Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models
Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models

Wei Wang, Ralf Metzler and Andrey G. Cherstvy

How does a systematic time-dependence of the diffusion coefficient \(D(t) \) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements—denoted as the standard MSD \(\langle x^2(t) \rangle \) and TAMSD \(\langle \Delta x^2(t) \rangle \)—changes in the presence of a power-law deterministically varying diffusivity \(D_i(t) \propto t^{\alpha-1} \)—germane to the process of scaled Brownian motion (SBM)—determining the strength of fractional Gaussian noise. The resulting compound “scaled-fractional” Brownian motion or FBM–SBM is found to be nonergodic, with \(\langle x^2(d) \rangle \propto A^{1+2\alpha-1} \) and \(\langle \Delta x^2(d) \rangle \propto A^{2H} \). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when \(\alpha + 2H - 1 < 0 \). The distribution of particle displacements for FBM–SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents \(0 < \alpha < 2 \) and \(0 < H < 1 \). The FBM–SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM–SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM–SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM–SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM–SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.

1 Introduction

The flurry of new single-particle-tracking (SPT) datasets reporting on and novel theoretical-analysis tools assessing the properties of anomalous diffusion\(^1\)–\(^27\) has established an unprecedented need for novel theoretical models of diffusion and transport. Such models should desirably embody certain characteristic features of different “standard” anomalous-diffusion processes\(^28\)–\(^33\) such as, i.e., conventional Brownian motion (BM)\(^34\)–\(^41\) fractional BM (FBM)\(^42\)–\(^48\) governed by fractional Gaussian noise, scaled BM (SBM)\(^49\)–\(^61\) and ultraslow SBM\(^62\)–\(^63\) with a power-law time-dependent diffusivity \(D(t) \propto t^{\alpha-1} \), continuous-time random walks (CTRWs),\(^31\)\(^64\)\(^65\) Lévy walks and flights,\(^66\) heterogeneous diffusion processes (HDPs)\(^52\)–\(^53\)\(^51\)\(^67\)–\(^69\) with a power-law position-dependent diffusivity, \(D(x) \propto |x|^{\alpha} \), etc.

In recent years, certain combinations of models were proposed, including switching-diffusivity\(^34\)\(^31\)\(^33\)\(^70\)–\(^77\) and annealed-transient-time models (ATTM),\(^78\) BM with fluctuating or diffusing diffusivity (DD)\(^70\)–\(^79\)–\(^85\) BM- and anomalous-diffusion-models with “super-statistically” distributed model parameters,\(^86\)–\(^89\) compound diffusion processes of SBM-DD,\(^84\) SBM–HDPs,\(^90\)\(^91\) FBM-DD,\(^92\) FBM–HDPs,\(^93\)\(^94\) SBM with exponentially and logarithmically varying \(D(t) \),\(^94\) CTRWs with random walks on fractal (RWFs),\(^95\) CTRW–FBM,\(^16\)\(^96\)–\(^98\) as well as several other models,\(^74\)\(^99\)–\(^113\) including fractional-Langevin-equation (FLE) motion. Renewal processes involving alternation of different types of motions

\(a \) Institute for Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany. E-mail: weiwangnuaa@gmail.com, rmetzler@uni-potsdam.de, a.cherstvy@gmail.com

\(b \) Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
were proposed as well [with, e.g., switching between different diffusion processes,10,100,114,115 processes with intermittent mobility states,13 or with different anomalous scaling exponents12,103,116–119]. For some recent examples, we refer the reader to, e.g., the hybrid models of alternating Lévy walks with BMs120,121 and Lévy walks with CTRWs.122 Multifractal FBM-based processes with a Hurst exponent varying in time49,123,124 were also considered recently.125–127 Such processes were used, e.g., in mathematical-finance models with (multi-)fractional stochastic volatility.128,129

This multifaceted picture of diffusion scenarios potentially realizable for SPT datasets is, however, far from being complete, and we develop here one more useful model of FBM–SBM. The main objective is to examine how the temporal correlations of fractional Gaussian noise—featuring persistent displacements for superdiffusive and antipersistent displacements of a particle for subdiffusive Hurst exponents \(H \) of FBM—“interfere” with a power-law deterministic \(D(t) \)-dependence of SBM.

The rest of the paper is organized as follows. In Section II we introduce the concepts of ensemble- and time-averaging and discuss ergodicity130 of FBM and SBM. Some details of the theoretical analysis and of computer simulations for the FBM–SBM model are presented in Section III. Specifically, the properties of the ensemble-averaged mean-squared displacement (MSD) and of the time-averaged MSD (TAMSD), the aging characteristics of the TAMSD, the probability-density function (PDF), and increment/velocity autocorrelation function (ACF) are considered in Section III B, III C, III D, and III E, respectively. The discussion and conclusions are presented in Section IV. The list of applications of FBM and SBM is overviewed in Section IV A. The main features of experimental SPT datasets and FBM-, SBM-, and FBM–SBM-related theoretical models are summarized in Table 1, while several additional figures are listed in Appendix A.

II Statistical properties of FBM and SBM

FBM and SBM are formulated based on the Langevin equation,\(^{131}\)

\[
\mathrm{d}x(t)/\mathrm{d}t = \sqrt{2D} \xi(t),
\]

driven by fractional Gaussian noise \(\xi(t) \) for a constant diffusion coefficient \(D \) for FBM and by white Gaussian noise \(\xi(t) \) for a time-dependent diffusion coefficient \(D(t) \) for SBM, see below.

A FBM

The parental process of FBM—as introduced in ref. 42 and 43 and developed in some of our recent studies,45,46,48,92 see eqn (16) (below)—is stationary in increments and nearly as ergodic14,44 as BM. For FBM, the exponent and magnitude of the power-law anomalous\(^{28,31,132–135}\) growth of the MSD

\[
\langle x^2(t) \rangle = \int x^2 P(x, t) \mathrm{d}x = 2K_{2H} t^{2H}
\]

and TAMSD

\[
\overline{\delta^2(A)} = \frac{1}{T - A} \int_0^{T - A} [x(t + A) - x(t)]^2 \mathrm{d}t
\]

are equal at short lag times, \(A \ll T \), where

\[
\overline{\delta^2(A)} \approx 2K_{2H} A^H.
\]

Here, the exponent \(\beta = 2H \) is twice the Hurst exponent\(^ {136}\) and \(K_{2H} \) is the generalized diffusion coefficient. The exponent \(H = 1/2 \) demarcates the situations of persistent (positive) and antipersistent (negative) correlations of particle displacements realized for FBM at \(1 > H > 1/2 \) and \(0 < H < 1/2 \), correspondingly, see ref. 45, 46, 48 and 92 and Section III A below. These two regimes yield super- and subdiffusion respectively. The discrete version of expression (3), used to rationalize various SPT datasets, is

\[
\overline{\delta^2(j\delta t)} = \frac{1}{N\delta t - j\delta t} \sum_{k=1}^{N-j-1} \delta t[x(k\delta t + j\delta t) - x(k\delta t)]^2,
\]

where \(\delta t \) is the discretization step of a time series with \(N \) points.

For FBM, all individual TAMSD trajectories, being highly reproducible,\(^ {45,46,48,92} \) are equal to the MSD in the limit of long measurement times \(T \),

\[
\lim_{A/T \to 0} \overline{\delta^2(A)} = \langle x^2(A) \rangle.
\]

The mean TAMSD for an ensemble of \(N \) independent [and statistically identical] trajectories for a given lag time \(A \) and measurement time \(T \) is computed as the arithmetic mean,

\[
\langle \overline{\delta^2(A)} \rangle = \frac{1}{N} \sum_{i=1}^{N} \overline{\delta^2(A)}.
\]

The magnitude of the TAMSDs is insensitive to the trajectory length and thus FBM does not feature aging, see ref. 31 and 44–46.

The PDF of FBM is Gaussian and the distribution of particle displacement at time \(t \) has the form

\[
P(x, t) = \exp \left(-\frac{x^2}{4K_{2H} t^{2H}} \right) / \sqrt{4\pi K_{2H} t^{2H}},
\]

provided the initial PDF is \(P(x, t = 0) = \delta(x) \). We consider below the free-space spreading dynamics, but emphasize that implementing a physically self-consistent scheme for FBM in the presence of confinement\(^ {45,46} \) and reflecting boundaries\(^ {137–139} \) is a nontrivial task due to the nonlocality of FBM and possibly variable degree of memory loss upon a reflection from a planar boundary [depending, e.g., on the angle of incidence of the jump to be reflected].

The ACF computed from the increments of particle positions, e.g.,

\[
\frac{C_i^{(i)}(\tau)}{C_i^{(i)}(0)} = \frac{\langle [x(t + \delta) - x(\tau)] [x(\tau) - x(0)] \rangle}{\langle [x(\delta) - x(0)]^2 \rangle},
\]

This journal is © the Owner Societies 2022

Phys. Chem. Chem. Phys., 2022, 24, 18482-18504 | 18483
Here, δ is the period of increment measurement. This ACF for subdiffusive FBM starts with unity at the initial time $\tau = 0$, exhibits a dip at short time lags with the depth13,140
\[
C^{(0)}_v(\tau = \delta)/C^{(0)}_v(0) = 2^{2H-1} - 1,
\]
and relaxes to zero from below in a power-law manner as $n \gg 1$ as,67,141,142
\[
C^{(0)}_v(\tau = n\delta t) \propto n^{2H-2}.
\] (11)

Here n is the number of elementary time-intervals δt used in the analysis. The depth of this dip reflects the degree of antipersistence of successive displacements for FBM with $0 < 2H < 1$. For superdiffusive FBM, with $1 < 2H < 2$, the velocity ACF drops from unity at the initial time $\tau = 0$ to the same value (10) which is now positive, indicative of persistence in displacement correlations. At longer times the ACF approaches zero from above, again as a power law (11).

B SBM

The inherently nonstationary process of SBM—as introduced in ref. 51, 54 and 55 and developed recently, i.e., in refs. 56–58—features the diffusion coefficient of the form,

\[
D_s(t) = zK_o \delta^{z-1},
\] (12)

with $0 < z < 2$. SBM is a nonergodic process in the sense of MSD-to-TAMSD nonequivalence.31,55,57 SBM, like FBM, is an athermal process that can additionally be considered as a “mean field” over CTRWs.54 For subdiffusive SBM, for instance, we observe a power-law-like MSD growth,

\[
\text{MSD}(\Delta) \propto \Delta^z,
\] (13)

while at short lag times $\Delta/T \ll 1$ the mean TAMSD is linear in lag time,

\[
\text{TAMSD}(\Delta, T) \propto \Delta^{1/T^{x-2}}.
\] (14)

Note that the argument of the MSD is real physical time (even if Δ is used for it below), while the argument of the TAMSD [per definition] is the lag time. The decay of the TAMSD with the trajectory length T for $x < 1$—underlying a slower dynamics of subdiffusive SBM at later times—is a conspicuous feature of SBM aging. The functional dependence of this decay on T as a function of x is similar to that of subdiffusive CTRWs$^{65,143–147}$ and subdiffusive HDPs.58,69,91

In contrast to CTRWs and HDPs, for SBM, the distribution of TAMSDs is, however, narrow and the respective EB parameter,28,31

\[
\text{EB}(\Delta) = \left\langle \left(\frac{\Delta}{\text{MSD}(\Delta)} \right)^2 \right\rangle \left\langle \left(\frac{\Delta}{\text{MSD}(\Delta)} \right)^2 - 1 \right\rangle,
\] (15)

characterizing this small irreproducibility of the TAMSDs from one realization to the next behaves often similar to that for BM, see ref. 54, 56 and 91.

The process of SBM is Markovian and it features the same PDF as FBM, with a trivial substitution $2H \rightarrow z$.

The ACF of SBM for sub- and superdiffusive realizations is the same as that of BM for disjoint time intervals. Namely, the ACF—normalized to the ACF at zero time shift—starts at unity, drops within one step $\delta = \delta t$ to zero, and—due to the absence of temporal noise correlations on later stages—stays zero at longer lag times τ (see, e.g., Fig. 2 in ref. 60).

III Results for FBM–SBM

A Model and simulations

We examine the overdamped Langevin equation featuring the power-law SBM-like diffusion coefficient (12) and FBM-associated external fractional Gaussian noise $\zeta_H(t)$,

\[
dx(t)/dt = \sqrt{2D_s(t)} \zeta_H(t).
\] (16)

Here, noise $\zeta_H(t)$ for time instances $|t_1 - t_2| \gg 0$ features the correlation function

\[
\langle \zeta_H(t_1) \zeta_H(t_2) \rangle \propto K_{2H} 2H(2H-1)|t_1 - t_2|^{2H-2}.
\] (17)

These long-range temporal correlations for non-Markovian FBM are contrasting memoryless white Gaussian noise giving rise to BM. The diffusion coefficient in eqn (16)—stemming from a subdiffusive source process of SBM—describes the particle dynamics slowing down with time.

We emphasize that the underdamped Langevin equation131 and FBM for massive particles were considered recently too48 (see also ref. 148). The consideration of massive particles with both a power-law SBM-like time-varying diffusivity $D_s(t)$ as well as with the exponential and logarithmic dependencies $D(t)$ were recently presented, see ref. 57, 58, 62, 63 and 94, respectively. For exponential-SBM, for instance, the MSD grows with time as for a multiplicative process of geometric BM,49,150 see also ref. 151.

For numerical simulation of eqn (16) we employ the same standard forward-running Ito-like152,153 discrete iterative scheme with a variable time-step δt, see the detailed description in our previous studies for the simulations of HDPs68,69 SBM–HDPs,91 and, particularly, of FBM–HDPs93 and FBM–DD92 processes.

B MSD and TAMSD

The compound FBM–SBM process is weakly nonergodic. Specifically, the ergodic FBM behavior with the equivalent MSD (2) and TAMSD (3) for FBM–SBM with $2 > z > 1$ changes to

\[
\text{MSD}(\Delta) \propto \Delta^{2H+2-1}
\] (18)

and

\[
\text{TAMSD}(\Delta) \propto \Delta^{2H}.
\] (19)

FBM–SBM with $0 < z < 1$ is also nonergodic. For a growing-in-time SBM diffusivity realized at $2 > z > 1$ and for superdiffusive FBM the MSD of FBM–SBM is considerably lower than its TAMSD. The situation is the opposite for $0 < z < 1$ when the MSD at short times is much larger than the TAMSD of FBM–SBM, see Fig. 1a and b, respectively. Naturally, as the Hurst exponent approaches the BM limit $H = 1/2$, the MSD exponent...
of FBM–SBM is $2H$ and its MSD–TAMSD behavior turns into that of pure SBM.† The process of FBM–SBM, as its parental processes, is free of a typical time scale.

† We remind the reader here that for FBM–HDP and SBM–HDP the scaling exponents of the MSD were found to be the products of the respective scaling exponents of the parental processes (see eqn (35) in ref. 91 and eqn (20) in ref. 91, correspondingly; see also Table 1). The position-dependent diffusion coefficient in these processes did not “interfere” with the properties of FBM-related noise and with the time-dependence of the SBM (see also eqn (21)). The process of FBM–SBM, as its parental processes, is free of a typical time scale.

Fig. 1 MSD and TAMSD of FBM–SBM as function of time t and lag time Δ, respectively. Superdiffusive parental FBM is considered, with $H = 0.8$. The diffusion scenarios of super- and subdiffusive parental SBM correspond to panels (a) and (b), respectively. The SBM exponents are provided in the legend. Thick green and blue curves are the theoretical asymptotes (18) of the MSD and (19) of the TAMSD (plotted with the unit prefactors (see also eqn (21) and Fig. 3)), while the respective symbols are the results of simulations. The red curves are the individual TAMSDs from simulations. Other parameters are as follows: the initial position of the particles is chosen at $x_0 = 0$, the total length of the diffusion trajectory is $T = 10^3$; the time-step in the simulations is $\delta t = 10^{-2}$, and ensemble averaging is performed over $N = 10^3$ in silico-generated time series. For all plots, the noise strength is set at $K_{2H} = 1/2$ in eqn (17) and we use $K_s = 1/2$ in eqn (12). For this, and all other plots expect Fig. 9, the time-step is $\delta t = 0.01$.

The derivation of the MSD (18) and TAMSD (19) of FBM–SBM is as follows. Starting from (16), we get

$$\langle x^2(t) \rangle = 2xK_s \int_0^t ds_1 \int_0^t ds_2 (s_1 - s_2)^{2H-2} \langle \xi_H(s_1) \xi_H(s_2) \rangle. \quad (20)$$

At $H = 1/2$ the fractional noise reduces to the white Gaussian noise and one arrives at pure SBM with $\langle x^2(t) \rangle \sim t^2$. At $H > 1/2$, using the approximate expression (17) for the noise correlations, the MSD reads

$$\langle x^2(t) \rangle = 4xK_s K_{2H} (2H - 1) \int_0^t ds_1 \int_0^t ds_2 (s_1 - s_2)^{2H-2} \frac{\Gamma(2H + 1)}{\Gamma(2H + 1)}.$$ (21)

The prefactor of this MSD as a function of exponents α and H of the two parental processes is shown in Fig. 3a to demonstrate the simulations vs. theory agreement. We find that in a large region of exponents the MS prefactor is of order unity, corroborating the unit asymptotics used in Fig. 1. In special cases of pure SBM ($2H = 1$ and $K_{2H} = 1/2$) or pure FBM ($\alpha = 1$ and $K_s = 1/2$) the general MSD expression (21) for FBM–SBM yields, respectively, the expected dependencies $\langle x^2(t) \rangle = 2xK_t t^2$ for SBM and $\langle x^2(t) \rangle = 2K_{2H} t^{2H}$ for superdiffusive FBM.

At $H < 1/2$, using the exact correlator of the noise,

\begin{align*}
\langle \xi_H(s_1) \xi_H(s_2) \rangle &= \frac{K_{2H}}{\varepsilon^2} \left(|s_1 - s_2 + \varepsilon|^{2H} + |s_1 - s_2 - \varepsilon|^{2H} - 2|s_1 - s_2|^{2H} \right),
\end{align*} (22)

within the discretized scheme (see ref. 154), for the time step δt and with $\varepsilon = \delta t$ the MSD after n steps and $t = n \times \delta t$ becomes

$$\langle x^2(t) \rangle = 4xK_s K_{2H} C(H, n) \times |n \times \delta t|^{2H-1}, \quad (23)$$
The aging behavior of FBM–SBM is consistent with our physical intuition. Namely, as FBM is a nonaging process, aging of FBM–SBM stems solely from that of SBM, yielding for the mean TAMSD at short lag times ($A \ll T$) the relation

$$\langle \delta_x^2(A,T) \rangle \propto t^{2H - 1}.$$

Therefore, for subdiffusive SBM with $0 < \alpha < 1$ the magnitude of the observed TAMSD of FBM–SBM decreases with the trace length T, indicating a dynamics slowing down with time. The scaling behavior (25) is supported by our computer simulations for both sub- and superdiffusive parental SBM, see Fig. 4. The TAMSD amplitude at short lag times is considered as the most representative and statistically robust characteristics.

We also stress that—similarly to subdiffusive HDPs and subdiffusive CTRWs—pure SBM features a peculiar aging property. Namely, the ratio of the aged mean TAMSD

$$\langle \delta_x^2(A,T) \rangle = \left \langle \frac{1}{T-A} \int_{t_A}^{t_A+T-A} [x(t + A) - x(t)]^2 dt \right \rangle$$

(26)

to the nonaged mean TAMSD (3) is given for SBM by

$$A_d(t_d/T) = (1 + t_d/T)^\alpha - (t_d/T)^\alpha.$$

(27)

Here, the aging time is denoted by t_d. The same law is observed for SBM–FBM, see Fig. 5, because FBM is a nonaging process. Note also that expression (27) is valid for the aging behavior of the TAMSD for subdiffusive HDPs and subdiffusive CTRWs too, see eqn (15) in ref. 68 and eqn (39) in ref. 145, respectively.

‡ The divergence of the respective MSD integral, as follows from eqn (16) for the displacement increments, is the reason for this. These MSD plateaus indicate a stalling dynamics of the particles; the subdiffusive SBM part progressively slows down the diffusivity and—in addition to that—the anticorrelated successive increments of the particle from parental subdiffusive FBM lead to nearly zero net displacement. The plateaus are realized in the region of FBM and SBM exponents where the cumulative MSD exponent of FBM–SBM is negative. Note also that for pure SBM, e.g., negative MSD exponents are outside of the region of allowed model parameters so that such stalling MSD situations were not observed. Technically, however, the simulations of FBM–SBM in this parameter region presents no complications.
For FBM–SBM \[\text{considered here}\] we observe that at short times long aging times are given by the dashed lines. Parental FBM and SBM \((\text{here, the ''normalization'' trace-length is } T)\) for FBM–HDP we demonstrated that 93 Dependence of the normalized TAMSD magnitude on aging time Fig. 5 Variation of the TAMSD magnitude at short lag times with the length of the trajectory, with the relation (25) shown as the asymptotes (here, the “normalization” trace-length is \(T_1 = 1\)). The values of FBM and SBM exponents are provided in the legend. Due to the TAMSD “normalization” employed here, the two different SBM exponents used define the two aging exponents of FBM–SBM in the computer-simulation results.

There exist close similarities in scaling relations for the MSD-to-TAMSD ratios for the compound processes of SBM–HDP, FBM–HDP, and FBM–SBM. For SBM–HDP with \(D(x, t) \propto |x|^\alpha t^\beta\) we found that 91 the MSD grows as \(\langle x^2 (t) \rangle \propto (A/t)^{1-\alpha p}\), and their ratio is

\[
\frac{\langle \delta^2 (t, A) \rangle}{\langle x^2 (A) \rangle} = (A/T)^{1-p}, \tag{28}
\]

where \(p = 2/(2 - \alpha)\) is the MSD exponent of pure HDPs.\(^{67,69}\) For FBM–HDP we demonstrated that 93 \(\langle \delta^2 (A) \rangle \propto A^{2H}, \langle x^2 (A) \rangle \propto A^{2H}/T^{(1-p)2H}\), and

\[
\frac{\langle \delta^2 (A) \rangle}{\langle x^2 (A) \rangle} = (A/T)^{(1-p)2H}. \tag{29}
\]

For FBM–SBM \[\text{considered here}\] we observe that at short times \(\langle x^2 (A) \rangle \propto A^{2H+\gamma - 1}, \langle \delta^2 (A) \rangle \propto A^{2H}/T^{1-2}, \text{ and} \)

\[
\frac{\langle \delta^2 (A) \rangle}{\langle x^2 (A) \rangle} = (A/T)^{1-2}. \tag{30}
\]

These relations are valid for the MSD and TAMSD growing with \([\text{lag} \text{ time}]\) 6 The scaling relations of this paragraph embody the main characteristics of a family of SBM–HDP, FBM–HDP, and FBM–SBM hybrid processes, see Table 1.

D PDF

For FBM–SBM with a nonstalling MSD behavior we always observe PDFs of a Gaussian shape. This finding is intuitive (results not shown) because the parental processes of FBM and SBM are also Gaussian, eqn (8). The width of the PDFs characterizing the dispersion of the particles grows in time in full correspondence to the observed MSD-growth law, see Fig. 11. What is more surprising is that the Gaussian PDFs are also detected for situations with a stalling-MSD behavior of FBM–SBM. The integration of the fitted PDFs of particle displacements, eqn (2), in the stagnating/stalling regime of the MSD yields for the second moment the plateau values in full agreement with the simulations, as illustrated in Fig. 8.

E ACF

For FBM–SBM the ACF \(C^{(0)}(\tau)/C^{(0)}(0)\) behaves similarly to that of FBM, see Fig. 12. Quantitatively, for subdiffusive FBM contributing to FBM–SBM the depth of the minimal value of the ACF shifts upwards for sub- and downwards for superdiffusive SBM contributions. For superdiffusive FBM in FBM–SBM the ACF curve shifts downwards and upwards for sub- and superdiffusive SBM in FBM–SBM, respectively. The decay law for the long-time tail of the ACF of FBM–SBM gets modified as compared to (11) for FBM. Namely, using the discretely defined ACF (9), we get

\[
C^{(0)}(\tau) = n \delta(t) C^{(0)}(0) \propto n^{2H-2+(p-1)/2}, \tag{31}
\]

as illustrated in Fig. 13.

In terms of the MSD exponent (18), for FBM–SBM with subdiffusive FBM and subdiffusive SBM the resulting process is more subdiffusive than original FBM. For superdiffusive FBM, the superdiffusive SBM contribution makes the resulting FBM–SBM more superdiffusive. The behavior of the ACF minimum, being computed naively as in Fig. 12 and described above, therefore, does not agree with these trends of the MSD exponents. This inconsistency gets “repaired/fixed” by a

\[\frac{\langle \delta^2 (A) \rangle}{\langle x^2 (A) \rangle} = (A/T)^{1-2}. \tag{30}\]

§ The prefactors in the MSDs and TAMSDs above are rather complicated, but the MSD-to-TAMSD ratio—characterizing the respective degree of ergodicity \(E_B(A) = \frac{\langle \delta^2 (A) \rangle}{\langle x^2 (A) \rangle}\) of a given process in this list—contains no prefactors. This ratio is thus a valuable tool to assess the nonergodicity of an unknown dataset of time-series, see Table 1. The absence of coefficients in these TAMSD-to-MSD ratios—proven in Fig. 10 for several values of the exponents of parental SBM and FBM processes—also renders the often tedious analytical calculations of the MSD and [especially] of the TAMSD as separate quantities less important.
time-dependent normalization of the ACF, namely
\[
\frac{C^{(\delta)}(t, \tau)}{C^{(\delta)}(t, 0)} = \frac{\langle [x(t + \tau + \delta) - x(t + \tau)] [x(t + \delta) - x(t)] \rangle}{\langle [x(t + \delta) - x(t)][x(t + \delta) - x(t)] \rangle}.
\]
(32)

Namely, as FBM–SBM is a nonstationary process, the time-dependence of the instantaneous mean-squared displacement-increments, scaling from eqn (16) as
\[
\langle (dx/dt)^2 \rangle \propto D(t) \propto t^{\alpha - 1},
\]
(33)
should enter the ACF normalization (see, e.g., ref. 155 for the consideration of nonstationary ACFs). From eqn (16) for FBM–SBM it follows that
\[
\frac{C^{(\delta)}_{t,FBM–SBM}(t, \tau)}{C^{(\delta)}_{t,FBM–SBM}(t, 0)} = \frac{C^{(\delta)}_{t,FBM}(t, \tau)}{C^{(\delta)}_{t,FBM}(t, 0)} \left(1 + \frac{\tau}{t} \right)^{2-1} \frac{1}{\left(1 + \frac{\delta}{t}\right)^{2-1}}.
\]
(34)
The ACF of FBM–SBM normalized this way, that accounts for the nonstationarity of SBM, is (nearly) the same as that of its parental FBM, see the results of simulations shown in Fig. 6. This is expected because the displacement-ACF of SBM—being similar to that of BM, Section II B—is zero at long lag times. SBM, therefore, does not affect the long-time tails of the properly-normalized ACF of FBM–SBM (34); it renders the scaling behavior (31) equal to (11) for pure FBM, as confirmed by the results of simulations presented in Fig. 14.

IV Discussion and conclusions

A Applications of FBM and SBM

Some recently observed mainly biophysical phenomena describable (at least partially) by FBM and SBM are as follows.

The model of antipersistent subdiffusive FBM—including the situations with ensemble-distributed values of $2H$ and K_{2H}—has been successfully applied to the description of the spreading characteristics of tracers of various nature in living biological cells\(^1\text{11,146-159}\) as well as in various prototypical in vitro crowded environments\(^8\text{160-161}\) (sucrose, dextran, mucin, etc.) mimicking the macromolecularly crowded cyto- and nucleoplasm of a cell. The list of endogenous and “introduced” tracers includes micron-sized beads (both inert and interacting with the medium), quantum dots (QDs), granules, polymer segments (mRNA, chromosomal loci and telomeres,\(^156\text{ etc.}\)), vacuoles and particles,\(^164\) p-granules and organelles.\(^12\text{140,165}\) Note that experimental studies of non-equilibrium cytoskeleton-induced forces impacting the subdiffusion of telomeres also exist.\(^166\)

Some concrete biophysical examples of FBM-type motions are as follows. The physical mechanisms potentially underlying the anomalous dynamics of (i) potassium channels in the plasma membrane,\(^167\) (ii) intracellular transport of insulin granules,\(^96\) (iii) envelope glycoprotein gp41 transmembrane proteins of human-immunodeficiency virus in the T-cell plasma membranes,\(^1\) (iv) subdiffusion of chromosomal loci in bacterial cells,\(^156\) (v) subdiffusion of endogenous lipid granules in the living cells of fission yeast,\(^157\) (vi) lysosome and endosome intracellular movements [describable by FBM with a stochastic Hurst exponent],\(^12\text{19}\) to name a few, see Table 1.

As to SBM, one example concerns the in vivo observations and physical interpretations of time-dependent diffusion of water in white- and gray-matter tissues of the [human] brain. The respective diffusion process features an SBM-like variation of the time-dependent part of the diffusion coefficient on time, as thoroughly studied recently\(^168\text{175}\) [see also ref. 176 and our recent coverage\(^94\) we refer here to Table 1]. The experimentally measured finite long-time diffusion coefficients—in nonconfining compartments, such as in the extra-cellular space, with long-time diffusivity $D_\infty > 0$—are strongly supportive of the picture of normal macroscopic water diffusion in the brain tissues, with often Gaussian distribution of displacements.\(^168,169,171,172\) The detailed features of possible transient anomalous diffusion of water in neural tissues were discussed in ref. 177. For some earlier studies of time-dependent diffusion—with the diffusivities $D(t)$ often decreasing with time—in barrier- or obstacle-containing, compartmentalized, and labyrinthine tissue environments we refer to ref. 168 and 178-185 for, $D(t)$ in neural tissues, muscle tissues, and prostate cancer. These diffusion-MRI studies aim at unraveling the detailed microstructure of the respective tissues.
This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 | 18489

Comparative overview of several recent (last decade) experimental SPT and simulations-based datasets, with their typical MSD and TAMSD scaling relations (at short and long time), the aging dependence of the TAMSD on the trajectory length, the observed scatter/dispersion of individual TAMSD realizations computed at short lag times, the degree of polydispersity of the tracer particles, the general form of the ACF, and the tentative mathematical model(s) of diffusion. These quantities are organized in the columns of the table. The entries are ordered in blocks separated by delimiters reporting the FBM-like experimental, SBM-like experimental, SBM-like simulational, and, finally, FBM–SBM-mixed studies as well as hybrid-model-based dynamics. A system with weak ergodicity breaking features MSD(D) ≠ TAMSD(D) at short lag times.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MSD, $\langle x^2(t) \rangle$</th>
<th>TAMSD, $\langle \delta^2(t) \rangle$</th>
<th>Aging of $\langle \delta^2(t) \rangle$</th>
<th>Scattering of $\langle \delta^2(t) \rangle$</th>
<th>Polydispersity of Tracers</th>
<th>Form of the ACF</th>
<th>Model of Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 156, exper.a</td>
<td>$\propto D^{0.4}$ (short times)</td>
<td>$\propto D^{0.4}$ (short times)</td>
<td>Unknown</td>
<td>Large (≥ 1.5 decades)</td>
<td>Medium to large</td>
<td>FBM-like</td>
<td>FBM</td>
</tr>
<tr>
<td>Ref. 157, exper.a</td>
<td>$\propto D^{0.4}$ (short times), $\propto D^{1.0}$ (long times)</td>
<td>$\propto D^{0.4}$ (short times), $\propto D^{1.0}$ (long times)</td>
<td>Not studied</td>
<td>None, $\propto 1/T^0$</td>
<td>None, $\propto 1/T^0$</td>
<td>FBM-like</td>
<td>FBM</td>
</tr>
<tr>
<td>Ref. 158, exper.a</td>
<td>Not shown</td>
<td>Not shown</td>
<td>None, $\propto 1/T^0$</td>
<td>Medium (≥ 1 decade)</td>
<td>Medium to large</td>
<td>FBM-like</td>
<td>FBM</td>
</tr>
<tr>
<td>Ref. 159, exper.a</td>
<td>$\propto D^{0.4}$ (short times), $\propto D^{1.0}$ (long times)</td>
<td>$\propto D^{0.4}$ (short times), $\propto D^{1.0}$ (long times)</td>
<td>Not presented</td>
<td>Medium to large</td>
<td>Not presented</td>
<td>FBM-like</td>
<td>FBM</td>
</tr>
<tr>
<td>Ref. 160, exper.a</td>
<td>Not shown</td>
<td>Not shown</td>
<td>Not shown</td>
<td>Not shown</td>
<td>FBM-like</td>
<td>FBM</td>
<td></td>
</tr>
<tr>
<td>Ref. 161 and 162, exper.a</td>
<td>$\propto D^{0.8}$, $\propto D^{0.8}$ (short times)</td>
<td>$\propto D^{0.8}$, $\propto D^{0.8}$ (short times)</td>
<td>Very small, BM-like</td>
<td>Small FBM-like</td>
<td>Small FBM-like</td>
<td>FBM and FLE</td>
<td>FBM and FLE</td>
</tr>
<tr>
<td>Ref. 163, exper.a</td>
<td>$\propto D^{0.8}$ (long times)</td>
<td>$\propto D^{0.8}$ (long times)</td>
<td>Very small, BM-like</td>
<td>Small FBM-like</td>
<td>Small FBM-like</td>
<td>FBM and FLE</td>
<td>FBM and FLE</td>
</tr>
<tr>
<td>Ref. 164, exper.a</td>
<td>Not shown</td>
<td>Not shown</td>
<td>Very small, BM-like</td>
<td>Small FBM-like</td>
<td>Small FBM-like</td>
<td>FBM and FLE</td>
<td>FBM and FLE</td>
</tr>
<tr>
<td>Ref. 165, exper.a</td>
<td>Not shown</td>
<td>Not shown</td>
<td>Very small, BM-like</td>
<td>Small FBM-like</td>
<td>Small FBM-like</td>
<td>FBM and FLE</td>
<td>FBM and FLE</td>
</tr>
<tr>
<td>Ref. 166, exper.a</td>
<td>Not shown</td>
<td>Not shown</td>
<td>Very small, BM-like</td>
<td>Small FBM-like</td>
<td>Small FBM-like</td>
<td>FBM and FLE</td>
<td>FBM and FLE</td>
</tr>
</tbody>
</table>

Table 1 Comparative overview of several recent (last decade) experimental SPT and simulations-based datasets, with their typical MSD and TAMSD scaling relations (at short and long time), the aging dependence of the TAMSD on the trajectory length, the observed scatter/dispersion of individual TAMSD realizations computed at short lag times, the degree of polydispersity of the tracer particles, the general form of the ACF, and the tentative mathematical model(s) of diffusion. These quantities are organized in the columns of the table. The entries are ordered in blocks separated by delimiters reporting the FBM-like experimental, SBM-like experimental, SBM-like simulational, and, finally, FBM–SBM-mixed studies as well as hybrid-model-based dynamics. A system with weak ergodicity breaking features MSD(D) ≠ TAMSD(D) at short lag times.
Table 1 (continued)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MSD, (\langle x^2(t) \rangle)</th>
<th>TAMSD, (\langle D(t) \rangle)</th>
<th>Aging of (\langle D(t, T) \rangle)</th>
<th>Scatter of (\langle D(t) \rangle)</th>
<th>Polydispersity of tracers</th>
<th>Form of the ACF</th>
<th>Model of diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 103, exper.(^{ab})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 4, exper.(^{ab})</td>
<td>Not specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 140, exper.(^{bc})</td>
<td>Not shown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 19, exper.(^{bf})</td>
<td>MSD((\Delta)) (\approx) TAMSD((\Delta))(^{bf})</td>
<td>({\chi \Delta^{0.90}, \chi \Delta^{0.86}, \chi \Delta^{0.92}})</td>
<td>Not studied</td>
<td>Medium ({\approx 1, \approx 1.5, \approx 1}) decades for {Nav1.6, Kvh1.4, CD4}</td>
<td>Medium to large(^{aw})</td>
<td>Not studied</td>
<td>FBM or RWF(^{aw})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{(short times)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 10, exper.(^{by})</td>
<td>MSD((\Delta)) (\approx) TAMSD((\Delta))(^{by})</td>
<td>({\chi \Delta^{1.35}, \chi \Delta^{1.3}, \chi \Delta^{1.26}}) (\text{(interm. times)})</td>
<td>Not shown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{(short times)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 70, exper.(^{cl})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 16, simul.(^{cn})</td>
<td>(\chi \Delta^{1}) (\text{(short times)}), (\chi \Delta^{0.5}) (\text{long times})</td>
<td>(\chi \Delta^{0.44}) (\text{(short times)}), (\chi \Delta^{0.5}) (\text{long times})</td>
<td></td>
<td>Medium ({\approx 1.5}) decades</td>
<td>Not presented</td>
<td></td>
<td>FBM-(^{co}) CTRW hybrid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 219, simul.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 57, simul.(^{cw})</td>
<td>(\chi \Delta^{0.84\pm0.05}) (\text{(all times)})</td>
<td>(\chi \Delta^{0.95\pm0.05}) (\text{(all times)})</td>
<td>(\chi \Delta^{0.97+0.05}) (\text{(all times)})</td>
<td>(\chi \Delta^{0.97+0.05}) (\text{(all times)})</td>
<td>Medium to large(^{aw})</td>
<td>Not presented</td>
<td>BM with (p_y(D)f^{aw})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ref. 168 and 169, exper.(^{cz})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>MSD, (\langle x^2(t) \rangle)</th>
<th>TAMSD, (\langle \phi(S) \rangle)</th>
<th>Aging of (\langle \phi(S) \rangle)</th>
<th>Scatter of (\phi(S))</th>
<th>Polydispersity of tracers</th>
<th>Form of the ACF</th>
<th>Model of diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 58 and 63, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>Not presented(^{de})</td>
<td>None</td>
<td>Not analyzed</td>
<td>Underdamped SBM</td>
</tr>
<tr>
<td></td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0, x > 0))</td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0, x > 0))</td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0, x > 0))</td>
<td>None</td>
<td>Not analyzed</td>
<td>Underdamped SBM</td>
<td></td>
</tr>
<tr>
<td>Ref. 58, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short and intern. times)</td>
<td>Very small, SBM-like</td>
<td>None</td>
<td>Not shown</td>
<td>Ultraslow underdamped SBM</td>
</tr>
<tr>
<td></td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0))</td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0))</td>
<td>(\propto A^2) (long times, (A \gtrsim \tau_0))</td>
<td>None</td>
<td>Not analyzed</td>
<td>Underdamped SBM</td>
<td></td>
</tr>
<tr>
<td>Ref. 94, simul.</td>
<td>See Table 1 in ref. 94</td>
<td>See Table 1 in ref. 94</td>
<td>(\propto e^{2\alpha t} / T^{\alpha_h})</td>
<td>Small-to-moderate, (\tilde{z})-dependent</td>
<td>None</td>
<td>Not studied</td>
<td>Exponential SBM</td>
</tr>
<tr>
<td>Ref. 94, simul.</td>
<td>See Table 1 in ref. 94</td>
<td>See Table 1 in ref. 94</td>
<td>(\propto \log[T]) (^{2+h})</td>
<td>Small</td>
<td>None</td>
<td>Not studied</td>
<td>Logarithmic SBM</td>
</tr>
<tr>
<td>Ref. 220, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Confined SBM</td>
</tr>
<tr>
<td>Ref. 92, simul.</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>None, (\propto 1/T^0) Small-medium ((\approx 0.5 \text{ decades}))</td>
<td>None</td>
<td>Not studied</td>
<td>FBM-like(^ {do}) FBM-DD</td>
</tr>
<tr>
<td></td>
<td>(\propto A^2) (long times, (1/2 < H))</td>
<td>(\propto A^2) (long times, (1/2 < H))</td>
<td>(\propto A^2) (long times, (1/2 < H))</td>
<td>None, (\propto 1/T^0) Small-medium ((\approx 0.5 \text{ decades}))</td>
<td>None</td>
<td>Not studied</td>
<td>FBM-DD</td>
</tr>
<tr>
<td>Ref. 48, simul.</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Underdamped FBM</td>
</tr>
<tr>
<td></td>
<td>(\propto A^2) (long times)</td>
<td>(\propto A^2) (long times)</td>
<td>(\propto A^2) (long times)</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Confined FBM</td>
</tr>
<tr>
<td>Ref. 45 and 46, simul.</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Reset SBM</td>
</tr>
<tr>
<td>Ref. 222, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (0 < H < 1/2))</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Reset SBM</td>
</tr>
<tr>
<td></td>
<td>(\propto A^2) (long times, (A > 1/\tau_0))</td>
<td>(\propto A^2) (long times, (A > 1/\tau_0))</td>
<td>(\propto A^2) (long times, (A > 1/\tau_0))</td>
<td>Not studied</td>
<td>None</td>
<td>Not studied</td>
<td>Reset SBM</td>
</tr>
<tr>
<td>Ref. 154, simul.</td>
<td>(iMSD(A) = TAMSD(A)^{\phi_{\text{SB}}})</td>
<td>(iMSD(A) = TAMSD(A)^{\phi_{\text{SB}}})</td>
<td>(iMSD(A) = TAMSD(A)^{\phi_{\text{SB}}})</td>
<td>None, (\propto 1/T^0) Small-medium ((\approx 0.5 \text{ decades}))</td>
<td>None</td>
<td>Not studied</td>
<td>Stationary reset FBM</td>
</tr>
<tr>
<td>Ref. 95, simul.</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>(\propto A^2) (short times)</td>
<td>Not reported</td>
<td>None</td>
<td>Not reported</td>
<td>CTRW with RWF</td>
</tr>
<tr>
<td></td>
<td>(\propto \log(t)^{\alpha_m})</td>
<td>(\propto \log(t)^{\alpha_m})</td>
<td>(\propto \log(t)^{\alpha_m})</td>
<td>Not reported</td>
<td>None</td>
<td>Not reported</td>
<td>Exponential HDP</td>
</tr>
<tr>
<td>Ref. 223, simul.</td>
<td>(\propto x^{\gamma} + 2D_{\text{log}}(x_0) \times t^1)</td>
<td>(\propto x^{\gamma} + 2D_{\text{log}}(x_0) \times t^1)</td>
<td>(\propto x^{\gamma} + 2D_{\text{log}}(x_0) \times t^1)</td>
<td>(1/T^{\alpha - \beta}) Present, not studied</td>
<td>None</td>
<td>Not reported</td>
<td>Medium-to-large(^ {e})</td>
</tr>
<tr>
<td>Ref. 223, simul.</td>
<td>(\propto A^2) (1/(2-\beta))</td>
<td>(\propto A^2) (1/(2-\beta))</td>
<td>(\propto A^2) (1/(2-\beta))</td>
<td>(1/T^{\alpha - \beta}) Present, not studied</td>
<td>None</td>
<td>Not reported</td>
<td>Medium-to-large(^ {e})</td>
</tr>
<tr>
<td>Ref. 91, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>Medium-to-large(^ {e})</td>
<td>None</td>
<td>Not reported</td>
<td>Medium-to-large(^ {e})</td>
</tr>
<tr>
<td>This study, simul.</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>(\propto A^2) (short times, (A < 1/\tau_0))</td>
<td>Medium-to-large(^ {e})</td>
<td>None</td>
<td>Not reported</td>
<td>Medium-to-large(^ {e})</td>
</tr>
</tbody>
</table>
1 a. Dataset on nonergodic subdiffusion of chromosomal loci in live bacterial cells.
2 b. With distributed $p(K)$ and $p(β)$ in the short-lag-time fit (4).
3 c. Diffusion of a fictitious zipping fork along a polymer chain undergoing a Rouse dynamics, as studied by computer simulations.
4 d. The decay of the negative part of the ACF for the subdiffusive dynamics, with the tail scaling $χ^{2H-2} = α^{-1.12}$, observed in these simulations is consistent with the FBM-based exponents of the MSD growth as well as with the growth of the variance $σ^2$ of the detected PDF, namely $σ^2(t) \propto t^{2H} - MSD(t)$.
5 e. The SPT-microscopy dataset on and the statistical analysis of diffusion of lipid granules in fission-yeast cells.
6 f. Telomere diffusion in mammalian U2OS cancer cells.
7 g. Ergodic model of polymer dynamics; with the observed irreproducibilities of the TAMS diffusion coefficients (with ca. 20 times variation) attributable to inhomogeneities of the diffusion environment and to variabilities of local chromosome organization.
8 h. SPT dataset on the dynamics of telomeres in the nucleus of mammalian U2OS osteosarcoma cells.
9 i. A typical size of telomeres is 50 to 100 nm.197
10 j. See also ref. 198 for an independent confirmation of the FBM model for this dataset based on the statistics of tracer increments and the generalized ξ-variation test.
11 k. Statistical analysis and SPT in vivo measurements of diffusion of telomere in 3T3 mouse embryonic fibroblasts cells.
12 l. After the correction terms due to the effects of measurement noise were taken into account. This has improved the initial assessment of the TAMS growth with $χ \propto t^{1.2}$ at short and $χ \propto t^{0.8}$ at long lag times (in a heterogeneous population of tracers and noisy original data).
13 m. SPT dataset on subdiffusion of fluorescent beads (50 nm in diameter) in artificial crowded fluids, such as sucrose and dextran.
15 o. Dataset on tracking of avian predators to study the statistics of their slow-dynamics area-restricted search patterns and of directed, nearly ballistic commuting paths.
17 q. Note that fitting the MSD growth at short times (typical for the SPT-data analysis) would yield significantly smaller MSD and TAMSID scaling exponents of this mode.
18 r. Heterogeneities in the size distribution of tracked animals, in specific terrestrial Beschaffenheiten, as well as in individual behavioral traits can affect the degree of the TAMSID spread observed20,200,201 in each mode of the spreading dynamics.
19 s. Note, however, the change in the detected MSD scaling behavior.
20 t. Molecular-dynamics-based large-scale computer simulations of diffusion of lipids and proteins in pure/noncrowded lipid membranes.
21 u. The MSD behavior was not reported in ref. 203 and 204, mainly employing sliding averaging (TAMSID and mean TAMSID). For the case of a homogeneous system in the liquid-disordered state the MSD-to-MSD decay in scaling and magnitude was confirmed by computer simulations at short-to-intermediate times (0.01...10 ns, where the results of ensemble averaging were still reliable)[J.-H. Jeon, personal communication, 2022]. For diffusion of cholesterol in lipid membranes as well as for the lipid dynamics in the gel-phase lipid systems—where the spread of the TAMSID becomes significant, see Fig. S8 and S12 (ESI) in ref. 203—the MSD-to-TAMSID equivalence—being a prerequisite of the FBM- and FLE-based model descriptions—was not confirmed in simulations.
22 v. Although for diffusion in noncrowded membranes no aging was observed, under the crowded conditions some diffusing lipids did rarely display trapping events on their entire trajectories. This fact not only produced a significantly larger individual-TAMSID spread, but also resulted in aging of the TAMSID and a slower than expected11,12 $EB \sim 1/T$ decay of the ergodicity breaking parameter with the trace length T (see Fig. 8 in ref. 204). No aging was however observed after averaging over all diffusing particles[M. Javanainen, personal communication, 2022]. Large-scale computer simulations of lateral diffusion of lipids in lipid membranes.
23 w. Purely ballistic initial diffusion with the exponent $β = 2$ was not observed at short times in simulations[M. Javanainen, personal communication, 2022]. Large-scale computer simulations of lipid diffusion in membranes.
24 x. Two-dimensional SPT dataset of diffusion of insulin granules in live MIN6 cells.
25 y. The granules are ca. 250...350 nm in diameter.
26 z. FBM subordinated to CTRW [responsible for distributed waiting times of binding-unbinding events of the granules] is described in the supplement of ref. 96, see also ref. 95 for CTRW and RWF.
27 aa. SPT dataset of both ergodic and nonergodic anomalous-diffusion dynamics of Kv2.1 potassium channels in the plasma membrane.
28 ab. Examination of the SPT dataset on diffusion of chromosomal loci in the presence of particle-localization uncertainties.
29 ac. After both static and dynamical errors were taken into account, see Fig. S3 in ref. 142.
30 ad. Examined both in terms of the minimum of and the overall form of the ACF, for H in close agreement with the inferred MSD exponents.
31 ae. Static SPT-localization errors206 due to photon statistics and the dynamical errors due to finite exposure times [motion blur] were examined i.e. in ref. 142 in their effects onto the short-time MSD behavior and the ACF features for subdiffusive FBM-like motion. The minimum of the ACF becomes shallower at larger time shifts $δ$ for static errors contributing to the data, corroborating a less subdiffusive MSD exponent at later times [and the up-shift of short-time MSD]. In the presence of dynamical localization errors, in contrast, the ACF minimum goes down for larger $δ$ shifts, consistent with a more subdiffusive MSD exponent at later times [with the short-time MSD acquiring a downward shift] for FBM-like diffusion. For a confined diffusion, the same downward shift of the ACF negative peak at later time-lags is found, see ref. 207. Reexamination of the conclusions on the inferred anomalous exponents and the extent of the region of subdiffusion for a number already studied SPT datasets[i.e., some from this table] regarding the effects of localization errors—either unknown, considered not important, or neglected in the original studies—would thus be both comparatively compelling, especially for the datasets yielding low magnitudes of the short-time TAMSIDs, time-varying TAMSID scaling exponent from a transiently subdiffusive to a more “normal” behavior, or featuring confined/adsorbed states with the internal dynamics of the tracers to be inferred.
32 af. SPT experiments of QDs in the cytoplasm of living mammalian HeLa cells.
33 ag. With the precise form of the ACF, including the depth of its minimum due to subdiffusion, being in full correspondence with the theoretical FBM-based prediction for the exponent $2H$ as determined from the TAMSID-evolution data.
34 ah. Intermittent and heterogeneous FBM—with alternations between the two states characterized by different tracer mobilities—describes the data. Such dichotomous switching also gets reflected in the two states visible in the PDF (as, e.g., in ref. 163).
35 ai. SPT dataset on motor-driven highly superdiffusive active motion of endogenous intracellular particles in the amoeboid cells of Acanthamoeba castellanii.
36 aj. SPT dataset of diffusion of transmembrane parts of the HIV-splice proteins in the plasma membrane of immune T-cells. The mean over the TAMSDs of the trajectories was computed in each of 30 T-cells in the dataset is computed here, see ref. 27 for the detailed statistical analysis [complementary to that presented in ref. 1].
37 ak. With transient and permanent clusters of the traced proteins being possible.
38 al. The computed ACF3 is reminiscent of that of subdiffusive FBM. Note, however, that for slow- and medium-mobility subpopulations the depth of the initial dip [indicative of the degree of anticorrelations for FBM and RWF] does not change with the time shift, whereas for the fast subpopulation this minimum becomes deeper at later times (compare to the opposite trend observed in ref. 16).
39 am. SPT dataset and the analysis of anomalous diffusion of network elements of the endoplasmic reticulum.
40 an. With the depth of the ACF minimum increasing measurably as longer time-intervals $δ$ are being used in the ACF analysis.
41 ao. With the distributed diffusivities $p(K)$ and skewed Rayleigh-like distribution of the TAMSID exponent, $p(β)$.
42 ap. SPT dataset and the statistical analysis of the nonergodic dynamics of membrane proteins on the somatic surface of hippocampal neurons.
43 aq. Approxiately, in magnitude and exponent [for the entire length of the recorded traces]. A nearly ergodic dynamics was observed after the removal of immobilized segments of the trajectories, whereas prior to that the strongly subdiffusive periods of motion yielded MSD $> TAMSID$ and also disparate anomalous scaling exponents.203
44 ar. These mean scaling exponents were computed after removing...
strongly subdiffusive parts of the trajectories (bound tracers), based on the evaluated time-local TAMSD exponents.

With FBM and power-law diffusion of nanoclusters by the tracer molecules.

diffusion remains to be understood.

See the detailed discussion in ref. 8 on implications of various preset conditions for a SPT dataset, specifically, for the effects of [distributed, minimal/maximal, etc.] trajectory lengths, the number of fitting points used for assessing the TAMSD exponents for individual SPT time series (see also ref. 142, 199 and 208–210), polydisperse tracer particles and heterogeneous environments (see also ref. 211), etc.

The uniformity of the published TAMSDs reporting transient superdiffusion of polydisperse particles was quite pronounced. The same system as for ref. 111. Typical model might also be a plausible alternative.

With distributed and negatively correlated Kp and β values.

With the power-law distribution of the tracer-environment immobilization times, ϕ(τ) ∼ 1/τγ−1, with large variabilities of the particle mobilities realized for 0 < γ < 1.

Tracking of membraneless organelles (p-granules) in single-cell state of Caenorhabditis elegans embryos.

For subdiffusive, nearly normal, and superdiffusive subpopulations of p-granules, respectively.

With the characteristic ACF features expected for the respective values of FBM exponents of tracer subpopulations, see footnote bc.

Broadly distributed and strongly positively correlated trajectory-specific generalized TAMSD transport coefficients with the distribution p(Kp) and TAMSD scaling exponents with the distribution p(β) were observed,140 alike in ref. 8.

SPT trajectories and statistical analysis of diffusion of endosomes in a heterogeneous media inside living eukaryotic cells, with the tracers displaying switching between persistent and anti-persistent modes of motion.

In magnitude and exponent at intermediate times, whereas at short times a leveling off of the MSD and TAMSD curves is observed [see also footnote ag].

For slow subpopulation, all tracers, and fast tracers, respectively.

But not studied in detail in ref. 19. The short-time values of the MSDs and TAMSDs for the trajectories with T > 2 s are larger than those for a subset of traces with T > 8 s.

Dependent on the number of fitting points used to extract the generalized diffusivities and scaling exponents from the source data [N. Korabel, personal communication, 2022], see also the discussion in ref. 6 and 8. The transport coefficients and scaling exponents were found to be strongly positively correlated.

With a pronounced negative peak for a slow subpopulation of the tracers.

The heterogeneity was observed in experiments and achieved in the accompanying computer simulations of a subdiffusive FBM in terms of particular distributions of trace lengths ϕ(τ) ∝ T−1.05 and diffusion coefficients D(τ) ∝ τ−0.6 among the trajectories. These distributions can, e.g., yield the MSD function surprisingly decreasing with diffusion time, see Fig. 2a and 4 in ref. 19 [N. Korabel, personal communication, 2022]. How much bias such hard-to-control—but SPT-experimental-conditions-predisposed and thus inevitable (see also the discussion in ref. 8)—distributions of the trace lengths, particle mobilities, medium heterogeneities, etc. have on the results, conclusions, and interpretation of numerous existing/published SPT datasets regarding, first and foremost, the temporal duration and actual degree of anomalous diffusion remains to be understood via a thorough and comparative analysis of the effects of systematically varied ‘preparatory’ conditions and in the data-analysis parameters of various SPT datasets.

SPT dataset of nanosized-tracers diffusion in the cytoplasm of mammalian cells and the statistical analysis of particle-medium interactions and medium heterogeneities.

As other statistical properties—such as TAMSD aging or ACF—were not studied, an interpolation of these data in terms of FBM-SBM model cannot be excluded too.

The same system as for ref. 111.

Variable MSD scaling exponents, depending on the concentrations of the extracellular matrix.

A broad spread of the TAMSDs for individual trajectories is detected, reflecting rather broad distributions of times of persistent motion and of migration speeds of the cells [L. Jaffred, personal communication, 2022].

A double-exponential decay of the observed ACF was proposed (rather than a single-exponent decay, as for standard PRWs120), with the characteristic decay times varying with the penetrability of the diffusion matrix. Fitting the ACF with superdiffusive-FBM-like functional form might also be a plausible alternative.

With different persistent times along the main and auxiliary direction of cell motion. Distinct subpopulations of the cancer cells—under the persistent time of about 15 minutes and a much more persistent subpopulation (superspreaders)—were detected, underlying a heterogeneity of the cells’ proliferation properties.

SPT dataset reporting transient superdiffusion of polydisperse vacuoles in motile amoeboid cells of Acanthamoeba castellanii.

The mean TAMSD is somewhat subdiffusive at short times (see footnotes ag and eb for possible reasons) and it turns superdiffusive at intermediate lag times, closely matching the MSD in these time domains.

With broad distributions of p(Kp) and p(β). The trajectory-specific diffusivities and scaling exponents are strongly positively correlated at the early stage of the TAMSDs of vacuoles and (surprisingly, see also footnote bl) reverting this behavior into pronounced anticorrelations of Kp and β at the late stages of vacuole diffusion.

With a division of the time series into subpopulations corresponding to small, medium, and large vacuoles being performed in the analysis.

With the FBM-commensurate behavior of the velocity-ACF in the region of short-time subdiffusion and intermediate-time superdiffusion of vacuoles.

SPT dataset on diffusion of histone-like nucleoid-structuring H-Ns proteins in living cells of Escherichia coli.

With power-law distributed diffusivities of the trajectories, with p(Kp) ∝ Kp(1.94±0.07), see also footnote bl and ref. 89. The measured diffusivities and scaling exponents increase as the length of bacteria grows for older cells (being divided into 3 cell-length subpopulations in the analysis), being supported by the measurements of their more fluidized cytoplasm.

With the measured distribution of the number of proteins per protein cluster being P(n) ∝ nγ, with p ≈ 0.95.

With widely distributed tracer sizes and mobility parameters.

SPT dataset and the statistical analysis of tracer diffusion in mucin hydrogels at varying pH.

The physical age of samples was not precisely controlled and the trajectory-length-variations of the computed TAMSD magnitudes were not measured.

Depending on the pH values, the ACFs are, respectively, BM-, subdiffusive-FBM-, and BM-like.

FBM was shown to dominate the results of the Bayesian model-assessment analysis at all pH values used in the experiments,163 with the distribution p(Kp) and p(β) among the trajectories of the tracers.

SPT dataset of nonergodic diffusion of receptor molecules on living-cell membranes.

The diffusion model based on the overdamped Langevin equation with diffusion coefficients distributed along each trajectory according to a Gamma-distribution p(D) ∝ Dα−1e−D/2b, and with the exponentially distributed transit times was used to rationalize the experimental data.

All-atom supercomputer simulations and the statistical analysis of diffusion of doxorubicin drug molecules in silica nanoslits.
Published on 07 June 2022. Downloaded on 8/10/2022 4:00:01 PM.

Paper

18494 | Phys. Chem. Chem. Phys., 2022, 24, 18482-18504

View Article Online

But with the dip of the ACF becoming shallower for longer time shifts \(\delta\), see Fig. 14 in ref. 16, as compared to the constant depth (10) for FBM.

2) SPT dataset of diffusion of rhodamine molecules in water nanofilms on hydrated silica surfaces at varying humidity levels.

3) Apart from a relatively small TAMSD decrease/aging present for very short trajectories, irrespective of the degree of subdiffusion.

4) The heterogeneities of the diffusion environment in terms of the strength of the adsorption sites were however pronounced.

5) The depth of the ACF negative peak decreases measurably at higher humidities (see Fig. S2 of ref. 218) corroborating the accompanying transition from subdiffusion to nearly normal diffusion observed for the MSD and TAMSD.

6) Molecular-dynamics simulations of laterally diffusing M2-receptor proteins (at infinite dilution) in a hydrated mixed lipid membranes (with up to 50 percent of cholesterol).

7) The velocity-ACF reflected the MSD behavior, with a region of negative correlations at \(\approx 10\ldots50\) ps for diffusing proteins. The velocity-ACF- and the MSD-behaviors for lipids were also similar, with the respective regions of the dynamics shifted earlier by about one order of time.

8) A model of this equation with specific memory kernels was used to describe the crossovers in protein diffusion from the short-time ballistic, to the intermediate-time strongly subdiffusive, and, ultimately, to the long-time Brownian behavior of the MSD.

9) Particle-collisions and events-based large-scale computer simulations of the dynamics in a free-cooling granular gas.

10) Particles of the same size were used in simulations [A. Bodrova, personal communication, 2022].

11) With the MSD exponent being \(z = 1/6\) and time-dependence of the temperature being \(T(t) \propto 1/t^{3/2}\), as recently confirmed experimentally.190 The MSD and TAMSD for the data190 regarding the applicability of the SBM model were not analyzed, as the tracers were not tagged rendering a time-series-based analysis impossible [M. Sperl, personal communication, 2022].

12) Water diffusion and \(D(t)\) time-dependent diffusion coefficients in the brain tissues.

13) Possibly, SBM-like short-time diffusion is realized. In diffusion-magnetic-resonance imaging, the diffusion coefficient is measured and commonly reported as \(D(t) = \langle x^2(t)/2\rangle\). If one defines the instantaneous diffusion coefficient as \(D_{\text{in}}(t) = \langle \dot{x}^2(t)\rangle/\langle 2\dot{x}(t)\rangle\), then at long times \(D_{\text{in}}(t) = D_{\text{w}} + \text{Const} \times t^{-3}\), where \(\dot{x} = p + d/2\) is the exponent of temporal correlations [here \(p\) is the structural exponent and \(d\) is the system dimensionality].165 This SBM-like dependence of \(D_{\text{in}}(t) - D_{\text{w}}\) describes a correction to the asymptotically normal, Gaussian diffusion with the bulk diffusivity \(D\) [D. Novikov, personal communication, 2022].

14) Theory and computer simulations of the overdamped Langevin equation with the diffusivity \(D(t) \sim 1/(1 + t/\tau_a)\).

15) Expected to be SBM-like.

16) Theory and simulations of the overdamped Langevin equation with the time-varying temperature \(T(t) \sim \left(1 + t/\tau_a\right)^{-\frac{1}{2}}\) the damping coefficient \(\gamma(t) \sim \sqrt{T(t)}\), and the diffusivity given by the time-dependent Einstein relation, \(D(t) \sim T(t)/\gamma(t)\).

17) Expected to be small and SBM-like.

18) SBM for massive particles in the case \(z = 0\).

19) Stochastic computer simulations of both massless and massive particles with exponentially time-varying diffusivity, \(D_{\text{exp}}(t) = D_{\text{exp}}(t)\).

20) For massless particles with \(D_{\text{exp}}(t) \propto e^{-\frac{t}{\tau}}\), see eqn (A27) in ref. 94.

21) For massless particles with \(D_{\text{exp}}(t) \propto e^{-\frac{t}{\tau}}\), see eqn (B22) in ref. 94.

22) As in footnote 20, but for the diffusion coefficient varying logarithmically in time, \(D_{\text{log}}(t) = D_{\text{log}}(t)\).

23) For massless particles, see eqn (C36) in ref. 94.

24) Computer simulations and the theoretical analysis of SBM confined in a parabolic potential, \(U(x) = kx^2/2\).

25) Theory and computer simulations of renewal Poissonian-reset SBM with exponentially distributed waiting times between the reset events \(\psi(t) = e^{-rt}\) in the model of overdamped Langevin equation [here \(r\) is the reset rate].

26) Stochastic computer simulations of the FBM-DD system of equations in the overdamped regime.

27) AFC was not shown in ref. 92, but checked by us later via computer simulations [results not shown].

28) Simulations of the underdamped Langevin equation (particle mass \(m\) driven by fractional Gaussian noise).

29) The dispersion of individual TAMSDs for massive FBM decreases with \(T\) as for standard FBM, see footnote 2b. In addition, for the particles of small-to-intermediate masses at short lag times48 \(EB(m) \propto m^{1/4}\) for \(0 < H < 3/4\) and \(EB(m) \propto m^{1-4H}\) for \(1 > H > 3/4\).

30) Simulations of the overdamped Langevin equation driven by fractional Gaussian noise and confined to an interval \([-L, L]\) we refer the reader also to ref. 137, 138 and 221 where non-Gaussian PDFs of the boundary-reflected FBM were observed, with depletion and accumulation of particles near the wall for reflected sub- and superdiffusive FBM, respectively.

31) With the spread of the short-lag-time TAMSDs decreasing dramatically for smaller confining intervals. The ergodicity-breaking parameter EB at short lag times decreases with the trace length \(T\) as EB(T) \(\propto 1/T\) for \(0 < H < 3/4\) and as EB(T) \(\propto 1/T^{1-3H}\) for \(1 > H > 3/4\).

32) The same as in ref. 220, but for Poisson-reset FBM.

33) For strongly subdiffusive initial FBM the spread of TAMSDs of reset FBM is very small (FBM-like), while for strongly superdiffusive reset FBM it can reach 1–2 decades, see Fig. 2 and 13 of ref. 222. The TAMSD dispersion of frequently reset superdiffusive FBM, in addition, depends reciprocally on the respective ergodicity-breaking parameter31 computed at short lag times decreases as EB(T) \(\propto 1/T\), see Fig. 4 and 5, and of ref. 222.

34) The same as in ref. 222, but with Poisson-reset FBM considered in the stationary regime.

35) The increment-MSD computed in the nonequilibrium steady state equals the mean TAMSD at short times (both for sub- and superdiffusive FBM exponents) as well as at long times in the TAMSD-plateau region, restoring the ergodicity, as compared to the results of ref. 222.

36) Provided the reset process is stationary and the trajectory length is much longer that the relaxation time.

37) Theory and simulations of heavy-tailed subdiffusive CTRWs as subordinated walks on fractal structures (CTRW and RWF). The PDF of waiting times is \(\psi(t) \sim t^{-1-\gamma}\), the MSD is \(\langle x^2(t)\rangle \sim t^{2(\beta-1)/\gamma}\), and the short-lag-time TAMSD growth is \(\langle T(t)\rangle \sim t^{2(\beta-1)/\gamma}\).

38) The TAMSD thus resembles that of FBM-SBM, being nonlinear in \(\Lambda\) and featuring a CTRW-like aging behavior for \(T\), with the exponents of the source processes of CTRW and RWF entering the exponent of the MSD of the resulting process also multiplicatively, as in SBM-HDP\(^{91}\) and FBM-HDP.\(^{93}\)

39) Diffusion of the massless particles with the diffusivity varying exponentially in space, \(D_{\text{exp}}(x) \sim e^{-x^2}\).

40) At long times, after the relaxation of the initial conditions, \(x_0 = x(0)\).

41) Subdivision of the entire ensemble of trajectories into two subpopulations with distinctly different growth of the TAMSDs with the lag time \(T\). Scalings are valid both at short and long lag times.

42) Large scatter of the TAMSDs of 2–3 decades for large negative \(x_0\) values (in the region of exponentially high diffusivity) and vanishing scatter of the TAMSDs (with very low overall magnitudes) for large positive \(x_0\) values.

43) The same as in footnote 2b, but for logarithmically varying diffusivity, \(D_{\text{log}}(x) \sim \log([x]/\hat{x}^2) + 1\).

44) The scatter of 1–4 decades decreases for larger initial positions \(x_0\), where the space-variation of the diffusivity \(D_{\text{log}}(x)\) is progressively smaller.

45) Stochastic simulations of the SBM–HDP-related overdamped Langevin equation.

46) A HDP-like ACF is expected, which itself is reminiscent of the ACF of FBM, see Fig. C1 in ref. 67, with the HDP subdiffusive exponent of the MSD \(2/(2 - \alpha) < 1\) corresponding to the Hurst exponent 2H < 1.

47) With the space-time dependence of the diffusivity of the form \(D(x, t) \sim |x|^b t^{2(b - 1)/2\alpha}\) and \(p(\tau) = \tau/(2 - \alpha)\).

48) Note that such power-law \(D(x, t)\) was proposed, e.g., to rationalize data on diffusion laws in turbulence,\(^{90,124}\) the scaling of the first moment of the probability density function is fast \((x^2)^b \sim \tau^{-2}\) for a pair of molecules,\(^{225,226}\) Power-law-like \(D(x)\) were also employed to describe animal dynamics.\(^{237}\)

49) Stochastic simulations of the overdamped FBM–HDP Langevin equation.

50) Stochastic simulations of the SBM-SBM-related overdamped Langevin equation.
The second example of a physical system amenable for the SBM description is nonergodic diffusion of particles in free-cooling granular gases, see Table 1. Nonelastic collisions of particles/constituents in such gases lead to energy dissipation and, as a result, the effective temperature of the environments decreases in accord with (12), along with the particle diffusivity. Note, however, that for a cooling gas of rapidly aggregating particles the standard Haff temperature law $T_p(t) = T_0(1 + t^2/4)\Delta$ can be inverted yielding an increasing—rather than decreasing—energy of an aggregate particle in time, as advocated recently.

Lastly, for the experiments on fluorescence recovery after photobleaching in the presence of passive and active particle motion the effective diffusion coefficient has, e.g., a time-dependent correction $D(t) = D(1 + \nu^2(t)/4D)\Delta$ to yield the MSD $\langle x^2(t)\rangle = 4D(t)\times t = 4Dt + \nu^2t^2$. Diffusion of BM-tracers in expanding or contracting media (like our Universe) produces a time-space-rescaled stochastic...
process similar to SBM (in terms of its long-time MSD). Generally, the spreading kinetics slowing down in time—as, e.g., in the polymerization or aggregation reactions of polymers—where the diffusivity drops with the typical particle size [e.g., in a Stockesian ∝ 1/size fashion] and with diffusion time—can potentially be considered as SBM with a power-law (or more complicated) functional forms for \(D(t) \).

The FBM–SBM process introduced here enriches the armamentarium of anomalous-diffusion processes applicable to the description of SPT datasets. Some “paradoxical” features of nonstationary SBM coupled to a power-law decaying memory of FBM yields a so-called scaled-fractional process of FBM–SBM, certain characteristics of which are unveiled in the present study. The combination of SBM and FBM yields a nonlinear-in-lag-time FBM-like growth of the TAMSD and the presence of aging for FBM–SBM is reflected in the SBM-like dependence of the TAMSD magnitude [at short lag times] on the trajectory length, eqn (25). The MSD exponent for FBM–SBM is the “sum” of the SBM and FBM scaling exponents. The magnitude and scaling relation of the MSD are disparate from those of the TAMSD and, thus, FBM–SBM features weak ergodicity breaking.

These two essential attributes—nonequal scaling exponents of the MSD and TAMSD as well as a pronounced aging of the TAMSD—are particularly useful (indispensable) when selecting for or envisaging the most appropriate models of anomalous and nonergodic diffusion in a statistical analysis of SPT datasets. For instance, the TAMSD dependencies nonlinear in lag time and TAMSD aging with the trace length as in (25) were observed for diffusion of micron-sized beads in hydrogels of mucin polymers, propulsive chemotaxis-free dynamics of amoeboid cells, diffusion of doxorubicin drug molecules in silica nanoslits, as well as diffusion of gp41 transmembrane proteins in the plasma membranes of surface-adhered immune T-cells. The process of FBM–SBM is thus applicable to nonstationary physical systems with power-law-like varying SBM-like diffusion coefficient and FBM-like memory-containing correlations of particle displacements in successive time steps.

To conclude, paraphrasing the classics, “knowing is not enough, we must apply” the mathematical models of anomalous diffusion to real experimental data to check if really “all models are wrong, but some are useful”. We hope that Table 1—targeting primarily the experimental SPT community—unveils the usefulness of some pure and hybrid mathematical models of anomalous diffusion as examination tools for rationalizing, understanding, and categorizing some relevant and measurable attributes of natural physical

B FBM–SBM

The FBM–SBM process introduced here enriches the armamentarium of anomalous-diffusion processes applicable to the description of SPT datasets. Some “paradoxical” features of nonstationary SBM coupled to a power-law decaying memory of FBM yields a so-called scaled-fractional process of FBM–SBM, certain characteristics of which are unveiled in the present study. The combination of SBM and FBM yields a nonlinear-in-lag-time FBM-like growth of the TAMSD and the presence of aging for FBM–SBM is reflected in the SBM-like dependence of the TAMSD magnitude [at short lag times] on the trajectory length, eqn (25). The MSD exponent for FBM–SBM is the “sum” of the SBM and FBM scaling exponents. The magnitude and scaling relation of the MSD are disparate from those of the TAMSD and, thus, FBM–SBM features weak ergodicity breaking.

These two essential attributes—nonequal scaling exponents of the MSD and TAMSD as well as a pronounced aging of the TAMSD—are particularly useful (indispensable) when selecting for or envisaging the most appropriate models of anomalous and nonergodic diffusion in a statistical analysis of SPT datasets. For instance, the TAMSD dependencies nonlinear in lag time and TAMSD aging with the trace length as in (25) were observed for diffusion of micron-sized beads in hydrogels of mucin polymers, propulsive chemotaxis-free dynamics of amoeboid cells, diffusion of doxorubicin drug molecules in silica nanoslits, as well as diffusion of gp41 transmembrane proteins in the plasma membranes of surface-adhered immune T-cells. The process of FBM–SBM is thus applicable to nonstationary physical systems with power-law-like varying SBM-like diffusion coefficient and FBM-like memory-containing correlations of particle displacements in successive time steps.

To conclude, paraphrasing the classics, “knowing is not enough, we must apply” the mathematical models of anomalous diffusion to real experimental data to check if really “all models are wrong, but some are useful”. We hope that Table 1—targeting primarily the experimental SPT community—unveils the usefulness of some pure and hybrid mathematical models of anomalous diffusion as examination tools for rationalizing, understanding, and categorizing some relevant and measurable attributes of natural physical
phenomena, as gained from the experimental SPT observations as well as from (toy-)model-based in silico studies.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF</td>
<td>Probability-density function</td>
</tr>
<tr>
<td>MSD</td>
<td>Mean-squared displacement</td>
</tr>
<tr>
<td>TAMSD</td>
<td>Time-averaged MSD</td>
</tr>
<tr>
<td>SPT</td>
<td>Single-particle tracking</td>
</tr>
<tr>
<td>BM</td>
<td>Brownian motion</td>
</tr>
<tr>
<td>SBM</td>
<td>Scaled BM</td>
</tr>
<tr>
<td>FBM</td>
<td>Fractional Brownian motion</td>
</tr>
<tr>
<td>FLE motion</td>
<td>Fractional-Langevin-equation motion</td>
</tr>
<tr>
<td>HDPs</td>
<td>Heterogeneous diffusion processes</td>
</tr>
<tr>
<td>CTRW</td>
<td>Continuous-time random walk</td>
</tr>
<tr>
<td>ATTM</td>
<td>Annealed transient-time model</td>
</tr>
<tr>
<td>RWF</td>
<td>Random walk on a fractal</td>
</tr>
<tr>
<td>PRW</td>
<td>Persistent random walk</td>
</tr>
<tr>
<td>DD model</td>
<td>Diffusing-diffusivity model</td>
</tr>
<tr>
<td>QDs</td>
<td>Quantum dots</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
</tbody>
</table>

Conflicts of interest

There are no conflicts to declare.

Appendix A: Auxiliary figures

Here, we present some supplementary plots supporting the claims of the main text.

Acknowledgements

References

Published on 07 June 2022. Downloaded on 8/10/2022 4:00:01 PM.

This journal is © the Owner Societies 2022

34. R. Brown, A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, Philos. Mag., 1828, 4(21), 161–173.

42. A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, CR (Doklady) Acad. Sci. URSS (NS), 1940, 26, 115.

60 M. Balcerk, K. Burnecki, G. Sikora and A. Wylomanska, Discriminating Gaussian processes via quadratic form statistics, Chaos, 2021, 31(6), 063101.
80 J. Masoliver and J. Perello, First-passage and extremes in socio-economic systems, First-Passage Phenomena and Their...

Published on 07 June 2022. Downloaded on 8/10/2022 4:00:01 PM.

This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 18482–18504 | 18503

Paper

PCCP

