type of the particles, not to the underly-
ing stochastic processes. The model of RTPs is commonly
employed for modeling bacterial motion [182]. In the case
of AOUPs, the magnitude of the active force is charac-
terized by stochastic variability described by the active
Ornstein-Uhlenbeck [183] process (see its description in
Refs. [184–187]). In contrast, the active force remains con-

stant in the case of RTPs (see Refs. [182]) with changes in
directions of particle motion following a random process. The
x-component trajectories of AOUPs and RTPs are shown in
Fig. 10: the fact that active forces evolve very differently in
these two cases is easily noticeable. Moreover, in our study,
the active force for all RTP-trajectories initially takes a nega-
tive value, resulting in a negative drift for these particles, see
the inset in Fig. 10(b) and the discussion in Sec. III D. These
differences between cases (i) and (ii) have implications onto
the diffusive characteristics of respective active particles; see
Sec. III.

A common and effective model for active noise is
given by the active Ornstein-Uhlenbeck process described as
[184–187]

dηact(t )/dt = −ηact(t )/τact +
√

2 f 2
act/τact × γ (t ), (5)

where γ (t ) is a delta-correlated white Gaussian noise of a
strength which scales with fact. Here, the exponentially de-
caying correlations are

〈ηact,i(t1)ηact,j(t2)〉 = f 2
actδi, j × e−|t1−t2|/τact , (6)

where—similarly to Eq. (3)—the Kronecker delta symbol
ensures that the components of ηact(t ) in different directions
are mutually independent. Here, τact is the persistence time
that determines the timescale over which the directionality
of self-propulsion is conserved (on average) and fact is the
amplitude of the self-propulsion force. One can define an
“active diffusivity” Dact in terms of fact and τact as [188,189]
Dact = f 2

actτact. To quantify the activity of the particles, we use
the dimensionless Péclet number [6] defined via the diameter
σt and the diffusion coefficient Dt of the tracer as

Pe = factσt/Dt. (7)

Thus, the case Pe = 0 corresponds to a passive tracer, whereas
large Pe numbers indicate high activity of the particles.

In the model of RTPs, a particle moves in a specific di-
rection for a certain time with a constant speed v0 and then
randomly changes its direction (it “tumbles”). These running-
and-tumbling modes of motion are repeated by each particle.
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A change in the direction of motion is stochastic; it is often
modeled by a Poisson process [190–192]. In such a model, a
driven 1D particle can move only to the right or to the left; in
2D the direction of particles—expressed by the angle θ with
the y axis—can generally take continuous values between 0
and 2π . This model can also be formulated discretely, such,
e.g., as a four-state model with angles θ = {0, π/2, π, 3π/2}
only. In 3D an additional angle φ with the z axis is to
be parameterized; in a similar fashion, for active RTPs we
adopt a model with eight possible states for 3D motion. In
such a model, the RTP can thus have angles of motion θ =
{0, π/2, π, 3π/2} with φ = {0, π}.

Specifically, the active force in each direction can be de-
scribed as a dichotomous colored noise [190,193]

ηact,i(t ) = v0 σD,i(t ), (8)

where v0 is the speed of self-propulsion and σD,i takes the
values of ±1 following the Poissonian statistics with a fixed
rate r0. Therefore, σD,i(t ) = (−1)n(t ), where n(t ) = m is the
number of jumps during time t following a Poisson distribu-
tion

P(m) = (r0t )me−r0t/m!. (9)

The noise generated by this process features the exponential
correlation function [190,191]

〈ηact,i(t1)ηact,j(t2)〉 = v2
0δi,j × e−r0|t1−t2|. (10)

Here the Péclet number can be expressed as

Pe = v0σt/Dt. (11)

A typical trajectory of a single RTP in 2D is shown in Fig. 11.
While for AOUPs the magnitude of the force can vary and
the change in direction is governed by a Gaussian process, for
RTPs the magnitude of the force remains constant at v0 and the
force acts only in six possible distinct directions, with changes
in directions being determined by a Poissonian process.

C. Potentials and equations of motion

The gel network in its equilibrium state in the absence of
active particles is represented by a cubic lattice consisting
of 6 × 6 × 6 gel beads, each with diameter σg, as shown in
Fig. 1. All lattice-neighboring beads are elastically connected
via the Morse potential [194]

UM(ri j )=
{
εM[e−2hM(ri j−req ) − 2e−hM(ri j−req )] − Uc, ri j � rc

0, ri j > rc
.

(12)

Here ri j = |ri − r j | is the separation between the ith and the
jth bead, we define Uc ≡ UM(rc), and rc is the cutoff distance.
In Eq. (12), the parameter εM represents the depth of the
potential, hM determines its reciprocal width, and req defines
the equilibrium bead-to-bead distance (bond length).

To account for excluded-volume interactions, a repulsive
Lennard-Jones (LJ)-type [195–197] 6-12 potential, shifted to
the Weeks-Chandler-Andersen form [198,199],

ULJ(ri j ) =
{

4εi j
[( σi j

ri j

)12 − ( σi j

ri j

)6] + εi j, ri j � 21/6σi j

0, ri j > 21/6σi j
,

(13)

between the ith and the jth beads is used in the simulations.
Here εi j = εgg is the depth of the potential between these
gel beads and σi j = (σi + σ j )/2 is the effective separation
between the beads. Thus, based on Eqs. (2), (12), and (13),
the dynamics of the ith bead of the gel is described by the
following stochastic differential equation

dri,g(t )/dt = ζ−1
g

∑
j, j �=i

F i j + ηth(t ). (14)

Here, ζg is the friction coefficient of a gel bead, ζg =
6πζ (σg/2), and the total force acting on each bead is

F i j = −∇[UM(ri j ) + ULJ(ri j )], (15)

where ∇U = ∑
k={x,y,z} ek∂U/∂rk.

The tracers diffuse inside the gel and interact with the gel
beads via the repulsive LJ potentials (13) with εi j = εtg and
with

σtg = (σt + σg)/2. (16)

Therefore, the dynamics of the ith tracer in the gel is governed
by

dri,t(t )/dt = −ζ−1
t

Ng∑
j=1

∇ULJ(ri j,tg ) + ηth(t ) + ηact(t ), (17)

where ri j,tg is the distance between the ith tracer and the jth
bead of the gel; Ng is total number of gel beads.

Thermal agitation of the network occasionally enables
cage-opening events [170] and, thereby, a passage of tracers
from one cell of the gel to the next, even if the tracer size
exceeds the pore size in a static mesh-work in the absence of
thermal fluctuations (zero-temperature limit). Our toy model
examines the effects of confinement and caging imposed by
a polymeric interconnected or entangled gel structure on the
diffusion of tracer particles. The parameters of the model were
chosen on purpose so that in order to perform a motion the
tracer needs to deform the network and to escape from its local
“cage.” To map a structure of real-world polymeric gels to our
network of the quasiperiodic gel beads, one needs to know the
average mesh size of a given gel and to choose the tracer size
in experiments accordingly, to induce “caging” of the tracers.
Higher concentrations of intermingled polymer chains in a
polymer gel result naturally in smaller average mesh sizes.
The elasticity of the bead-to-bead connections is imposed
in our model via the Morse potential; it characterizes the
stretching characteristics and the inter-connectivity properties
of polymer-polymer contacts in realistic gels.

D. Details of computer simulations

The dynamics of the tracers and of the gel beads—
described by Eqs. (17) and (14), respectively—is simulated
using the Euler-Maruyama method [200]. At each time step,
the forces acting on the particles (both gel beads and tracers)
are calculated via Eq. (15) by considering their neighbors, for
each within a specified cutoff distance rc of the Morse po-
tential; see Table I. The computed forces are then used in the
respective Langevin equations (14) and (17) in order to update
the positions of each particle. For AOUPs, the active force at
each time step is generated by solving Eq. (5). For RTPs, each
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component of the active force takes a value of either +v0 or
−v0, switching according to a Poissonian process with the rate
r0; see Eq. (8). Concretely, at each time step, a random number
is generated from the uniform distribution U (0, 1)numb, and if

r0 × �t > U (0, 1)numb (18)

with the force currently being −v0, it changes its sign in the
next step to become +v0. The next sign reversal occurs when
the condition (18) is met again. The simulations are performed
in the canonical NVT ensemble, so that the total number
of particles N , the volume of the simulation box V , and the
temperature of the environment T are all kept constant.

We impose the periodic boundary conditions in all di-
rections of the lattice to mimic an infinite gel network. No
measurable influence of the box size on the final results of
computations is expected. The periodic boundary conditions
ensure that the particles leaving the simulation box on one side
reenter from the opposite side. We choose an integration time
step of �t = 10−4 in the simulations (see units in Table I);
it is kept small to account for an increased frequency of
tracer-network collisions when the tracer size is comparable
to the mesh size. The initial configuration of the network is
taken generally off its equilibrium state. After an extensive
equilibration of the gel meshwork, N = 15 trajectories of the
tracers with Nsteps = 5 × 106 steps and of length

T = Nsteps × �t = 500 (19)

are simulated and recorded. The positions of the gel beads are
not recorded at each step of the simulations because of the
enormous memory requirements (ca. 60 GB per trajectory).
The simulation time of a single trajectory of this length is
60, . . . , 70 hours (hereafter, a range of a parameter is denoted
this way) on a high-performance computing cluster.

E. Dynamical variables and statistical quantifiers

1. TAMSD and scaling exponent

To rationalize the dynamics of the tracers, we analyze the
behavior of a number of selected relevant statistical quan-
tities computed from the simulation data. First, for each of
the recorded trajectories of length T we compute the time-
averaged MSD (TAMSD) as a function of the lag time �,
given in a continuous representation for a 3D trajectory of the
ith particle ri(t ) by [21,22,90]

δ2
i (�) = 1

T − �

∫ T −�

0
dt[ri(t + �) − ri(t )]2. (20)

In a discrete form, the TAMSD is computed at points with
the elementary step dt along the trajectory; the integral in
Eq. (20) is then replaced by a sum, see the examples of such
discrete analyses in Refs. [7,157,201]. To keep the expressions
short, we use the notation δ2

i (�) for the TAMSD, although it
also parametrically depends on the trajectory length T . After
averaging over all N available realizations, the mean TAMSD
is

〈δ2(�)〉 = N−1
N∑

j=1

δ2
i (�). (21)

Similarly, for a single space component in 1D one can define
the respective mean TAMSD as

〈
δ2

x (�)
〉 = 1

N

N∑
i=1

1

T − �

∫ T −�

0
dt[xi(t + �) − xi(t )]2 (22)

and the mean fourth moment of the time-averaged displace-
ment as

〈
δ4

x (�)
〉 = 1

N

N∑
i=1

1

T − �

∫ T −�

0
dt[xi(t + �) − xi(t )]4.

(23)

The TAMSD-related anomalous exponent μ characterizing
the variation of 〈δ2(�)〉 or of 〈δ2

x (�)〉 with the lag time �

follows from the scaling relation

〈δ2(�)〉 ∝ �μ. (24)

Thus, the lag-time-local exponent of the TAMSD μ(�) is
conventionally computed as the slope in log-log scale [22],

μ(�) = ∂log〈δ2(�)〉/∂log�. (25)

We often consider [7,22,157] the TAMSD at �/T 	 1—the
region featuring statistically the best sampling of the data—
for extracting the short-lag-time scaling exponent μ(�). Note
that μ = 1 corresponds to normal diffusion in the TAMSD
sense, while values μ < 1 or μ > 1 correspond to the case
of sub- or superdiffusion [21,22], respectively. For ballistic
motion one gets μ = 2. So, the anomaly of diffusion can
realize both for the MSD (1) and for the mean TAMSD (24)
[22].

2. Nonergodicity and non-Gaussianity

The MSD-to-TAMSD nonequivalence—in terms of the
short-time scaling exponents or of the magnitudes of respec-
tive displacements—is a manifestation of the phenomenon
of weak ergodicity breaking [22]. These displacement char-
acteristics are natural to be considered for the spreading
dynamics of particles in isotropic continuous-space media.
The Boltzmann notion of nonergodicity [202] per se refers
to a discrepancy of the ensemble- and time-based averages of
a physical quantity.

The degree of nonergodicity—quantified via the de-
gree of irreproducibility of individual TAMSD trajectories
[21,22,203]—can be quantified with the so-called ergodicity-
breaking parameter (here defined along the x coordinate)

EBx(�) = 〈(
δ2

x (�)
)2〉/〈

δ2
x (�)

〉2 − 1. (26)

In the field of statistics, the same parameter is known as the
squared coefficient of variation (COV), in this case EBx(�) =
COV2(δx(�)). For ergodic systems, provided particle trajec-
tories are much longer than all characteristic times of the
dynamics of a system, one expects EB(� → 0) → 0. For
standard BM, e.g., one gets at � 	 T that [204,205]

EBBM(�) = 4�/(3T ). (27)

For nonergodic processes in general, the property EB(� →
0) → 0 is no longer true; the functional form of EB(�) → 0
as � → 0 decay is also an intricate, process-specific property
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(it is beyond the scope of this study; see Refs. [22,205–208]).
In terms of a variable [209]

ξx(�) = δ2
x (�)/

〈
δ2

x (�)
〉
, (28)

the EB parameter (26) becomes [22]

EBx(�) = 〈
ξ 2

x (�)
〉 − 1. (29)

The system is considered ergodic when for all available trajec-
tories ξx(�) ≈ 1 at � 	 T , i.e., a complete reproducibility of
all TAMSD trajectories in a data set [22].

To quantify deviations of the tracer dynamics from
Gaussianity, below we compute a modified non-Gaussianity
parameter (NGP), given in 1D by [76,79]

γx(�) = 〈
δ4

x (�)
〉/[

3
〈
δ2

x (�)
〉2]

. (30)

Note that, to be able to present the results for the NGP in log-
log scale, we do not subtract unity in Eq. (30), contrary to the
common definition of such a parameter in the literature [76]. A
perfectly Gaussian process then features γx = 1. For γx(�) >

1 [or γx(�) < 1] broader (or narrower) than Gaussian distri-
butions are typically observed. A more comprehensive way,
as compared to the non-Gaussianity parameter, is to compute
the Kullback-Leibler “distance” [210] from a given to the
standardized Gaussian distribution.

Note that the NGP is related to the kurtosis K of a distribu-
tion because both contain the fourth moment. The kurtosis of
a given distribution minus the kurtosis of a Gaussian distribu-
tion, EK = K − 3, is called the excess kurtosis. For instance,
EK = 0 for the Gaussian and EK = 3 for the Laplaceian dis-
tribution. A distribution with a positive and negative value of
the excess kurtosis EK is referred to as lepto- and platy-kurtic,
respectively. Lastly, if defined in terms of the standardized
central second and fourth moments of particle displacements,
the definition (30) would yield the kurtosis divided by 3.

3. Distributions of displacements and of angles

Another important quantifier characterizing the dynamics
is the PDF of tracer displacements p(x, t ) (or the self-part
of the van Hove correlation function (HCF) [211]). The
PDF in 1D can be computed as the probability of find-
ing a tracer within a small region [χ, χ + dχ ] at time
(t + �) as measured from its position at time t (along
a single trajectory). Therefore, the ensemble-time-averaged
displacement-distribution function can be written as [170]

Gtt(χ,�) = C−1

N

N∑
i=1

∫ T −�

0 dt δ{[xi,t(t + �) − xi,t(t )] − χ}
T − �

,

(31)

where C−1 is the normalization constant. Similarly, in 3D this
function can be expressed as Ptt (r,�) = 4πr2Gtt(r,�) or

Ptt (r,�) = C−1

N

N∑
i=1

∫ T −�

0 dt δ[|ri,t(t + �) − ri,t(t )| − r]

T − �
,

(32)

where the factor 4πr2dr is the spherical volume element
with radius in a range [r, r + dr]. To address the question of
how the gel dynamics collectively affects the tracer diffusion,

we compute the cross-HCF for the gel beads and the tracer,
defined in three dimensions as [170]

Gtg(r,�) = C−1

N

N∑
i=1

∫ T −�

0 dt
∑Ng

j=1
δ[|ri j,tg (t+�)−ri j,tg (t )|−r]

4πr2

T − �
.

(33)

Here Ng is the total number of beads in a gel.
In the following, for these quantities we keep the defini-

tions and notations of Ref. [170] where the passive tracer
diffusion in a gel network was examined. We emphasize here
that for the evaluation of EB (26) and NGP (30) as well as
for the displacement-distribution functions G tt and Gtg the
time-averaged characteristics are used. For Gtt and Gtg, for
instance, the averaging is therefore first performed along a
single trajectory and then the results are averaged over all
available trajectories in the data set.

By caging in the gel due to excluded-volume interactions,
a tracer can be trapped in the meshwork for a long time,
especially when its diameter exceeds the mesh size and when
no network openings emerge (due to, e.g., inflexibility of the
bead-to-bead connections). To quantify such trapping events,
we compute the PDF of the angles P(�,�) between two
consecutive �/2-lagged displacement vectors at time t , where
the angle �i = �i(t, t + �

2 ) along the ith trajectory of the
tracer is defined as

cos �i

(
t, t + �

2

)

=
[
ri

(
t + �

2

) − ri(t )
] · [

ri(t + �) − ri
(
t + �

2

)]∣∣ri
(
t + �

2

) − ri(t )
∣∣ · ∣∣ri(t + �) − ri

(
t + �

2

)∣∣ , (34)

and the respective time-averaged PDF reads [212]

P(�,�) = C−1

N

N∑
i=1

∫ T −�

0 dtδ[�i(t,�) − �]

T − �
. (35)

For a nonhindered isotropic random motion one gets [212]

P(�,�) = 1
2 sin �, (36)

with 0 < � < π , which is peaked at � = π/2. Deviations in
the shape and in the height of this PDF are indicative of caging
effects in the network.

4. Distributions of trapping times

To gain a deeper understanding of the transport mecha-
nisms, we also analyze the waiting-time distribution (WTD)
of the tracers in a periodic cubic box with the side length
L = 30. The waiting time is defined here as the temporal
interval between the entry time of the tracer into the box and
its subsequent escape from it. In virtue of periodic boundary
conditions, both the escape and entrance events are treated the
same in this context. The density of the WTD (indicated by
subscript w) is denoted as P(τw ), with

∫ ∞
0 dτwP(τw ) = 1. The

first moment of P(τw ) is the average time a tracer waits before
escaping,

〈τw〉 =
∫ ∞

0
dτwτwP(τw ). (37)
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The variance related to P(τw ) is calculated as

Var(τw ) = 〈
τ 2
w

〉 − 〈τw〉2. (38)

We measure the deviation from the mean using the COV
defined as [213]

COV(τw ) =
√

Var(τw )/〈τw〉. (39)

As COV=1 for an exponential PDF, any departure from unity
indicates a nonexponential nature of the observed WTD. Gen-
erally, a higher COV value suggests a larger spread of the
observed waiting times.

For a more comprehensive examination of timescales, one
can also compute the so-called uniformity index (UI) [213] β

defined for two random waiting times τ1 and τ2 as

β = τ1

τ1 + τ2
, (40)

with β ranging between 0 and 1. The distribution of values of
β can be expressed as [213]

P(β ) = 1

1 − β2

∫ ∞

0
τ0P(τ0)P

(
βτ0

1 − β

)
dτ0. (41)

If the ratio of the values of τ1 and τ2 is significant, then one
expects β to be close to 0 or close to 1. In such a case, τw

may be dictated by two well-separated timescales and thus the
distribution P(β ) is peaked around 0 or 1. In the opposite sce-
nario, at (τ1 − τ2) ≈ 0 the parameter β should have a value of
about 1/2. Therefore, the dynamics is expected to be governed
by a single timescale, turning the distribution P(β ) unimodal
with a peak at β ≈ 1/2 [213].

III. RESULTS

Here, we examine the dynamics of active tracers in a
responsive gellike network via studying the statistical quan-
tifiers from Sec. II E. We start via presenting the results for
the TAMSD and its scaling exponent in Sec. III A, then we
illustrate and discuss (i) the findings for the higher moments
of displacements of the tracers in terms of EB and NGP
(Sec. III C), (ii) the outcomes of computer simulations for the
WTDs (Sec. III E), and, finally, (iii) the distribution of the UI
parameter β (Sec. III F). All the results below are presented
systematically for the models of AOUPs and of RTPs, in order
to compare and contrast their respective characteristics.

A. TAMSD and its exponent

In Fig. 12 we illustrate how the overall shape of 3D tra-
jectories of the AOUPs evolves upon variation of the tracer
activity. Namely, at Pe = 0 no activity is present, and, as per
Eq. (7), the recorded trajectory is reminiscent of a nondirected
random walk; see Fig. 12(a). For larger activity values, the tra-
jectories start adapting a directional appearance characteristic
of superdiffusive [21,22] or persistent walks [214,215]; see
Figs. 12(b) and 12(c).

The results of the analysis of simulation data for the mean
TAMSD and its scaling exponent for the AOUPs are presented
in Figs. 2(a) and 2(b), respectively. The mean TAMSD is
computed via double averaging of the tracer positions along
each trajectory and among all 15 available trajectories. We

10-4 10-3 10-2 10-1 100 101
0

0.5

1

1.5

2

(
)

Pe=0.0
Pe=1.0
Pe=25.0

(b)

(a)

FIG. 2. Diffusion characteristics of AOUPs. (a) Log-log plot of
the mean TAMSD 〈δ2

x (�)〉 for different values of the Péclet number
(see the legend). The dashed lines shown in panel (a) indicate the
slopes of ballistic (μ = 2), of Brownian (μ = 1), of subdiffusive
(μ = 1/2), and of confined (μ = 0) motion in terms of the TAMSD
evolution (to be used as guides to the eye). The standard deviations
for the computed mean TAMSDs are represented by the shaded areas,
arising from ensemble averaging. The asymmetry in this area around
the mean in panel (a) is due to the log scale. (b) Evolution of the
lag-time-local exponent μx = μ(�) of 〈δ2

x (�)〉 given via Eq. (25),
also shown in log-log scale, but only up to � = 10. Parameters: the
size of the tracer is σt = 5, the persistence time of the dynamics is
τact = 5, the total trajectory length is T = 5 × 102, and averaging
is performed over N = 15 trajectories of the tracer. The horizontal
dashed blue line in panel (a) indicates the value of the square of the
cell size.

compute below the TAMSDs (20) and (21) only—and not the
MSD—because of a rather small and limited number of very
long trajectories available from simulations. Although we
only present here the results for a single-coordinate TAMSD
component, the findings for the other two components are
statistically identical due to isotropic diffusion and the cubic
symmetry of the elastic network. The time-local scaling expo-
nent of the mean TAMSD in Fig. 2(b) is computed via Eq. (25)
with the use of nfit = 10 points of the TAMSD trajectory
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(this number is a parameter and can quantitatively affect the
obtained values of the diffusion exponents and of the trans-
port coefficients, see the discussion in Refs. [157,216,217]).
Note also that the analysis of the ensemble-average MSD
would give rise to large inaccuracies due to small-sample-
size-induced fluctuations of the computed mean, as given by

〈x2(t )〉 = N−1
N∑

j=1

x2
j (t ) ≈

∫
x2 p(x, t ) dx. (42)

Therefore, we restrict ourselves here to the TAMSD-based
analysis, based on very long trajectories.

As a reference, a prior investigation of passive diffusion
of tracers in similarly constructed gels reported in Ref. [170]
revealed an initially diffusive behavior at � � 10−2, with a
transition to a subdiffusive TAMSD growth at intermediate
lag times. Naturally, the TAMSD exponent was found in
Ref. [170] to decrease in this second subdiffusive regime for
progressively larger—and thus increasingly more confined—
tracers, namely, from μ ≈ 0.9 down to μ ≈ 0.4.

Our simulations of the passive tracers at Pe = 0 give rise to
a rather small magnitude of the mean TAMSD and to a slightly
subdiffusive dynamics across almost the entire range of lag
times; see Fig. 2. As expected, with increasing Pe numbers
(indicative of enhanced activity of the tracers) the mean-
TAMSD magnitudes grow, as compared to those for passive
diffusion. Additionally, for active tracers we observe a very
short initial regime (� 	 10−3) of nearly Brownian behavior
followed by strongly subdiffusive behavior. Specifically, at
short lag times (at � ∼ 10−3, . . . , 10−2) the anomalous ex-
ponent quickly drops and we find very small values of μ ≈ 0,
indicative of a transient caging of active tracers.

The emergence of this short-time subdiffusion can be ex-
plained by confinement of active tracers within a meshwork,
both due to caging effects and directional bias [187,218]. At
t 	 τ act the self-propulsion force maintains a nearly constant
direction, entrapping the tracers temporarily in the mesh-
work of periodically positioned beads (see the video files in
the SM). A stronger confinement is typically experienced at
higher activities. At longer times (when t � τact) the tracers
can freely reorient themselves and break through this activity-
induced “blockade.” With increasing activity, the tracers can
overcome the energy barriers imposed by cage restrictions
more easily. Eventually, as the tracers are released from
their cages, a highly directed motion is observed, leading
to superdiffusion at intermediate lag times; see Figs. 2(a)
and 2(b). The time of onset onto a superdiffusive behavior
coincides with the decay of the average persistence of the
self-propulsion force. Hence, at higher τact values the transi-
tion to superdiffusion occurs at longer times, as illustrated in
Figs. 13(a) and 13(b).

This strongly subdiffusive regime is succeeded at lag
times � ∼ 10−2, . . . , 100 by a crossover to a superdiffusive
behavior observed at � ∼ 100, . . . , 102, with the TAMSD ex-
ponent μ ≈ 1.6. This means that a persistent close-to-ballistic
anomalous scaling exponent is observed for the mean TAMSD
at intermediate-to-long times (μ ∼ 1.5, . . . , 2.0). The spread
of individual TAMSDs (used to compute the mean TAMSDs
of AOUPs presented in Fig. 2) are plotted in Fig. 14.

We also examined the evolution of the mean TAMSD
of AOUPs at a specific Pe value (Pe = 1) and for varying
times of the directional persistence τact, see the results pre-
sented in Fig. 13. As anticipated, the magnitude of the mean
TAMSD increases for longer persistence times of the tracers
[Fig. 13(a)], while the local TAMSD scaling exhibits an S-
shaped or sigmoidal variation with the lag time �, as depicted
in Fig. 13(b).

Notably, superdiffusive behavior is observed predomi-
nantly at longer lag times as the persistence time increases.
In this regime, the scaling exponent of the mean TAMSD in-
creases with increasing τact; see Fig. 13(b). For larger values of
τact the superdiffusive behavior characterized by 1.5 < μ � 2
is shifted to longer lag times. Specifically, the highest value of
the exponent μ is observed at � � τact. This peak value of μ

becomes more pronounced for larger τact values. Conversely,
the minimum value of μ during the subdiffusive regime is at
its lowest for the same cases. Note that a comparable S-shaped
variation of μ was previously also reported for the diffusion of
an active tracer in dense glass-forming suspensions [84] and
for the diffusion of a passive tracer in a medium containing
active hard disks [219].

We thus find that for AOUPs, the mean-TAMSD evolution
exhibits several distinct regimes of dynamics across different
regions of the lag time. Initially, the dynamics are diffusive.
Subsequently, the TAMSD follows 〈δ2(�)〉 ∝ �μ, where
μ � 0.5, within the lag-time range � ∼ 10−3, . . . , 10−2.
Following this regime, our simulations reveal a prominent
superdiffusive behavior with μ in the range 1.5, . . . , 2. The
variation of the local scaling exponent (25) with the lag time
is less trivially connected to the Pe numbers; see Fig. 2(b).
While for intermediate lag times, the exponent μ of the tracer
trajectories with large Pe number is the largest, the situation
for short lag time is the opposite. At very long lag times, the
exponent μ likely tends to approach unity, indicative of BM.
This long-time behavior is expected physically because at
long times—after a larger number of alternations of the direc-
tions of motion—the tracer should diffuse normally, but with
a renormalized diffusion coefficient. Certain irregularities in
the values of μ observed at very long lag times stem from
unavoidable deficiencies in the TAMSD averaging statistics,
which are also present for conventional BM [22].

The standard deviations around the mean TAMSD for the
passive-tracers case computed from the data are shown in
Figs. 2(a) and 13(a). These can be reduced via averaging
over the two other (independent) directions of diffusion (y
and z) as well as via increasing the number of statistically
independent trajectories in the data set. For the same num-
ber of trajectories used for averaging, for diffusion of active
tracers the standard deviations are generally larger, compare
their magnitudes in Figs. 2(a) and 13(a). For the situation
considered, the standard deviations decrease at intermediate
lag times, as also supported by a shrinkage of the distribution
of individual TAMSDs in this region (a more reprodusible
motion); see Fig. 14. Finally, the inaccuracies in the determi-
nation of the mean TAMSD naturally increase towards the end
of the recorded trajectories (for this and many other stochastic
processes) because of worsening statistics of sliding-window-
based averaging [22,157].
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B. Amplitude spread of the TAMSDs

In Figs. 14 and 15 we illustrate—for AOUPs and for
RTPs, respectively,—the variation of the values of individual
TAMSDs at varying activities over the entire range of lag
times. For AOUPs, the PDFs p(ξx(�)) are depicted in Fig. 16
and in Fig. 17 for RTPs. For passive tracers, the distribution
p(ξx(�)) is unimodal, exhibiting a pronounced peak at ξx = 1
at all lag times; see Fig. 16(a). As the lag time increases, the
distribution broadens significantly. In contrast, for AOUPs,
the distribution becomes bimodal, with two distinct maxima
and a minimum around ξx ≈ 1. At both shorter and longer
lag times, the bimodal distribution p(ξx(�)) becomes slightly
skewed to the left or right, as shown in Figs. 16(b) and 16(c).
At intermediate lag times, the PDF remains bimodal, but the
spread of the respective distribution is reduced. This emer-
gence of bimodal PDFs at nonzero activities of the particles
indicates their splitting into two “nonoverlapping” subpopu-
lations.

For RTPs, the TAMSD distribution p(ξx ) is evidently much
more localized, with the spread of TAMSDs being particu-
larly small at large Péclet numbers; see the Pe = 25 data in
Figs. 3 and 17(c). At Pe = 1, the distribution p(ξx ) exhibits
a unimodal behavior around ξx = 1, slightly skewed to the
right; see Fig. 17(a). At a high activity (Pe = 25), the dis-
tribution is unimodal, featuring a very sharp peak precisely
at ξx = 1; see Fig. 17(c). The latter is indicative of extreme
reproducibility of individual TAMSDs and ergodicity of the
dynamics of RTPs in this regime of model parameters. Note
that, in contrast to the AOUPs, the RTPs can move only in a
restricted direction, allowing it to explore only specific spaces.
Therefore, the dynamics of RTPs in the x-direction is less
influenced by movements in the other two directions. This can
be envisaged via comparing Eq. (5) governing the dynamics
of AOUPs and Eq. (8) characterizing the RTPs.

C. EB and NGP

Upon examining the distributions of the TAMSD spreads
presented in Figs. 14 and 15, we compare the EB parameter
EB(�) for AOUPs to that for RTPs via presenting the EB re-
sults in Figs. 4(a) and 4(b), respectively. In correspondence to
a much smaller spread of the TAMSDs for RTPs, the respec-
tive EB parameters (particularly at higher Pe numbers) are
considerably smaller, as compared to the case of AOUPs. For
the latter we observe a weakly nonergodic behavior, with the
scatter of the TAMSDs variation displaying a nonmonotonic
trend with activity of the particles, notably showcasing a min-
imal spread of the recorded TAMSDs at intermediate values
of Pe (in this case, Pe = 1.0); see Fig. 4(a). This nonmono-
tonicity is also visible from the original TAMSD distribution
in Fig. 14. An increase of EB at very long lag times can be
attributed to statistical inaccuracies of the TAMSD evaluation,
known to occur also for other underlying stochastic process.

In contrast, for RTPs we observe that the spreads of the
TAMSDs becomes smaller than those of passive motion and
they decrease with progressively higher tracer activity, as il-
lustrated in Figs. 16 and 17. At higher Pe values, the system
approaches a much more ergodic behavior, with very small EB
values, as quantified in Fig. 4(b). Note that both for AOUPs
and for RTPs we find that the EB is not a linearly increasing
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FIG. 3. The same quantities as in Fig. 2, but computed for RTPs
diffusing in gels. Parameters: σt = 5, the Poissonian rate is r0 = 1,
T = 500, and N = 15. The horizontal lines in panel (a) correspond
to the magnitudes of the squares of one, two, and three cell sizes.

function of the lag time. Such a linear dependence is known
for conventional BM [22], where the dependence (27) is valid.
For AOUPs and RTPs, in contrast, the EB parameter varies
somewhat, but does not reveal a tendency to grow as a power
law at longer lag times.

The NGP parameter γx(�) defined by (30)—computed
from the results of our simulations and shown in Fig. 5—
demonstrates a decaying behavior with the lag time. At very
short lag times (of the order of a simulation time step) large
values of γx were found. Note that, unlike some previous
investigations [177,179], the tracers in our study are not ini-
tially at equilibrium or in a steady state with the gel network.
As the lag time increases, we thus find that the NGP γx(�)
gradually reduces to unity indicating a Gaussian behavior
of the respective PDFs. Note that both for AOUPs and for
RTPs, the value of γx(�) significantly increases as we go from
lag times � ∼ 100 to � ∼ 10−2, especially in situations
of high tracer activity. This finding strongly indicates the
presence of a pronounced non-Gaussian dynamics of tracer
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FIG. 4. EB parameter (26) as a function of � computed as the
squared coefficient of variation from the TAMSDs of AOUPs shown
in Fig. 2(a) and of RTPs shown in Fig. 3(b) for different Pe numbers
(see the legend), shown for the same respective model parameters.

displacements at short and a crossover to a Gaussian dynamics
at long lag times �.

D. Displacement-distribution functions

We analyze the tracer-tracer self-HCFs Gtt(χ,�), as
shown in Figs. 6 and 7 for AOUPs and RTPs, respectively,
for several values of the lag time. As most of the PDFs are
symmetric functions (except for those in Figs. 7(e) and 7(f)),
only the region of positive displacements are shown in Figs. 6
and 7. At short lag times, the distributions of the tracers can be
approximated by compressed Gaussian functions in the cen-
tral region of small displacements. Namely, in Figs. 6(a)–6(c),
the simulation data are fitted with

Gtt(χ ) ∝ exp(−[|χ |/a0,η]η ). (43)

For Pe = {0, 1, 25}, the values of the scale parameter a0,η

and of the exponent η are determined by fitting to be a0,η ≈
{1.1827, 1.1718, 1.1323} and η = {2.5587, 2.5388, 2.4223},
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FIG. 5. NGP γx given by Eq. (30) as a function of the lag time
� in log-log scale computed for the dynamics of AOUPs (a) and of
RTPs (b), computed for the respective parameters of Fig. 2 and of
Fig. 3.

respectively. Here and below, the distances such as a0,η, χ ,
and r are provided in units of σg; see Table I.

At long lag times, of Figs. 6(d)–6(f) showcase fits to the
data using the Gaussian functions of the form

Gtt(χ ) ∝ exp
[ − χ2/

(
2a2

0,2

)]
, (44)

where for Pe = {0, 1, 25} the values of the standard deviation
a0,2 are found to be a0,2 ≈ {1.0004, 1.0040, 1.1048}, respec-
tively. The so-called “full width at the half maximum” for
the function Gtt(χ ) is calculated for Pe = {0, 1, 25} to be
≈ {2.3557, 2.3643, 2.6016}, respectively.

We thus demonstrate that as the lag time increases the
PDFs of the displacements of the tracers change their form
from a compressed Gaussian (43) to a Gaussian (44). We note
that some fluctuating tails of the displacement distributions
observed here are the results of numerical inaccuracies found
at very small values of the PDFs in Figs. 6 and 7. Similar
features were observed earlier in Refs. [177,179] for tracer
diffusion in a polymer network.

We find that with increasing activity of the particles, the
central peak of the distribution functions broadens, and the
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FIG. 6. Self-HCFs given by Eq. (31) plotted as a function of displacement χ (in units of σg) of AOUPs at short (a)–(c) and long (d)–(f) lag
times (see the legend for exact values) for varying activities of the particles. The dashed lines represent the analytical functional dependencies
(43) and (44) as fits to the obtained simulation data at � = 0.006 and � = 65 (see the main text for the values of the fit parameters). All other
parameters are the same as in Fig. 2.

tails of the distribution become smoother. At longer lag times,
the distribution becomes approximately Gaussian with an ele-
vated standard deviation at higher Pe values, see the respective
panels in Figs. 6 and 7. In Fig. 7 the dashed lines correspond
to expressions (43) and (44) for the compressed or stretched
Gaussian and Gaussian forms fitting the data obtained from
simulations. In Figs. 7(a)–7(c), the values of a0 used for

fitting are a0,η ≈ {1.1827, 1.1495, 0.5294} and exponents
are η = {2.5587, 2.4979, 1.5468} for Pe = {0, 1, 25}, respec-
tively. In Figs. 7(d)–7(f), the values of a0,2 for the situations
Pe = {0, 1, 25} were found to be a0,2 ≈ {1.0004, 1.0120,

1.1421}, respectively. For the same set of Pe values, the
full widths at half maxima are ≈ {2.3557, 2.3831, 2.6893}.
To compare, for a perfectly Gaussian PDF, the full
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FIG. 7. The same as in Fig. 6, but obtained from simulations of RTPs. The dashed curves are the compressed or stretched Gaussian (43)
(see the main text for actual parameters) and the Gaussian (44) distributions. All other parameters are the same as in Fig. 3.
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width at half maximum is ≈2.355 of its standard
deviations.

Note that, except for highly active RTPs, the computed
displacement distributions are almost symmetric and feature a
zero mean, suggesting an isotropic nature of diffusion at long
times. However, in the case of very active RTPs, a mean of the
distribution is attained at χ < 0; see Fig. 7(f). This fact can be
attributed to the initial drift of the particles acquired via the
active force, which initially has negative values in all direc-
tions, as mentioned in Sec. II B and shown in Fig. 10. This
is not an artifact of a data-sampling method. This asymmetric
behavior is also reflected in some distributions of the angles;
see, e.g., Fig. 18(e).

Figure 18 illustrates the distributions of angles of AOUPs
and of RTPs for a number of lag times. At longer lag times,
the distribution is found to be symmetric and to take the form
(36), indicative of the expected isotropic diffusion. However,
at short lag times, the distribution is found to peak at � = π/2
that clearly reveals some local heterogeneity. This observation
supports the non-Gaussian short-time displacement distribu-
tion depicted in Figs. 6 and 7. Interestingly, in the case of
RTPs with high activity (at Pe = 25), the angle distribution is
found to be skewed or asymmetric and also to shift towards the
� < π/2 region at time � � 0.65. This suggests anisotropic
diffusion of the tracers at such conditions.

We analyze now the radial distribution 4πχ2Gtt(χ,�)
given by (31) and the cross-HCFs Gtg(χ,�) given by (33)
at different lag times for different activities of the particles
corresponding to Pe = {0, 1, 10}, as depicted in Figs. 19–22.
Figures 19 and 20 illustrate the computed PDFs defined by
Eq. (32) along the radial distance r for AOUPs and RTPs,
respectively. At short lag times (at � � 0.1), the maximum of
the displacement function of the tracers 4πχ2Gtt(χ ) is found
at a distance r � 2.5. Furthermore, the likelihood of finding a
tracer beyond the gel mesh size of r ≈ 5 is vanishingly small,
indicating a predominant confinement within a single mesh.
At longer lag times, the maximum probability for the AOUPs
is centered at around r ≈ 2.5, suggesting some fluctuations
of the lattice around the mean position within a cell of the
network. The distance of r ≈ 2.5 corresponds to a half of the
mesh size: such tracers are thus located at the center of the re-
spective cells. At higher activity of the particles (at Pe = 25),
we find an increased occurrence probability of the AOUPs and
of RTPs at distances beyond r = 5, as depicted in Fig. 19(f)
and most pronouncedly in Fig. 20(d), correspondingly.

This suggests that—although the tracers are most likely
confined to a single cell of the mesh—a movement to one
of the neighboring sites increases over time for conditions of
higher activity. Note also that, especially in the case of RTPs,
the maximal probability occurs at r ≈ 5.0, and the relative
displacement shifts towards distances r > 5.0. This could be
due to the initial drift of such active tracers, which makes them
likely to escape the initial site and to diffuse to a neighboring
site of the network, as discussed earlier. The effect of diffusion
from one site of the network to the next due to the so-called
“cage opening” is clearly visible for highly active particles at
long times; see Fig. 19(f) for AOUPs and especially Fig. 20(d)
for RTPs, as well as the discussion below.

Figures 21 and 22 depict the cross-HCFs Gtg between the
gel beads and the tracers, represented by AOUPs and by RTPs,

respectively. In all the cases, a distinct peak is evident at the
trace-bead separation of r ≈ 3 (r is measured in units of σg),
corresponding to the beads in the first cell around the tracer. In
the case of a passive tracer, illustrated in Fig. 21(a), there are
some minor peaks also beyond the threshold value of r ≈ 3.
The distance of r ≈ 3 in the tracer-gel correlation refers to the
average distance between the tracer and the nearest gel bead
given by Eq. (16). The first peak broadens and shifts towards
larger r values at lag time 0.1 � � � 1, indicating free diffu-
sion of the tracer due to gel-tracer collective fluctuations. At
longer lag times, peaks near r → 0 suggest exceedingly larger
fluctuations of the tracer. At higher Pe values, a pronounced
first peak at short lag times � � 0.1 is observed, indicating
the strong confinement of the tracer within the mesh due to
the negative viscoelastic response of the gel network to the
tracer motion. This observation is corroborated in Figs. 2 and
3. However, at intermediate-to-long lag times and at higher
Pe values the first peak shifts towards comparatively larger
r values in Fig. 19(f), which is a signature of cooperative
gel-tracer motion indicative of cage-opening events.

E. WTDs

The escape dynamics of SPPs from confined domains has
been previously studied; see, e.g., Refs. [220–223]. Below,
we analyze the waiting time of the tracers between two suc-
cessive escape events from a cell in the periodic gel network
of volume L × L × L = 30 × 30 × 30 (in units of the mesh
size). In the simulations, we monitor the number of steps nw

taken by a tracer to either exit or to reenter the defined domain.
Employing periodic boundary conditions, we designate the act
of entering into or of escaping a certain spatial domain as an
“event.” The time instance of such an event is determined by
multiplying the step count nw by the time increment �t in our
simulations. The time difference between the occurrences of
two sequential events is defined as the waiting time, denoted
here as τw, and the PDF of these times (named WTD) is
extracted from the simulation data.

The WTDs P(τw ) are plotted for various values of Péclet
number in Figs. 23 and 24 for the case of AOUPs and of RTPs,
respectively. These results reveal that the WTDs deviate from
a single-exponential behavior at low tracer activities. In the
case of AOUPs, the WTD initially follows an exponential
decay law with a short timescale over a limited range of
waiting times; see Fig. 23. Notably, some outliers occur in the
long tail of the WTD: this tail at later times can be fitted with
another exponential function having a much longer timescale,
as compared to the initial one. As the value of Pe increases
[see the legends of Figs. 23(a)–23(d)], this second timescale
becomes gradually and dramatically shorter. Eventually, at
very high Pe values [see Fig. 23(d)], the WTD is excellently
described by a single-exponential decay,

P(τw ) = 〈τw〉−1
f exp[−τw/〈τw〉 f ], (45)

with the characteristic time 〈τw〉 f . Upon fitting the simulation
data, we determined that this scale is 〈τw〉 f ≈ 2.65, which
closely approximates the mean waiting time 〈τw〉 ≈ 2.73 ob-
tained from the simulation data [see Fig. 23(d)]. This fact
supports the exponential form (45).
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FIG. 8. Log-log plot of the mean waiting time as a function of
Péclet number for the case of AOUPs and of RTPs, as indicated. The
dashed lines are the asymptotes provided in the legend.

For the case of RTPs, the distribution cannot be accurately
fitted with any exponential function across the domain of
examined Pe values, as illustrated in Fig. 24. At intermediate
Pe values, with Pe in a range from ≈10 to ≈25, a plateau-like
behavior is observed at short times. However, at Pe = 50 some
outliers emerge at later times, extending beyond the range of
exponential fitting and rendering the distribution nonexponen-
tial.

The mean waiting times 〈τw〉 of the respective WTDs as
well as their fluctuations quantified by the respective COVs
are presented in Figs. 8 and 9, respectively. The times 〈τw〉 ex-
hibit distinct characteristics across various ranges of Pe values
for both AOUPs and RTPs, as depicted in Fig. 8. Specifically,
for Pe � 5 in the case of AOUPs and for Pe � 1 for the case
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FIG. 9. COV of the WTDs plotted versus the Péclet number in
log-lin scale for the case of diffusion of AOUPs and of RTPs, as
indicated. For large Pe numbers, the COV approaches approx. unity
for the WTDs of AOUPs, whereas it exhibits a nonmonotonic and
fluctuating dependence on Pe for the case of RTPs.

of RTPs, the mean shows a slight dependence on Pe number.
Beyond Pe � 5 and Pe � 1 regions, respectively, the waiting
time decreases monotonically and significantly with Pe, up
to Pe = 25. This variation can be effectively described by a
power-law dependence

〈τw〉 ∼ Pe−α, (46)

for the exponent of which we find α ≈ 0.255 for AOUPs and
α ≈ 0.5 for RTPs. In the case of AOUPs, in the activity region
beyond Pe = 25, 〈τw〉 exhibits a decay with Pe, displaying a
slight nonmonotonic behavior (within the margin of numerical
error).

Conversely, for RTPs, there is a pronounced nonmonotonic
behavior in the variation of the mean waiting time at large Pe
values (see Fig. 8): specifically, after a certain Pe number the
mean waiting time starts to grow. The observed power-law
behavior at intermediate Pe aligns with the previous findings
of Ref. [177]. This behavior can be attributed to an increased
dynamics associated with higher activity, resulting in tracers
exploring the simulation box in shorter average times. In the
case of RTPs, for which motion of the tracers is directed along
specific directions, higher activity implies faster exploration
over larger length scales, leading to a significant decrease in
the computed mean waiting time; see Fig. 8.

Figure 9 illustrates that the COV for the case of AOUPs de-
creases nearly monotonically, approaching ≈ unity at higher
activities of the particles. This observation supports the expo-
nential behavior of the WTDs at large Pe values for AOUPs
(see Fig. 23), because COV = 1 for exponential WTD. In
contrast, an exponential law is reported for all activities of the
tracers diffusing in a flexible gel network in a recent study
of Ref. [177]. However, note that the case considered here
involves a slightly different gel network and we also define
the waiting time differently than the method of Ref. [177].

A nonmonotonic behavior of the COV for the case of
RTPs is evident from Fig. 9. Specifically, the COV reaches a
minimum (COV < 1) at an intermediate Pe number, and COV
increases beyond unity in the high-activity regime. Similar
variations of the COV, corresponding to the first-passage time
of SPPs confined within a domain, were reported previously
in Refs. [220,222]. From Fig. 9 it becomes apparent that the
COV is significantly greater than unity for a nearly passive
case and that COV �= 1 at low activities. Therefore, this COV
variation aligns with the characteristics of the WTDs. The
increase of the COV for RTPs at high Pe numbers is math-
ematically due to the fact that the average time of the WTD
PDF obtained from our simulations becomes progressively
shorter in this regime [compare Figs. 24(a) and 24(b) with
Figs. 24(c) and 24(d)]. Physically, the mean waiting time for
RTPs decreases at high Pe due to activity-facilitated, quicker
escape of the tracers from their cages in the network. As
a result, the COV defined via (39) for RTPs increases at
large Pe numbers, as demonstrated in Fig. 9, in contrast to
the case of AOUPs, where the COV decreases monotonically
with Pe. The COV reaches a minimum for RTPs when the
fluctuations of the recorded waiting times around their mean
are minimized. For AOUPs, as Pe number increases, both
short and long waiting events become similar in duration. In
contrast, for RTPs, beyond a certain Pe value, the two types of
trajectories become increasingly distinguishable. This yields
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a larger dispersion of values around the mean and, conse-
quently, larger COV values at larger Pe numbers for RTPs.

F. UI

Figures 25 and 26 depict the corresponding distributions
P(β ) of the UI, defined as β in Eqs. (40) and (41). The shape
of P(β ) is mainly determined by the sign of the coefficient C2

in the quadratic polynomial used for fitting,

P(β ) ≈ C2β
2 + C1β + C0. (47)

For C2 < 0 or C2 = 0 or C2 > 0 the distribution P(β ) exhibits
a bell-shaped or plateau-like or M-shaped form, respectively.
Figure 27 illustrates the variation of C2 with Pe values. The
polynomial (47) corresponds to the fit for the distribution
P(β ) in the domain 0.02 < β < 0.98, and the value of C2

dictates its shape. If necessary, some of the observed bimodal
and single-peaked P(β ) distributions can also be fitted with
two-parameter Beta distributions.

Examining the UI distributions P(β ) in Figs. 25 and 26
provides deeper insights into the timescales of the escape
dynamics of tracers from cavities in the gel meshwork. Let
us first consider the case of AOUPs shown in Fig. 25. At low
Pe values the distribution exhibits an M-shaped pattern with
two peaks at β = 0 and β = 1, and with a minimum at β ≈
1/2. This configuration suggests the presence of two distinct
timescales for waiting times. Indeed, the WTDs in this situa-
tion are well fitted with double-exponential decay laws, each
associated with a distinct timescale [see Figs. 23(a)–23(c)]. As
Pe value increases, the magnitude of C2 gradually decreases,
reaching near-zero values in the region Pe = 20, . . . , 30. At
even higher Pe values, C2 assumes a slightly negative value,
indicating a transition to a single timescale dominating the
dynamics of tracers. As previously analyzed in Fig. 23(d), this
regime indeed corresponds to a single exponential decay.

For the case of RTPs, the sign of C2 changes from positive
to negative as Pe number increases from Pe = 0 to Pe = 35.
Beyond Pe = 35, the variations of this coefficient become
nonmonotonic, see Fig. 27, but its value consistently remains
negative here. As depicted in Fig. 26, the PDF P(β ) is bimodal
(M-shaped) at small Pe numbers. At intermediate Pe values,
the PDF becomes almost flat, with a developing peak around
β = 1/2, as shown in Fig. 26(b). At even higher Pe values, the
PDF of escape times transforms into a unimodal (bell-shaped)
distribution, with a pronounced single peak at β = 1/2, sug-
gesting a single timescale dominating the WTD.

Hence, for both AOUPs and RTPs, it is evident from these
data that both very short and very long waiting times are
observed in our simulations. Short waiting times indicate
instances when the tracer promptly exits and reenters the
box, potentially encountering hindrance from the meshwork
near the box boundary. These rapid fluctuations, leading to
shorter trajectories near the boundary, are notably pronounced
for tracers solely influenced by thermal noise. In contrast,
if the tracer particle initiates near one side of the box and
avoids exiting from this side, it requires an extended time
to reach any other sides for an exit, especially when the
particle’s activity is comparatively low (small respective Pe
numbers). Consequently, longer tracer trajectories with wait-
ing times τw = 50, . . . , 150 are noticeable at low Pe, as shown

in Figs. 23(a) and 23(b). As Pe increases, the length of longer
trajectories shortens and it becomes comparable to the shorter
ones, resulting in decreasing mean waiting times.

IV. DISCUSSION AND CONCLUSIONS

We studied multiple features of diffusion of activity-driven
tracers in a responsive gel network, in particular for situations
when the tracer size is comparable to the mesh size of the
network. Our main findings based on the results of extensive
computer simulations are as follows. (i) A tracer becomes
trapped inside a gel at intermediate timescales, leading to a
subdiffusive behavior often characterized by a compressed
Gaussian distribution. (ii) At long lag times, the particle can
escape from the cage, exhibiting superdiffusive spreading be-
havior in the gel. The distribution of tracer displacements can
be described as a Gaussian with enhanced diffusivity. (iii) The
motion of AOUPs in gels is a process with weakly nonergodic
dynamics, while spreading of RTPs is an almost ergodic pro-
cess. (iv) The escape of tracers from individual cells of the
gel network is governed by two waiting timescales; at higher
activity of the tracers, these timescales become comparable.
Specifically, for AOUPs at high activity, the waiting times
are distributed exponentially with a single timescale. (v) The
mean waiting time for the evaluated WTD becomes shorter
as the activity increases, particularly following a power-law
relationship (46) at intermediate Pe values.

Our results capture a general trend in the diffusion of an
active tracer, exhibiting both trapping events (leading to a
subdiffusive regime) and activity-driven propagation (giving
rise to a superdiffusive regime). For a passive tracer, the
dynamical features were shown to be subdiffusive at inter-
mediate times, in agreement with earlier studies of similar
systems [170,212]. The caging effect was demonstrated above
to be more pronounced for active tracers, as reflected in their
individual dynamics as well in the collective motion of the
gel beads. Over time, the evolution of the distribution of dis-
placements from a non-Gaussian to a Gaussian one was found,
with enhanced diffusivity of active tracers, as intuitively
expected.

We present now a short comparative analysis of related
results in recent literature. In contrast to Ref. [177], our ob-
servations revealed initial subdiffusion due to caging effects,
followed by superdiffusion resulting from escape events of ac-
tive particles from the responsive polymeric-type mesh. Note
that we have treated the tracers as massless particles, thus
examining their dynamics in the overdamped limit; deviations
in the short-time behavior due to effects of inertia are thus pos-
sible (see, e.g., Ref. [181] for such effects in massive-particles
fractional BM). Also, unlike in Ref. [177], where beads of
the gel are connected via short polymeric chains, in our study
the beads are directly bonded via the Morse potentials. The
dynamical properties associated with an active tracer in our
study are akin to those observed in the motion of SPPs in a
diamond lattice network [179], in dense glassy systems [84],
or in living cells [224].

Let us also briefly discuss now the WTDs. In Ref. [177],
the trapping-time distribution of AOUPs in a meshwork was
found to be exponential, and the mean time was demonstrated
to vary with the particle activity in a power-law fashion at in-
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FIG. 10. Trajectories of two types of active particles at Pe = 25, diffusing through a meshwork in the x direction, as a function of time t
for the case of (a) AOUP and (b) RTP. Insets illustrate the time evolution of respective active noise: for AOUPs the x component of noise varies
stochastically, whereas for RTPs the noise alternates between two preset discrete values.

termediate times. In our study, we examined the WTDs in the
context of escape from a periodic gel network, also observing
a power-law dependence of the mean waiting time on activity,
although with a different exponent. We identified the existence
of two time-scales for waiting times, which closely resemble
those reported for escape times of SPPs from a confined
domain in Refs. [220,222]. At higher Pe-number values, we
found the waiting time for AOUPs to follow an exponential
distribution, similar to the findings of Ref. [177]. However,
the waiting times for the dynamics of RTPs were found to
be consistently nonexponential, and their fluctuations around
the mean were found to vary nonmonotonically with activity,
resembling the observations reported in Refs. [220,222].

Regarding possible applications, the analysis of transport
characteristics of active tracers within gellike networks is im-
portant in various domains, ranging from medicine to security
and environmental sustainability (as outlined with explicit
references in Sec. I). This study presents a comprehensive
examination of the properties of the diffusion of active tracers,
providing insights into the dynamics and into the escape ki-
netics of two distinct types of active particles, namely AOUPs
and RTPs. Our research sheds new light onto similarities and
differences in the properties of these types of active particles,
enhancing our understanding of their behavior within fluctu-
ating gel matrices.

Further developments and perspectives of this study are
multifold. While our primary focus was on the transport of
spherical and noninteracting tracers within a gel network, our
approaches lay the foundation for extensions to more intricate
scenarios. Future investigations may, e.g., explore the trans-
port properties of nonspherical tracers, such as of asymmetric
polymersomes commonly employed in controlled drug deliv-
ery [225–228]. The diffusion of rodlike particles mimics, e.g.,
the propagation of single-walled carbon nanotubes in crowded
environments [229] or of particles of Tobacco Mosaic Virus
[145] in polymeric gels [119]. In these cases, both transla-
tional and rotational diffusion [74] of particles are coupled
and thus should be examined simultaneously. Furthermore,
accounting for diverse physical-chemical close-contact inter-
actions and for variable structures within the gel network,

along with the presence of long-ranged and hydrodynamic
interactions, are crucial to fully capture the complexities of
active tracer transport in noninert responsive heterogeneous
gellike environments.

ACKNOWLEDGMENTS

The authors acknowledge the University of Potsdam for
providing access to the supercomputing facility. We acknowl-
edge funding from the German Science Foundation (DFG
Grants No. ME 1535/13-1).

APPENDIX: SUPPLEMENTAL FIGURES

Here, we present the auxiliary Figs. 10–27 supporting the
claims reported in the main text.

FIG. 11. Sample trajectory of a freely moving 2D RTP, shown in
different colors from start (blue) to finish (red). The particle under-
goes exploration along four possible directions (left, right, upward,
and downward).
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(a) (b) (c)

FIG. 12. Typical trajectories of length Nsteps = 5 × 103 with the time step of �t = 10−4 giving the trajectory length (19) of T = 0.5 of the
dynamics of an AOUP of diameter σt = 5.0 in a gel at three values of the Pe number, as indicated. Varying colors represent the time running
from the start to the end of the trajectories (see the color bar in the legend).
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FIG. 13. The same as in Fig. 2, but plotted for a fixed Pe = 1 and for varying τact values (see the legend; σt = 5, N = 15, T = 5 × 102.
S-shaped variation of μ(�) for large activity values is visible; see the text for details. The dashed blue line in panel (a) is the square of the cell
size.
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FIG. 14. Spread of individual TAMSDs used to generate the
mean TAMSD (denoted here by the thick solid lines of respective
colors) shown in Fig. 2(a) for the diffusion of AOUPs.
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FIG. 15. The same as in Fig. 14, but for the dispersion of
TAMSDs for the diffusion of RTPs shown in Fig. 3.
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FIG. 16. Histograms representing the distributions of individual
TAMSDs in 1D with ξx (�) given by (28) at three values of the
lag time (see the legend) for varying activities (Pédet numbers) of
AOUPs. These plots correspond to the TAMSDs presented in Fig. 14,
computed at the same values of the model parameters.

FIG. 17. The same as in Fig. 16, but for RTPs. This graph shows
the same TAMSDs as in Fig. 15.
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FIG. 18. Ensemble-and-time averaged PDFs P(�) given by Eq. (35) plotted as a function of the angle � defined by expression (34). The
plots illustrate the results for passive tracers (a), AOUPs (b), (c), and for RTPs (d), (e) at various values of the lag time (see the legend). In
panels (a)–(c) the parameters are the same as in Fig. 2, while in panels (a), (d), and (e) the parameters are as in Fig. 3.
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FIG. 19. Radial PDFs (32) of AOUPs for different activities of the tracers, shown as functions of the radial distance r (in units of σg) at
short (a)–(c) and longer (d)-(f) lag times (see the legend for � values). The dashed vertical line corresponds to the mesh size of the network.
Other parameters are the same as in Fig. 6.
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FIG. 20. The same as in Fig. 19, but instead computed for RTPs at different activity values at short (a), (b) and longer (c), (d) lag times.
The panels (a) and (b) from Fig. 19 for passive particles complete these plots for the case Pe = 0. The parameters are as in Fig. 7.
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FIG. 21. Cross-HCF functions (33) plotted vs the distance r (in units of σg) for various lag times (as indicated in the legend) for three Pe
values for the case of AOUPs. Other parameters are the same as in Fig. 2.
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FIG. 22. The same as in Fig. 21, but for the case of RTPs at Pe = 0.0 (a), Pe = 1.0 (b), and Pe = 25.0 (c). Other parameters are the same
as in Fig. 3.

FIG. 23. Histograms of the PDFs of the WTDs for varying values of the Péclet number for the case of AOUPs. The dashed red and dashed
blue lines are the two exponential fit functions, shown for the purpose of data comparison. At Pe = 50 in panel (d) a single exponential function
provides a good fit to the simulation results. Other parameters are the same as in Fig. 2.
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FIG. 24. The same as in Fig. 23, but for RTPs. The obtained PDFs of the WTDs cannot be fitted satisfactorily by a single- or by a
double-exponential function. Other parameters are the same as in Fig. 3.

FIG. 25. PDFs of the UI (41) for the case of AOUPs corresponding to the situations and model parameters of Fig. 23.
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FIG. 26. The same as in Fig. 25, but for the case of RTPs, examined for the situations and model parameters of Fig. 24.
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FIG. 27. C2 coefficient in Eq. (47) plotted vs the Péclet number
for the cases of diffusion of AOUPs and of RTPs.
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