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Infinite density and relaxation for Lévy walks in an external potential: Hermite polynomial approach
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Lévy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and
waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law
walking time density for four different cases. First we show that the known result for the infinite density of an
unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability
density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In
a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking
time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when
the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying
speed v(τ ) = v0/

√
τ . When the mean walking time is finite, a universal Gaussian law for the position-PDF of

the walker is obtained explicitly.
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I. INTRODUCTION

Brownian motion is characterized by the linear time de-
pendence of the mean-squared displacement (MSD) defined
as 〈x2(t )〉 = ∫ ∞

∞ x2 p(x, t )dx, where p(x, t ) is the probability
density function (PDF) of finding the particle at position x at
time t [1,2]. However, many processes observed in nature do
not satisfy this property [3]. Instead, often so-called anoma-
lous diffusion with power-law MSD 〈x2(t )〉 � Kαtα with α �=
1 is observed. Here the anomalous diffusion coefficient Kα has
physical dimension of length2/timeα [2]. Respectively, when
α > 1 or 0 < α < 1 the corresponding process is called su-
perdiffusive or subdiffusive. Among a variety of other models
[4–6], a highly successful approach to describe anomalous dif-
fusion is the Montroll-Weiss-Scher continuous-time random
walk (CTRW) [7–9] consisting of two independent series of
independently and identically distributed random variables,
the waiting time and the jump length. When the PDF of
waiting times is exponential and the PDF of the jump lengths l
is given by a Lévy stable law with asymptotic form �|l|−1−μ

and μ ∈ (0, 2) the corresponding CTRW process is a Lévy
flight [2,9,10]. Although Lévy flights have found many appli-
cations in describing the paths of foraging animals [11–13] the
drawback of Lévy flights are their instantaneous long jumps to
a new position, causing the MSD to diverge, a property some-
times referred to as pathologic. There exist only few cases, in
particular, the effective Lévy flight motion on looping poly-
mer chains [14,15], for which the divergence occurs only in
the chemical coordinate but not in the physically relevant em-
bedding space. Moreover, in recent work, long-lived, effective
Lévy flights indeed arise from some well-defined microscopic
dynamics due to the coupling of the tracer motion to the non-
local hydrodynamic interactions with active swimmers [16].

To solve this divergence problem in direct geometric space,
the Lévy walk (LW) process with spatiotemporal coupling
of jump lengths l and waiting times τ and resulting finite
propagation speed was formulated [17]. Specifically LWs
can either have a fixed propagation speed or a scaling form
�l−μδ(l − τ ν ) in the coupling [9,18]. When the propagation
speed is a constant, the LW can assume superdiffusion or
normal diffusion depending on the exact choice for the density
of waiting times. Note that in the context of LWs we will
refer to the distribution of τ as the walking time density in the
following. LWs have widespread use, e.g., to optimize [19,20]
search processes of higher animals [21] or bacteria [22].
Note, however, that in the field of movement ecology recent
analyses point at persistent motion as an alternative to LWs
[23]. LWs are identified in human movement patterns [24,25],
spreading of the specific SARS-CoV-2 outbreak [26], pedes-
trian movement [27], human hunter-gatherer foraging [28],
and optimized robotic search [29,30]. LWs are also shown
to emerge in many microscopic phenomena, e.g., molecular-
motor motion in living biological cells [31], motor-driven
transport in dendritic cells [32], spreading of cancer cells
[33], human memory retrieval [34] and cognition processes
[35]. Moreover LWs are also used to describe anomalous heat
transport [36,37], the dynamics of blinking quantum dots [38],
Lévy-Lorentz gas dynamics [39], or the intermittent motion in
weakly chaotic systems [40–42]. We also mention that LWs
emerge near critical points in nonlinear systems [43].

The “ultraweak” nonergodicity (in the sense that time-
and ensemble-averaged MSDs only differ by a constant) and
the generalized fluctuation-dissipation theorem for LWs are
discussed in Refs. [44–48]. These properties are intimately
related to the infinite density of LWs [49]. An infinite den-
sity is a special density that cannot be normalized, i.e., the
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total area beneath the density function is divergent. Infinite
densities can, e.g., also be found in cold atom systems and
thus have an actual physical meaning [50,51]. One of the
most important applications of infinite densities is to calculate
the relation between the qth-order moment of a process x(t )
and time t , which can be generally given as 〈|x|q〉(t ) ∼ t qν(q).
Obviously for Brownian motion, ν(q) = 1/2. When ν(q) is
not a constant the process is referred to as strong anomalous
diffusion [52]. As shown in Ref. [49] an LW whose velocity
is a constant or uniformly distributed in a symmetric finite
domain, and whose walking time follows a power-law density
with scaling exponent α ∈ (1, 2) and thus finite mean walking
time 〈τ 〉, is characterized by some critical value qc = α: If
q > qc, then qν(q) = q + 1 − α while if q < qc, ν(q) = q/α.

In the following, we establish a useful alternative method
to calculate the infinite density of LWs in terms of a Hermite
polynomial expansion. This new method particularly allows
us to solve some problems of LWs, such as LWs driven by
a constant or Hookean external force, that are not amenable
to the more conventional integral transform methods. We also
consider the case of an LW with a walk time-dependent speed.

Through a fractional material derivative, LWs in a con-
stant external force field can be described by a deterministic
equation [53,54]. For arbitrary external forces, the corre-
sponding LW follows a generalized Kramers-Fokker-Planck
equation [55,56]. However, this dynamic equation is hard to
solve for the relevant statistical properties. Moreover, the tra-
ditional Fourier-Laplace transform cannot be directly applied
to solve LWs in external potentials because of the spatiotem-
poral coupling. To deal with the constant force field or an
external harmonic potential, the Hermite orthogonal polyno-
mial approach was introduced in Refs. [57,58]. These analyses
showed that LWs always become localized in an harmonic
potential, i.e., the corresponding MSD converges to a plateau
at long times. We will derive here the decay rate of this
localization, providing additional insight into the influence of
the external harmonic potential.

For the case of a constant external force, the corresponding
asymptotic behavior of the MSD and the qth-order moments
were discussed in Ref. [58]: Based on simulations the above-
mentioned strong anomalous diffusion behavior of the scaling
exponent ν(1) was recovered. Here we demonstrate this result
explicitly in the range q < α/2 for 1 < α < 2. Due to the in-
tricate dependence on the LW parameters, this is a significant
progress.

We here also consider another important generalization
of LWs, namely, those with walking time-dependent speed
[59,60], concretely, for the form v(τ ) = v0/

√
τ . In this case

the MSD always has the same form 〈x2(t )〉 ∼ t , independent
on the exact form of the walking time density. We further
show that when the walking time density has a finite mean,
the PDF of the corresponding LW converges to a Gaussian
law, again fully independent of the exact shape of the walking
time density.

The paper is organized as follows. In Sec. II, we introduce
the Hermite polynomial method to obtain the infinite density
for unconfined and unbiased LWs. In Sec. III we discuss the
infinite density for LWs in a constant force field via the Her-
mite polynomial approach and derive the qth-order moment.
Section IV is devoted to the study of the relaxation dynam-

ics to the stationary state of LWs in an harmonic potential.
Finally, in Sec. V, we consider an unconfined, unbiased LW
with walking time-dependent speed v(τ ) = v0/

√
τ , and we

derive the corresponding asymptotic behavior of the PDF. We
draw our conclusions in Sec VI, while mathematical details
are deferred to the Appendices.

II. INFINITE DENSITY FOR UNCONFINED, SYMMETRIC
LÉVY WALKS

To establish our approach used in the presence of external
forces below we first consider unconfined, symmetric LWs for
power-law forms of the walking time PDF φ(τ ) with finite
mean walking time 〈τ 〉 = ∫ ∞

0 τφ(τ )dτ ,

φ(τ ) = α/(1 + τ )1+α, for α ∈ (1, 2), (1)

so that the Laplace transform φ̂(s) = Lτ {φ(τ )}(s) =∫ ∞
0 e−sτ f (τ )dτ has the asymptotic form [18,59]

φ̂(s) ∼ 1 − 1

α − 1
s − �(1 − α)sα. (2)

Here we consider LWs with a constant speed v0, and we
assume that the walking time for each renewal is drawn iden-
tically from the PDF φ(τ ). Then the PDF q(x, t ) that the
renewal event finishes at time t and the walker arrives at
position x satisfies the relation [18,59]

q(x, t ) = 1

2

∫ t

0

∑
±

q(x ± v0τ, t − τ )φ(τ )dτ + p0(x)δ(t ),

(3)

where we use the notation
∑

± q(a ± b) = q(a + b) + q(a −
b), and where p0(x) represents the density of the initial
position. Finally, δ(·) denotes the Dirac δ function. Then
the PDF p(x, t ) to find the walker at position x at time t
satisfies

p(x, t ) = 1

2

∫ t

0

∑
±

q(x ± v0τ, t − τ )�(τ )dτ, (4)

where �(τ ) = ∫ ∞
τ

φ(τ ′)dτ ′ represents the survival probabil-
ity of φ(τ ), i.e.,

�̂(s) = 1 − φ̂(s)

s
. (5)

We now assume that the densities p(x, t ) and q(x, t ) can be
explicitly expressed as series of Hermite orthogonal polyno-
mials Hn(x) for n = 0, 1, . . .,

p(x, t ) =
∞∑

n=0

Rn(t )Hn(x)e−xq
,

2(x, t ) =
∞∑

n=0

Tn(t )Hn(x)e−x2
. (6)

If we choose the initial condition p0(x) = δ(x), then the rela-
tions between the coefficients T̂n(s) and R̂n(s) can be obtained
from substituting the series (6) into relations (3) and (4),

044118-2



INFINITE DENSITY AND RELAXATION FOR LÉVY … PHYSICAL REVIEW E 105, 044118 (2022)

respectively, yielding [59]

√
π2nn!T̂n(s) = 1

2

n∑
m=0

√
π2nn!

(n − m)!

[∑
±

(±v0)n−m

]
×Lτ {τ n−mφ(τ )}(s)T̂m(s) + Hn(0) (7)

and

R̂n(s) = 1

2

n∑
m=0

∑
±(±v0)n−m

(n − m)!
Lτ {τ n−m�(τ )}(s)T̂m(s). (8)

Next we derive the asymptotic form of R̂n(s) for each n at
sufficiently long times t (i.e., the variable s in Laplace space is
small). As illustrated in Ref. [59], for symmetric LWs the odd
terms of R̂n(s) and T̂n(s) equal zero; therefore, in the following
we only consider the asymptotic forms of even terms. Then,
according to the derivations in Appendix B, it can be obtained
from (7) and the form of φ̂(s) in (2) that

T̂2n(s) ∼
{ α−1√

π (2n)!v
2n
0 (α)2n�(1 − α)s2α−3 for n � 1;

(α − 1)sα−2/
√

π for n = 0,
(9)

where T̂2m(s) = sα−1+2mT̂2m(s) and (z)n = ∏n
m=1(z − m + 1)

is the falling factorial. Further from (5), (8), and (9), for n � 1
we see that

R̂2n(s) ∼ v2n
0 �(2 − α)

(2n)!
√

π
[(α)2n − (α − 1)2n]sα−2n−2, (10)

and the corresponding inverse Laplace transform is given by

R2n(t ) ∼ − 2n(α − 1)
√

2πv2n
0 csc(απ )

(2n)!�(1 + α − 2n)�(2 − α + 2n)
t2−α+2n.

(11)

Particularly, when n = 0, it can be easily found that
R̂0(s) ∼ 1/(

√
πs), so that R0(t ) ∼ 1/

√
π . Next applying a

Fourier transformation, defined as f̃ (k) = Fx{ f (x)}(k) =∫ ∞
−∞ e−ikx f (x)dx, to (6) and substituting the asymptotic forms

(11), we obtain

p̃(k, t ) ∼
∞∑

n=1

√
π (−1)nk2nR2n(t ) + 1

∼ 1 − (α − 1)πt3−αv2
0 csc(απ )k2

�(4 − α)�(α − 1)

×
{

(α − 3)1F2

(
1 − α

2
;

3

2
, 2 − α

2
; −1

4
k2t2v2

0

)
−(α − 2)1F2

(
3 − α

2
;

3

2
,

5 − α

2
; −1

4
k2t2v2

0

)}
,

(12)

where the hyper-geometric function is defined as [61]

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n!
. (13)

Here (z)n = ∏n
k=1(z + k − 1) is the rising factorial. Taking

the inverse Laplace transform in expression (12) with respect
to k, we finally obtain

p(x, t ) ∼
{

α−1
2 t−α

[
αvα

0 (t/x)1+α − (α − 1)v−1+α
0 (t/x)α

]
if |x| � v0t ;

0 if |x| > v0t .
(14)

This is exactly the same result as the one obtained in Ref. [49]
using different methods. As we have assumed that both s and
k are sufficiently small (the “diffusion limit”), at sufficiently
long times t and large x, we can conclude the asymptotic
form (14). Moreover, in order to ensure the existence of
the serieŝ̃p(k, s) ∼ ∑∞

n=0

√
π (−1)nk2nR̂2n(s), where R̂2n(s) is

given asymptotically in (10), v0|k/s| should be small enough,
i.e., (14) is valid for x around v0t , given time t to be suffi-
ciently long. This analysis is in accordance with Ref. [49].
One of the main advantages of the Hermite polynomials
approach pursued here is that it allows solutions of more
complicated LW processes, particularly in the presence of an
external potential, for which the traditional integral transform
approaches cannot be applied. In the next section we consider
the infinite density for LWs in a constant external force field,
which can be solved smoothly in terms of Hermite polyno-
mials, and in section IV we consider the case of an external
harmonic potential.

III. INFINITE DENSITY FOR LÉVY WALKS IN A
CONSTANT EXTERNAL FORCE FIELD

We follow the approach introduced in Ref. [58], according
to which we assume that the LW has the same initial speed

v0 for each renewal. The LW dynamic under the influence
of a constant external force F0 can then be established along
with the deterministic equation for the PDF. In contrast, we
note that the standard method based on Fourier and Laplace
transforms is not straightforward, as it involves integral
transforms of the types Lτ {exp(−ikF0τ

2) cos(kv0τ )φ(τ )}(s)
and Lτ {exp(−ikF0τ

2) cos(kv0τ )�(τ )}(s). These are hard to
solve explicitly for power-law PDFs φ(τ ). With this ordinary
method given in Ref. [49] it is then difficult to calculate the
associated infinite density, a task that we here demonstrate
can be achieved by utilizing the formulation in terms of Her-
mite polynomials. Without loss of generality we assume that
F0 > 0. Again we denote q(x, t ) to find the particle at position
x when the renewal event finishes at time t . We obtain [58]

q(x, t ) = 1

2

∑
±

∫ t

0
q

(
x − 1

2
F0τ

2 ± v0τ, t − τ

)
φ(τ )dτ

+ p0(x)δ(t ). (15)

Then the PDF p(x, t ) to find the walker at position x at time t
satisfies

p(x, t ) = 1

2

∑
±

∫ t

0
q

(
x−1

2
F0τ

2 ± v0τ, t − τ

)
�(τ )dτ. (16)
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We now assume that p(x, t ) and q(x, t ) can be expressed as
series of Hermite polynomials according to relation (6), and
then from (16) we find

R̂n(s) = 1

2

n∑
m=0

2m−n

(n − m)!
T̂m(s)

× Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
�(τ )

}
(s). (17)

Moreover, from (15), the recurrence relation between the
{T̂n(s)} is given by

√
π2nn!T̂n(s) = 1

2

n∑
m=0

2m√
πn!

(n − m)!
T̂m(s)

× Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
φ(τ )

}
(s)

+ Hn(0). (18)

Combining (2) and (18), the asymptotic form of T̂m(s) =
sα−1+2mT̂m(s) for small s is given by

T̂n(s) ∼
{−�(1−α)

n!
√

π

(F0
2

)n
(α)2n(α − 1)2s2α−3 for n � 1;

(α − 1)sα−2/
√

π for n � 0,

(19)

The detailed derivations can be found in Appendix C. Next
we conclude the asymptotic forms of R̂n(s) from (17), (5), and

(19), for n � 1,

R̂n(s) ∼α − 1√
πn!

(F0

2

)n

[(α − 1)2n − (α)2n]

× �(1 − α)s−2n+α−2.

(20)

After inverse Laplace transform of R̂n(s) with respect to the
variable s we have, for n � 1,

Rn(t ) ∼ − 2
√

πnF n
0 (α − 1) csc(απ )

2nn!�(1 + α − 2n)�(2 − α + 2n)
t1+2n−α. (21)

Now, according to the Fourier transform of the assumed
expression of p(x, t ) in (6) and utilizing the property (A7)
together with (21), we have

p̂(k, t ) ∼
∞∑

n=0

√
π (−ik)nRn(t )

∼ −2− α
2 (α − 1)(iF0k)

α−1
2

[√
ikF0tγ

(
1−α

2
,

1

2
ikF0t2

)
−

√
2γ

(
3 − α

2
,

1

2
ikF0t2

)]
, (22)

where γ is the lower incomplete gamma function defined as

γ (β, x) =
∫ x

0
uβ−1e−udu, for Re{β} > 0. (23)

Finally after inverse Fourier transform, we have that

p(x, t ) = − 1

π
2−( 3+α

2 )(α − 1)t1−α|x|− α
2

(
− iαπ√

2|x| csc
(απ

2

)
tα
{

(−iF0)
α
2

[
cos

(απ

4

)
sign(x) − i sin

(απ

4

)]
−(iF0)

α
2

[
cos

(απ

4

)
sgn(x) + i sin

(απ

4

)]}
+ (α − 1)π sec

(
απ
2

)
F0

√|x| tα−1{cos[(1 + α)π/4][(−iF0)
α
2 (iF0)

1
2

+ (iF0)
α
2 (−iF0)

1
2 ] − sgn(x) sin [(1 + α)π/4]i[(−iF0)

α
2 (iF0)

1
2 − (iF0)

α
2 (−iF0)

1
2 ]}

)
. (24)

According to the fact that

(±iF0)
α
2 = F

α
2

0

[
exp

(
±π

2
i
)] α

2 = F
α
2

0 exp
(
±πα

4
i
)

= F
α
2

0

[
cos

(πα

4
i
)

± sin
(πα

4
i
)]

, (25)

we can simplify p(x, t ) and find the form

p(x, t ) ∼
{

2−1− α
2 (α − 1)F

α−1
2

0 x−1− α
2 [α

√
F0t − √

2(α − 1)
√

x] for x > 0;
0 otherwise.

(26)

It should be noted that although directly applying the in-
verse Fourier transform to (22) produces a positive PDF for
each point of the interval 0 < x < α2F0t2/[2(α − 1)2], we
should also keep in mind that at given time t the LW in
the constant force field F0 > 0 can at most reach the point
x = F0t2/2 + v0t . Combining both conditions guarantees that
in the asymptotic limit p(x, t ) in (26) is always positive.
Explicitly, we need to adjust the asymptotic behavior for the
first case in (26) under the condition x ∈ (0, α2F0t2/[2(α −
1)2]) ∩ (0, F0t2/2 + v0t ). The agreement between the asymp-

totic theoretical result in Eq. (26) with stochastic simulations
is very good, as verified in Fig. 1.1

Looking more closely at Fig. 1 we observe a systematic
deviation between theory and simulations around x = 105

and, less severely, at the edge x = F0t2/2 (= 109 with the
parameters used in Fig. 1). The former deviation at smaller

1The simulations code is available at URL: https://github.com/
Peter-Bloomberg/LW_F0_Infinite_density
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FIG. 1. Infinite density for an LW process in the presence of a
constant external force F0 = 1 at dimensionless time t = 5 × 104.
The walking time PDF for the LW process follows the power-law
form (1) with α = 1.5. The circles are obtained from taking the
average over 2 × 105 samples, the initial velocity for each step is
v0 = 1. The full red line corresponds to the theoretical result in (26).

x arises since the asymptotic form of p(x, t ) in (26) is only
valid for sufficiently large x > xc, for reasons analogous to
the arguments below Eq. (14), in order to ensure the existence
of the series

∑∞
n=0(−ik)nR̂n(s), i.e., the condition that |k/s2| is

small enough. From the simulations here we see that xc ≈ 106.
Since the probability of finding the particle around the maxi-
mum position it can travel is quite small, the deviation around
the leading edge F0t2/2 is expected to be larger than in the
well-sampled central part. Since the exact form of this central
part of the PDF p(x, t ) for LWs in a constant external force
field is unknown, we cannot give a specific analytical estimate
for xc, compare the case of free LWs discussed in Ref. [49].
Roughly speaking, for LWs in a constant external force field,
the critical point xc should be related with F0 and α, while the
exact role of v0 remains unclear. From our simulations, we
also estimate that t � 104 can be considered as sufficiently
long.

We finally note that the result of (26) when x > 0 can be
rearranged in the form

p(x, t ) ∼ 2−1− α
2 (α − 1)F

α−1
2

0 x−1− α
2

× [α
√

F0t −
√

2(α − 1)
√

x]

= (α − 1)

tα
√

2xF0

[
α
(L

t

)−α−1

− (α − 1)
(L

t

)−α
]
, (27)

where L = √
2x/F0. Therefore we obtain the same result as

the one presented in Ref. [62]. It should be noted that although
Eq. (27) can be found in Ref. [62], the process considered
in Ref. [62] is fundamentally different from our case in
the present paper. Specifically, Ref. [62] discusses a CTRW
whose space and time steps are independent, while we here
consider LWs with spatiotemporal coupling.

We also conclude from (26) that the integration of the
asymptotic behavior of p(x, t ) over the whole space (−∞,∞)

is always divergent at x = 0, a key property of an infinite
density. Next we utilize the asymptotic behavior of p(x, t ) in
(26) to theoretically calculate the absolute qth-order moment
〈|x|q〉, that was considered in Ref. [58] only from numerical
simulations.

Before proceeding with the calculation of the qth order, we
briefly detail how we implement the LW simulations in this
work. To simulate a large number of LW particle trajectories
in a constant external force field over the time period t , we
first generate a series of independently and identically dis-
tributed random variables τi, i = 1, . . . , N from the waiting
time PDF φ(τ ), Eq. (1), and where N = max{n;

∑n
i=1 τi � t}.

The method of generating the random variables for a given
PDF is given in Ref. [63]. Since an LW particle does not rest
from time TN = ∑N

i=1 τi to t but continues to move, the last
step should also be considered, and we define τN+1 = t − TN .
It should be noted that τN+1 does not follow the PDF φ(τ )
[64]. Then, according to the specific dynamics of LWs in an
external constant force field, we can simulate the trajectory
with the algorithm sketched in Appendix D. From a large
number of independent trajectories we can then obtain the
corresponding PDF, the moments, or other quantities.

Derivation of qth-order moments

We show that our Hermite polynomial approach allows us
to explicitly calculate the qth-order moment

〈|x|q〉 =
∫ ∞

−∞
|x|q p(x, t )dx. (28)

Since p(x, t ) > 0 only for x ∈ (0, α2F0t2/[2(α − 1)2]) ∩
(0, F0t2/2 + v0t ), when time t is sufficiently long we can
approximate

F0t2/2 + v0t ≈ F0t2/2, (29)

and for α ∈ (1, 2) the following inequity is always valid:

α2F0t2

2(α − 1)2
> F0t2/2. (30)

Therefore, together with (26) we have

〈|x|q〉 ≈
∫ 1

2 F0t2

0
|x|q p(x, t )dx

∼
(F0

2

)q 2(α − 1)q

(α − 2q)(α − 2q − 1)
t−α+2q+1 if q >

α

2
.

(31)

The result (31), which is verified in Fig. 2, corresponds to
the one in Ref. [58] concluded directly from numerical sim-
ulations. However, for 0 < q < α/2, the corresponding 〈|x|q〉
may not be obtained directly from the infinite density, since
the information of the central part of the PDF p(x, t ) is re-
quired, which is beyond our current analysis.

IV. TYPICAL RELAXATION DYNAMICS OF LÉVY WALKS
IN AN HARMONIC POTENTIAL

The PDF of spatiotemporally independent Lévy flights in
an harmonic confinement can be obtained explicitly in Fourier
space using the method of characteristics, and the stationary
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FIG. 2. Absolute qth-order moment 〈|x|q〉 for an LW in the pres-
ence of the constant force F0 = 1. The walking time PDF follows
the power law (1) with different pairs of α and q under the con-
dition q > α/2. The stars and squares represent simulations results
obtained from averaging over 5 × 104 samples. The initial speed for
each step is v0 = 1. The solid lines correspond to the theoretical
results in Eq. (31).

solution is a Lévy stable law with the same Lévy index as
the scaling exponent of the underlying PDF of jump lengths
[65]. The situation is more intricate for the LW case with its
spatiotemporal coupling.

As shown in Ref. [57], an LW in the harmonic potential
V (x) = γ x2/2 with “spring” constant γ > 0 and initial speed
v0 at the start of each renewal step, has the PDF

q(x, t ) =
∑
±

1

2

∫ t

0
q(x±, t − τ )

φ(τ )

| cos(ωτ )|dτ + p0(x)δ(t )

(32)

to find a particle at position x at time t at the end of the
renewal event. Here x± = [x/ cos(ωτ )] ± (v0/ω) tan(ωτ ) and
ω = √

γ /M and where M is the mass of the LW particle. The
PDF p(x, t ) in this case can be expressed as

p(x, t ) =
∑
±

1

2

∫ t

0
q(x±, t − τ )

�(τ )

| cos(ωτ )|dτ. (33)

It can be found that the traditional integral transform methods
cannot solve this problem, and we expand p(x, t ) and q(x, t )
in Hermite polynomials (6). For the initial condition p0(x) =
δ(x), {Tn(t )} and {Rn(t )} satisfy the recurrence relations in
Laplace space

T̂n(s) − Hn(0)√
π2nn!

=
n∑

m=0

 m
2 �∑

r=0

2−1−2r

(n − m)!r!

(v0

ω

)n−m
(−1)i(1 + (−1)n−m)

× Lτ

{
sinn−m+2r (ωτ ) cosk−2i(ωτ )φ(τ )

}
(s), (34)

and

R̂n(s) =
n∑

m=0

 m
2 �∑

r=0

2−1−2r

(n − m)!r!

(v0

ω

)n−m
(−1)i(1 + (−1)n−m)

×Lτ {sinn−m+2r (ωτ ) cosk−2i(ωτ )�(τ )}(s). (35)

It was shown in Ref. [57] that there exists a stationary PDF
when φ(τ ) is of exponential or power-law form. However,
the explicit form of this stationary PDF is hard to calculate
explicitly, and it is already hard to discuss directly the re-
laxation dynamics of the LW PDF to the stationary state. It
can, however, be shown that the asymptotic behavior of the
MSD for an LW in the harmonic potential reaches the plateau
〈x2(t )〉 ∼ v2

0/ω
2 [57]. In this sense the relaxation dynamics of

the LW in the harmonic potential corresponds to the crossover
to the stationary value of the MSD. We note that in Ref. [57]
the theoretical result 〈x2(t )〉 ∼ v2

0/ω
2 is only derived for the

case of exponential φ(τ ), here we fill the gap when φ(τ )
is power law. According to the property (A7) of Hermite
polynomials and the fact that 〈xm(t )〉 = im dm

dkm p(k, t )|k=0, the
MSD in Laplace space generally reads

〈̂x2(s)〉 = Lt {〈x2(t )〉}(s) =
√

π

2
R̂0(s) + 2

√
π R̂2(s). (36)

Further when n = 0, 2 from (34) and (35), we have R̂0(s) =
1/(

√
πs),

T̂2(s) =
[

1

2

(v0

ω

)2
− 1

4

]
Lτ {sin2(ωτ )φ(τ )}(s)T̂0(s)

+ Lτ {cos2(ωτ )φ(τ )}(s)T̂2(s) + H2(0)

8
√

π
, (37)

and

R̂2(s) =
[

1

2

(v0

ω

)2
− 1

4

]
Lτ {sin2(ωτ )�(τ )}(s)T̂0(s)

+ Lτ {cos2(ωτ )�(τ )}(s)T̂2(s). (38)

First we choose the exponential form φ(τ ) = βe−βτ with
β > 0. According to (37), (38), and

T̂0(s) = 1√
π [1 − φ̂(s)]

= β + s√
πs

, (39)

we have

T̂2(s) = β + s

4
√

πs

[
4βv2

0

s(β + s)2 + 2ω2(β + 2s)
− 1

]
(40)

and

R̂2(s) = −β2s − 2β
(
s2 − 2v2

0 + ω2
) − s

(
s2 − 4v2

0 + 4ω2
)

4
√

πs[β2s + s3 + 4sω2 + 2β(s2 + ω2)]
.

(41)
It can then be obtained from relation (36) and neglecting small
higher orders of s that

〈̂x2(s)〉 ∼ 2(β + s)v2
0

s[β2s + 4ω2s + 2β(s2 + ω2)]
, (42)
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FIG. 3. Relaxation dynamics for an LW in an harmonic potential
with ω = 0.2. The walking time PDF is exponential with unit average
(β = 1), and the initial speed for each step is v0 = 1. The circles
are obtained from averaging over 5 × 104 samples. The full red line
corresponds to the theoretical result (43).

which corresponds to

〈x2(t )〉 ∼ v2
0

ω2
+ 2v2

0

β2 − 4ω2
e−βt/2 + v2

0 (β2 − 2ω2)

ω2(−β2 + 4ω2)
e−2ω2t/β .

(43)
Therefore when φ(τ ) is an exponential density, the corre-
sponding relaxation of an LW in the harmonic potential to the
stationary state is exponential with decay rate β/2. The result
(43) is verified in Fig. 3.

For the power-law shape φ(τ ) = α(1 + τ )−1−α with α ∈
(0, 1), the corresponding T̂0(s) ∼ s−α/[�(1 − α)], and then
from (37), (105), and (106) we have

T̂2(s) ∼ 1

4
√

πω2

[
2v2

0 + ω2

αIα+1(ω)
+ 2v2

0 − ω2

�(1 − α)
s−α

]
, (44)

where

Iθ (ω) =
∫ ∞

1

cos[2ω(t + 1)]

t θ
dt . (45)

The asymptotic behavior of R̂2(s) can now be obtained
through (38), (F8), and (F9), resulting in

R̂2(s) ∼ 1

8
√

πω2

[
4v2

0 − 2ω2

s
+

(
2v2

0 + ω2
)
�(1 − α)

−1 + αIα+1(ω)
sα−1

]
.

(46)

Finally, the corresponding asymptotic behavior of the MSD in
Laplace space is

〈̂x2(s)〉 ∼ v2
0

ω2s
+ s−1+α

(
2v2

0 + ω2
)
�(1 − α)

4ω2[−1 + αIα+1(ω)]
, (47)

corresponding to

〈x2(t )〉 ∼ v2
0

ω2
− 2v2

0 + ω2

4ω2[1 − αIα+1(ω)]
t−α. (48)

Therefore, we conclude that when φ(τ ) is a power law with
infinite average the typical relaxation dynamics has a power-
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 x
2 (t

)

(b)
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FIG. 4. Relaxation dynamics of the MSD for LWs in an har-
monic potential with ω = 1 and power-law walking time PDF (1), on
log-log scale. For (a), the value of the walking time scaling exponent
is α = 0.5 [i.e., the corresponding Iα+1(ω) = 0.14026]. The starting
speed for each step is v0 = 1. The circles are obtained from averaging
over 5 × 104 samples. The small oscillations, resolved in the inset
using linear axes, are bounded in the gray band around the theoretical
result (48) represented by the solid black line. In panel (b), the
simulations results represented by the red squares and blue circles
are averaged over 105 samples with α = 1.5 and 1.2, and with v0 = 1
and 100, respectively. Again, the oscillations are observed, and they
lie in a band bounded by power laws decaying as (49), with scaling
exponents −α.

law decay. This result is nicely verified in Fig. 4(a). It can
observed from the numerical simulations in Fig. 4(a) that
the decay dynamics of the difference v2

0/ω
2 − 〈x2(t )〉 from

the stationary plateau value exhibits some oscillations. The
reason for these is that each step of an LW particle in the
harmonic potential performs harmonic oscillations [57] (see
also Ref. [66]). These are still present even in the long time
limit of 〈x2(t )〉 close to the plateau v2

0/ω
2. For a power-law

walking time PDF φ(τ ) with α ∈ (0, 2) the duration between
two renewal events is typically longer than in the exponential
case. Therefore, intuitively speaking, the oscillations will be
more pronounced for the power-law case. We further note
that when α ∈ (1, 2), the corresponding relaxation dynamics
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is hard to derive, but from numerical simulations we conclude
an power-law decay of the form

〈x2(t )〉 ∼ v2
0

ω2
− C1t−α, (49)

where C1 is a positive constant, see the results shown in
Fig. 4(b). Again, the persistent oscillations cause the re-
laxation dynamics to the stationary value to lie in a band
delimited by two power laws with slope −α.

V. FREE LÉVY WALK WITH SPEED v(τ ) = v0/
√

τ

We finally consider a less standard, unconfined LW pro-
cess, for which the speed is a decaying function of the walking
time in the form v(τ ) = v0/

√
τ [9]. As concluded in Ref. [59]

for this choice, the MSD is always 〈x2(t )〉 ∼ √
v0t , indepen-

dent of the walking time PDF φ(τ ). In this section we consider
φ(τ ) to assume the power-law form (1) with 0 < α < 2. We
find that when the walking time has a finite mean, the PDF
p(x, t ) asymptotically always has a Gaussian shape at long
times, while the asymptotic behavior of the PDF is different
when the average walking time is infinite.

We start again with the assumption that the q(x, t ) and
p(x, t ) can be expressed as series of Hermite polynomials,
corresponding to the form of Eq. (6). According to Ref. [59],
we then have

R̂n(s) = 1

2

n∑
m=0

vn−m
0

(n − m)!
T̂m(s)

× Lτ {[(−
√

τ )n−m + (
√

τ )n−m]�(τ )}(s). (50)

Since the process is symmetric, we only need to consider the
even terms. With (B1) we have

R̂2n(s) =
n∑

m=0

v2n−2m
0

(2n − 2m)!
T̂2m(s)Lτ {τ n−m�(τ )}(s)

=
n−1∑
m=0

(−1)n−m v2n−2m
0

(2n − 2m)!
(α − 1)n−m�(1 − α)

× s−nT̂2m(s) + 1

α − 1
s−n−α+1T̂2n(s), (51)

where T̂2m(s) = s−1+α+mT̂2m(s). Additionally, from Ref. [59]
we have the recurrence relations

√
π22n(2n)!T̂2n(s)

= 1

2

n∑
m=0

√
π22n(2n)!

(2n − 2m)!
T̂2m(s)

× Lτ

{∑
±

(±v0
√

τ )2n−2mφ(τ )

}
(s) + H2n(0)

=
n∑

m=0

√
π22n(2n)!

(2n − 2m)!
v2n−2m

0 Lτ {τ n−mφ(τ )}(s)T̂2m(s)

+ H2n(0). (52)

Then from (B4), for n � 2 we see that

T̂2n(s) ∼
(

1 − s

α − 1

)
T̂2n(s) + v2

0

2(α − 1)
T̂2n−2(s)

+
n−2∑
m=0

(−1)n−m+1

(2n − 2m)!
v2n−2m

0 (α)n−m�(1 − α)

× sα−(n−m)T̂2m(s) + H2n(0)√
π22n(2n)!

. (53)

Finally we obtain

1

α − 1
T̂2n(s) ∼ v2

0

2(α − 1)
T̂2n−2(s) + sα+n−2 H2n(0)√

π22n(2n)!

+
n−2∑
m=0

(−1)n−m+1

(2n − 2m)!
v2n−2m

0 (α)n−m�(1 − α)

× sα−1T̂2m(s), (54)

which indicates that T̂2n(s) = T̂2n−2(s)/2 when only 1 < α <

2. For n = 0, 1, we can directly obtain the corresponding
asymptotic behaviors from (52)

T̂0(s) = s−1+αT̂0(s) = s−1+α

√
π [1 − φ̂(s)]

∼ α − 1√
π

sα−2, (55)

and

T̂2(s) = sαT̂2(s) = v2
0sαLτ {τφ(τ )}(s)

2
√

π [1 − φ̂(s)]2
− sα

4
√

π [1 − φ̂(s)]

∼ α − 1

2
√

π
v2

0sα−2. (56)

We then conclude that

T̂2n(s) ∼ α − 1√
π2n

v2n
0 sα−2 for n � 0. (57)

Therefore, for n � 1 the asymptotic behaviors of the R̂2n(s)
can be obtained from (51),

R̂2n(s) ∼
n−1∑
m=0

(−1)n(α − 1)n−m�(1 − α)(α − 1)

2mv−2n
0

√
π (2n − 2m)!

sα−2−n

+ 1√
π

(
v2

0

2

)n

s−n−1

∼ 1√
π

(
v2

0

2

)n

s−n−1. (58)

Additionally, R̂0(s) = 1/(
√

πs), and thus

̂̃p(k, s) ∼
∞∑

n=0

(−1)nk2n

(
v2

0

2

)n

s−n−1 = 2

2s + k2v2
0

, (59)

which leads to the Gaussian law

p(x, t ) ∼ 1

v0

√
2πt

exp

(
− x2

2tv2
0

)
. (60)

The result (60) does not contain the exponent α explicitly,
and we thus conclude that LWs with speed v(τ ) = v0/

√
τ and

power-law walking time PDF φ(τ ) with finite mean walking
time, Eq. (1) with 1 < α < 2, always converges to the same
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FIG. 5. PDF of a free LW with decaying speed v(τ ) = 1/
√

τ

as function of the walking time τ , at process time t = 5 × 104.
The squares are obtained from sampling over 2 × 105 realization
with power-law walking time (1) with α = 1.5, the (red) full line
corresponds to the theoretical result (60). The (purple) bimodal curve
is obtained from numerical simulations of the same number of real-
izations for the case when the mean walking time is infinite, with
α = 0.5.

Gaussian (60). This result is reasonable since the average
of τ with PDF (1) is always finite, and given the speed
v(τ ) = v0/

√
τ , the length of each step is typically ρ = v0

√
τ .

Roughly speaking, the second moment for each step is 〈ρ2〉,
and according to the central limit theorem such a random walk
should have a Gaussian limit form of width ρ.

Although the MSD for a free LW with speed v(τ ) =
v0/

√
τ is always the same for different kinds of φ(τ ), in-

cluding the case of divergent mean [59], the PDF is distinctly
different in the case when the mean of the PDF φ(τ ) diverges.
While we did not find an explicit derivation, this fact can
be concluded from the numerical simulations presented in
Fig. 5. Indeed, when the mean walking time 〈τ 〉 diverges
(0 < α < 1) the stationary PDF becomes bimodal, in contrast
to the Gaussian shape (60) for 1 < α < 2.

We note that similar bimodality was found for time-
fractional wave or generalized Cattaneo equations [67–69].
The two humps will spread as function of time and are thus
different from multimodal stationary solutions for LWs in
harmonic confinement [57] and with soft resetting events [70],
as well as Lévy flights [71–73] and superdiffusive (persistent)
fractional Brownian motion [74] in steeper than harmonic
potentials.

VI. CONCLUSION

Based on the Hermite orthogonal polynomial approach to
LWs we considered four different realizations based on a
power-law walking time PDF. For unconfined and unbiased
LWs with constant speed we showed that our method recovers
the infinite density for the PDF to find the walker at position x
at time t determined in Ref. [49]. In the presence of a constant
external force we demonstrated that the Hermite polynomial
approach can be successfully employed to explicitly calculate

the PDF in the diffusion limit. We showed that the asymptotic
form is not integrable over the whole space, since the inte-
gration is divergent at the origin, as expected for an infinite
density. From the asymptotic behavior the qth-order moment
〈|x|q〉 for q > α/2 could be obtained explicitly, filling the
gap from [59] where the asymptotic behavior of 〈|x|q〉 was
only deduced from numerical simulations. However, when
q < α/2, the information contained in the central part of the
PDF is required, and in this range the current method cannot
be applied. How to calculate the qth-order moment for the
case of general q along with the asymptotic form of the central
part of the PDF remains to be discussed in the future. More-
over, for the case when φ(τ ) has a divergent average, such as a
power-law form with α ∈ (0, 1), the asymptotic behaviors of
the PDF, even for the free LW process, so far remains elusive
with our method. How to treat this case will be a question of
future studies.

The strength of the Hermite polynomial approach was
demonstrated in the case of LWs in an external harmonic
potential, in which we showed that localization always oc-
curs, i.e., the corresponding MSD asymptotically converges
to a plateau, and there exists a stationary state for such a
process. From the crossover of the MSD we define the typical
relaxation dynamic for this process, finding that when φ(τ )
is exponential, an exponential decay to the stationary MSD
can be found. In contrast, when φ(τ ) is a power law with
α ∈ (0, 2), a power-law decay of the form 〈x2(t )〉 ∼ v2

0/ω
2 +

O(t−α ) is found. We showed that the relaxation dynamics
of the MSD to its plateau value exhibits clear oscillations
reflecting the classical motion of the LW in the harmonic
confinement.

We finally discuss an LW with decaying speed v(τ ) =
v0/

√
τ , for which the MSD was shown to be independent

of the specific walking time PDF φ(τ ). From the Hermite
polynomial approach we calculated the asymptotic form of
the PDF when φ(τ ) has a finite average, finding a universal
Gaussian law, independent of the power-law exponent α. This
result was rationalized from the finite walk time, that should
invoke the validity of the central limit theorem. A rigorous
mathematical proof of this result will be provided in future
work. From simulations we showed that when the mean walk-
ing time is infinite, 0 < α < 1, the stationary PDF is no longer
Gaussian, but assumes a distinct bimodal stationary PDF.

We believe that the results presented here further demon-
strate the usefulness of the Hermite polynomial method in the
analysis of LW processes, and we are confident that more
results can be obtained that remain inaccessible by integral
transformation methods. Specifically, in the future it may be
interesting to combine the motion in the external harmonic
potential with damping of the LW, or with a walking time
dependent speed.
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APPENDIX A: A BRIEF INTRODUCTION OF HERMITE
ORTHOGONAL POLYNOMIALS

Hermite polynomials {Hn(x)} are orthogonal over
(−∞,∞) with respect to the weight function w(x) = e−x2

[59], ∫ ∞

−∞
Hm(x)Hn(x)w(x)dx = √

π2nn!δn,m, (A1)

where δn,m is the Kronecker δ symbol defined as

δn,m =
{

1 for m = n
0 for m �= n

. (A2)

The Hermite polynomials are given by

Hn(x) =
⎧⎨⎩n!

∑n/2
i=0

(−1)
n
2 −i

(2i)!( n
2 −i)! (2x)2i for even n;

n!
∑ n−1

2
i=0

(−1)
n−1

2 −i

(2i+1)!( n−1
2 −i)!

(2x)2i+1 for odd n.

(A3)

The values of the Hermite polynomials at x = 0 are

Hn(0) =
{

(−1)n/2n!
(n/2)! , for even n;

0, for odd n.
(A4)

Another two important properties for Hermite polynomials are

Hn(x + y) =
n∑

l=0

(
n
l

)
Hl (x)(2y)n−l , (A5)

and

Hn(cx) =
 n

2 �∑
k=0

cn−2k (c2 − 1)k

(
n
2k

)
(2k)!

k!
Hn−2k (x), (A6)

where (n
l ) = n!

l!(n−l )! and  n
2� is the floor function representing

the biggest integer less than n/2. Further there exists the
following Fourier transform [59]

Fx{Hn(x)e−x2}(k) = √
π (−ik)n exp

(
−k2

4

)
. (A7)

APPENDIX B: DERIVATIONS OF (9) AND (10)

In this part we derive the asymptotic form of R̂n(s) for each
n for small s. From the asymptotic behavior of φ̂(s) in (2) and
relation (5) there exists

Lτ {τ n−m�(τ )}(s)

= (−1)n−m�̂ (n−m)(s)

∼
{ 1

α−1 if m = n;

(−1)n−m(α − 1)n−m�(1 − α)sα−1−(n−m) if n > m,

(B1)

where (z)n = ∏n
m=1(z − m + 1) is the falling factorial. There-

fore, substituting (B1) into (8) gives the following asymptotic
form of R̂n(s),

R̂n(s) ∼1

2

n−1∑
m=0

∑
±(±v0)n−m

(n − m)!
(−1)n−m(α − 1)n−m

× �(1 − α)sα−1−(n−m)T̂m(s) + 1

α − 1
T̂n(s). (B2)

As illustrated in Ref. [59], for symmetric LWs the odd terms
of R̂n(s) and T̂n(s) equal zero. After further simplification, we
obtain the asymptotic behaviors of the even terms R̂2n(s) in
the form

R̂2n(s) ∼�(1 − α)

s2n

n−1∑
m=0

v2n−2m
0

(2n − 2m)!
(α − 1)2n−2mT̂2m(s)

+ s1−α−2n

α − 1
T̂2n(s), (B3)

where T̂2m(s) = sα−1+2mT̂2m(s). Next we consider the asymp-
totic form of T̂2m(s) from the recurrence relation in (7), and
similarly we find the following asymptotic behaviors

Lτ {τ n−mφ(τ )}(s)

= (−1)n−mφ̂(n−m)(s)

∼
⎧⎨⎩

1 − s
α−1 if m = n;

1
α−1 if m = n − 1;
(−1)n−m+1(α)n−m�(1 − α)sα−(n−m) if n > m + 2.

(B4)

Then from (7) and (B4), the even terms can be asymptotically
obtained as
√

π22n(2n)!sα−1+2nT̂2n(s)

∼ −
n−1∑
m=0

√
π22n(2n)!

(2n − 2m)!
v2n−2m

0 (α)2n−2m�(1 − α)s2α+2m−1

× T̂2m(s) + √
π22n(2n)!T̂2n(s)s−1+α+2n − √

π22n(2n)!

× sα+2n

α − 1
T̂2n(s) + s−1+α+2nH2n(0), (B5)

that can be further simplified as
√

π22n(2n)!
s

α − 1
T̂2n(s)

∼ −
n−1∑
m=0

√
π22n(2n)!

(2n − 2m)!
v2n−2m

0 (α)2n−2m�(1 − α)sαT̂2m(s)

+ sα−1+2nH2n(0). (B6)

It should be noted that (B6) is only valid for n � 1; if n = 0
according to (7) we have

T̂0(s) = 1√
π [1 − φ(s)]

∼ α − 1√
πs

, (B7)

i.e., T̂0(s) ∼ (α − 1)sα−2/
√

π . Further, it can be concluded
from (B6) that

(2n)!
s

α − 1
T̂2n(s) ∼ −v2n

0 (α)2n�(1 − α)sαT̂0(s). (B8)
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Then, substituting the asymptotic form of T̂0(s) into (B8)
yields

T̂2n(s) ∼ α − 1√
π (2n)!

v2n
0 (α)2n�(1 − α)s2α−3. (B9)

Since (2α − 3) is larger than (α − 2) when 1 < α < 2, the
first term on the right-hand side of (B3) can be further simpli-
fied to

�(1 − α)

s2n

n−1∑
m=0

v2n−2m
0

(2n − 2m)!
(α − 1)2n−2mT̂2m(s)

∼ 1

(2n)!
v2n

0 �(1 − α)(α − 1)2ns−2nT̂0(s)

∼ α − 1√
π (2n)!

v2n
0 (α − 1)2n�(1 − α)sα−2−2n. (B10)

Finally, from (B3) and (B9), for n � 1 we see that

R̂2n(s) ∼ v2n
0 �(2 − α)

(2n)!
√

π
[(α)2n − (α − 1)2n]sα−2n−2.

APPENDIX C: DERIVATIONS OF (19) AND (20)

We first consider the asymptotic form of the Laplace trans-
form in result (17),

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
�(τ )

}
(s)

=
n−m∑
r=0

(
n − m

r

)
F n−m−r

0 (2v0)r (1 + (−1)r )

× Lτ

{
τ 2n−2m−r�(τ )

}
(s). (C1)

When n = m (such that r = 0 is the sole remaining term), we
conclude from (B1) that

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
�(τ )

}
(s) ∼ 2

α − 1
. (C2)

Otherwise, when n > m the dominant term is the one with
index r = 0, i.e.,

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
�(τ )

}
(s)

∼ 2F n−m
0 (α − 1)2n−2m�(1 − α)sα−1−(2n−2m). (C3)

Finally after combining (17) with (C2) and (C3), we conclude
that for n � 1

R̂n(s) ∼
n−1∑
m=0

(α − 1)2n−2m

(m − n)!

(F0

2

)n−m

�(1 − α)

× s−2nT̂m(s) + s1−α−2n

α − 1
T̂n(s), (C4)

where T̂m(s) = sα−1+2mT̂m(s). Moreover, when n = 0,
R̂0(s) = �̂(s)T̂0(s) = 1/(

√
πs), since T̂0(s) = 1/{√π [1 −

φ̂(s)]}.

Now we consider the Laplace transform in (18), and simi-
larly we have

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
φ(τ )

}
(s)

=
n−m∑
r=0

(
n − m

r

)
F n−m−r

0 (2v0)r (1 + (−1)r )

× Lτ

{
τ 2n−2m−rφ(τ )

}
(s). (C5)

Therefore, r must be zero when m = n, and according to (B4)
we find

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
φ(τ )

}
(s) ∼ 2

(
1 − s

α − 1

)
.

(C6)

For n � m + 1, the term with index r = 0 dominates the right-
hand side of Eq. (C5), such that

Lτ

{[∑
±

(F0τ
2 ± 2v0τ )n−m

]
φ(τ )

}
(s)

∼ −2F n−m
0 (α)2n−2m�(1 − α)sα−(2n−2m). (C7)

Then for n � 1, according to (18) we see that
√

π2nn!T̂n(s)

= −
n−1∑
m=0

2m√
πn!

(n − m)!
F n−m

0 (α)2n−2m�(1 − α)

× sα−(2n−2m)T̂m(s) + 2n√πn!
(

1 − s

α − 1

)
T̂n(s)

+ Hn(0), (C8)

which can be further simplified to
√

π2nn!

α − 1
T̂n(s)

= −
n−1∑
m=0

2m√
πn!

(n − m)!
F n−m

0 (α)2n−2m�(1 − α)

× sα−1T̂m(s) + Hn(0)sα+2n−2. (C9)

Before further analyzing the asymptotic behavior of T̂n(s)
from (C9), we need to consider T̂0(s). In fact when n = 0,
the asymptotic behavior of T̂0(s) can be immediately obtained
through

T̂0(s) = 1√
π [1 − φ̂(s)]

∼ α − 1√
πs

, (C10)

so that T̂0(s) = sα−1T̂0(s) ∼ (α − 1)sα−2/
√

π . Therefore
when n � 1, the dominant term on the right of (C9) is the
one with index m = 0, i.e.,

T̂n(s) ∼ −�(1 − α)

n!
√

π

(F0

2

)n

(α)2n(α − 1)2s2α−3. (C11)

Combining the asymptotic forms of {T̂n(s)} with (C4), the
leading term in the series on the right-hand side of (C4) is the
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term with m = 0, consequently

n−1∑
m=0

(α − 1)2n−2m

(m − n)!

(F0

2

)n−m

�(1 − α)s−2nT̂m(s)

∼ α − 1√
πn!

(F0

2

)n

(α − 1)2n�(1 − α)s−2n+α−2. (C12)

Further combining with (C11), we obtain for n � 1

R̂n(s) ∼α − 1√
πn!

(F0

2

)n

(α − 1)2n�(1 − α)s−2n+α−2

− �(1 − α)

n!
√

π

(F0

2

)n

(α)2n(α − 1)s−2n+α−2

∼α − 1√
πn!

(F0

2

)n

[(α − 1)2n − (α)2n]

× �(1 − α)s−2n+α−2. (C13)

APPENDIX D: SPECIFIC ALGORITHM FOR LW IN
CONSTANT EXTERNAL FORCE FIELD

The numerical pseudo code for simulation of LW in con-
stant external force field F0 is illustrated in Algorithm 1.

APPENDIX E: SOME RESULTS WHEN α ∈ (0, 1)

In this part, we consider ordinary LWs with constant speed
v0. When the power-law density φ(τ ) in (1) has infinite aver-
age, i.e., α ∈ (0, 1), then φ̂(s) ∼ 1 − �(1 − α)α and �̂(s) ∼

Algorithm 1. Simulate trajectory of LW in constant external
force field.

Input: x0: initial position; t : observation time; v0: initial velocity for
each step; F0: constant external force; φ(τ ): PDF for τ in (1);

Output: The position xt of process at time t ;
1: set xt = x0, set T = 0;
2: while 1 == 1 do
3: generate τ from φ(τ ), set T = τ + T ;
4: if T � t then
5: generate a random variable uniformly distributed in interval
5: (0,1) to represent the direction of initial velocity, r = rand(0, 1);
6: if r � 0.5 then
7: xt = 1/2 ∗ F0 ∗ τ 2 + xt + v0 ∗ τ ;
8: else
9: xt = 1/2 ∗ F0 ∗ τ 2 + xt − v0 ∗ τ ;
10: end if
11: else
12: τ ′ = t − T + τ , calculate the residual time from TN to t ;
13: generate r = rand(0, 1);
14: if r � 0.5 then
15: xt = 1/2 ∗ F0 ∗ τ ′2 + xt + v0 ∗ τ ′;
16: else
17: xt = 1/2 ∗ F0 ∗ τ ′2 + xt − v0 ∗ τ ′;
18: end if
19: break
20: end if
21: end while
22: return xt

�(1 − α)sα−1. It follows that

Lτ {τ n−m�(τ )}(s)

∼
{

(−1)n−m(α − 1)n−m�(1 − α)s−1+α−(n−m) if n > m;
�(1 − α)sα−1 if n = m.

(E1)

Then we have

R̂n(s) =1

2

n−1∑
m=0

(−v0)n−m

(n − m)!
[1 + (−1)(n−m)](α)n−m

× �(1 − α)s−1+α−(n−m)T̂m(s)

+ �(1 − α)sα−1T̂n(s). (E2)

Similarly, according to the symmetry of the process we only
need to consider the even terms,

R̂2n(s) ∼
n−1∑
m=0

v2n−2m
0

(2n − 2m)!
(α − 1)2n−2m�(1 − α)s−2nT̂2m(s)

+ �(1 − α)s−2nT̂2n(s), (E3)

where in this part T̂2n(s) = s−1+α+2nT̂2n(s). Conversely,

Lτ {τ 2n−2mφ(τ )}(s)

∼
{−(α − 1)2n−2m�(1 − α)sα−(2n−2m) if n > m;
�(1 − α)sα if n = m.

(E4)

Then for n � 1
√

π22n(2n)!T̂2n(s)sα−1+2n

∼ −
n−1∑
m=0

√
π22m(2n)!

(2n − 2m)!
(2v0)2n−2m(α)2n−2m

×�(1 − α)s−1+2α+2mT̂2m(s)

+√
π22k (2k)!s−1+α+2kT̂2k (s)

−√
π22k (2k)!�(1 − α)s−1+2α+2kT̂2k (s)

+ s−1+α+2nH2n(0), (E5)

which leads to
√

π22n(2n)!�(1 − α)T̂2n(s)

∼ −
n−1∑
m=0

√
π22n(2m)!

(2n − 2m)!
v2n−2m

0

× (α)2n−2m�(1 − α)T̂2m(s) + s2n−1H2n(0). (E6)

Therefore for n � 1 we have

T̂2n(s) ∼ −
n−1∑
m=0

v2n−2m
0

(2n − 2m)!
(α)2n−2mT̂2m(s). (E7)

When n = 0, it can be obtained that

T̂0(s) = sα−1T̂0(s) = sα−1

√
π [1 − φ̂(s)]

∼ 1√
π�(1 − α)s

.

(E8)
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According to (E7) we see that for n � 1

�(1 − α)s−2nT̂2n(s)

∼ −
n−1∑
m=0

v2n−2m
0

(2n − 2m)!
(α)2n−2mT̂2m(s)�(1 − α)s−2n. (E9)

Finally, according to (E3), for n � 1 we have

R̂2n(s) ∼
n−1∑
m=0

v2n−2m
0

(2n − 2m)!
[(α − 1)2n−2m − (α)2n−2m]

× �(1 − α)T̂2m(s)s−2n. (E10)

The explicit asymptotic expression for each T̂2n(s) is hard
to obtain based on (E7), so from here numerical methods of
evaluation have to be chosen.

APPENDIX F: CALCULATIONS OF LAPLACE
TRANSFORMS UTILIZED IN SEC. IV

When φ(τ ) = α(1 + τ )−1−α , some Laplace transforms
needed in Sec. IV are calculated here. The first Laplace trans-
form is

Lτ {cos2(ωτ )φ(τ )}(s)

= α

2
esE1+α (s) + α

4
es−2iωE1+α (s − 2iω)

+ α

4
es+2iωE1+α (s + 2iω), (F1)

where Eθ (x) = ∫ ∞
1 t−θ e−xt dt is the exponential integral. Next

by taking a Taylor expansion on the right-hand side of (F1)
and ignoring higher order terms, the leading term is

α

2
esE1+α (s) ∼ 1

2
+ s

2(1 − α)
+ α

2
�(−α)sα. (F2)

Further, the following relation is needed to calculate the Tay-
lor expansion of the next two terms of (F1),

e−2iωE1+α (−2iω) + e2iωE1+α (2iω)

=
∫ ∞

1

e−2iω(t+1)

t1+α
dt +

∫ ∞

1

e2iω(t+1)

t1+α
dt

= 2
∫ ∞

1

cos[2ω(t + 1)]

t1+α
dt

= 2Iα+1(ω), (F3)

where Iθ (ω) is defined in (45). Therefore

es−2iωE1+α (s − 2iω) + es+2iωE1+α (s + 2iω)

∼ [e−2iωE1+α (−2iω) + e2iωE1+α (2iω)]

+ s[−e−2iωEα (−2iω) + e−2iωE1+α (−2iω)]

+ s[−e2iωEα (2iω) + e2iωE1+α (2iω)]

= 2Iα+1(ω) + 2[Iα (ω) + Iα+1(ω)]s. (F4)

Finally, from (F1) we have

Lτ {cos2(ωτ )φ(τ )}(s)

∼ 1

2
+ α

2
Iα+1(ω) + α

2
�(−α)sα

+
[

1

2(1 − α)
+ α

2
Iα (ω) + α

2
Iα+1(ω)

]
s. (F5)

Similarly,

Lτ {sin2(ωτ )φ(τ )}(s)

= α

2
esE1+α (s) − α

4
[es−2iωE1+α (s − 2iω)

+ es+2iωE1+α (s + 2iω)]

∼ 1

2
− α

2
Iα+1(ω) + α

2
�(−α)sα

+
[

1

2(1 − α)
− α

2
Iα (ω) − α

2
Iα+1(ω)

]
s. (F6)

Further, the corresponding survival probability of φ(τ ) is

�(τ ) =
∫ ∞

τ

α(1 + τ ′)−1−αdτ ′ = (1 + τ )−α. (F7)

Then

Lτ {cos2(ωτ )�(τ )}(s)

= 1

2
esEα (s) + 1

4
[es−2iωEα (s − 2iω)

+ es+2iωEα (s + 2iω)]

∼ 1

2(α − 1)
+ 1

2
Iα (ω) + 1

2
�(1 − α)sα−1

+ s

2

[
− 1

(α − 2)(α − 1)
+ Iα (ω) − Iα−1(ω)

]
. (F8)

Finally the following Laplace transform is

Lτ {sin2(ωτ )�(τ )}(s)

= 1

2
esEα (s) − 1

4
[es−2iωEα (s − 2iω)

+ es+2iωEα (s + 2iω)]

∼ 1

2(α − 1)
− 1

2
Iα (ω) + 1

2
�(1 − α)sα−1

+ s

2

[
− 1

(α − 2)(α − 1)
− Iα (ω) + Iα−1(ω)

]
. (F9)
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