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How do different reset protocols affect ergodicity of a diffusion process in single-particle-tracking experi-
ments? We here address the problem of resetting of an arbitrary stochastic anomalous-diffusion process (ADP)
from the general mathematical points of view and assess ergodicity of such reset ADPs for an arbitrary resetting
protocol. The process of stochastic resetting describes the events of the instantaneous restart of a particle’s
motion via randomly distributed returns to a preset initial position (or a set of those). The waiting times of such
resetting events obey the Poissonian, Gamma, or more generic distributions with specified conditions regarding
the existence of moments. Within these general approaches, we derive general analytical results and support
them by computer simulations for the behavior of the reset mean-squared displacement (MSD), the new reset
increment-MSD (iMSD), and the mean reset time-averaged MSD (TAMSD). For parental nonreset ADPs with
the MSD(t)∝ tμ we find a generic behavior and a switch of the short-time growth of the reset iMSD and mean
reset TAMSDs from ∝ �μ for subdiffusive to ∝ �1 for superdiffusive reset ADPs. The critical condition for a
reset ADP that recovers its ergodicity is found to be more general than that for the nonequilibrium stationary
state, where obviously the iMSD and the mean TAMSD are equal. The consideration of the new statistical
quantifier, the iMSD—as compared to the standard MSD—restores the ergodicity of an arbitrary reset ADP
in all situations when the μth moment of the waiting-time distribution of resetting events is finite. Potential
applications of these new resetting results are, inter alia, in the area of biophysical and soft-matter systems.
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I. INTRODUCTION

A. Stochastic resetting and its applications

Stochastic processes under restart have attracted scientific
interest in the statistical-physics community in recent years
[1–4], gaining considerable momentum recently due to a se-
ries of theoretical works [5–23] which uncover a number
of nonintuitive features of various resetting strategies. First,
resetting events drive the system out of “equilibrium” even
though the stochastic process may attain a “stationary state”
at long times, the so-called nonequilibrium stationary state
(NESS). The second feature is that the resetting protocol may
enhance search efficiency in certain first-passage problems.

Resetting has a wide range of potential applications in
(nonequilibrium) thermodynamics [24,25], in the description
of chemical reactions [26,27], for extreme-value statistics
[28,29], behavior of complex networks [30,31], and in
optimal-search problems [9,14,15]. The concepts of stochastic
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resetting are, inter alia, applicable to (for brevity, without
explicit references here) (i) optimization of generic prob-
lems with “‘returns,” (ii) mathematical description of foraging
strategies employed by animals and their movement-ecology
data, (iii) stochastic-switching mechanisms between different
phenotypes in a simple organism, (iv) certain classes of com-
putational search-and-recognition algorithms, (v) description
of principles of eye movements upon perception of art paint-
ings and images, (vi) interrupted/manipulated diffusion of
micron-sized beads in optical traps, and (vii) modeling of
prices of reset- and barrier-type options in financial mathe-
matics.

B. Anomalous diffusion, two types of statistical averaging, and
the concept of ergodicity

Anomalous-diffusion processes (ADPs) under various
stochastic-resetting protocols, intensively studied recently
[10–13,19–22,32–39], bring up potential applications, e.g.,
for the description of data stemming from single-particle-
tracking experiments [40] in the area of biophysics,
soft-matter physics, biochemistry, and (superresolution-)
microscopy imaging. Mathematically, ADPs feature a power-
law growth of the mean-squared displacement (MSD) with
time [41–44],

〈x2(t )〉 = 2Kμtμ. (1)

The MSD exponent μ classifies different subclasses of ADPs:
we distinguish subdiffusion for 0 < μ < 1, superdiffusion for
1 < μ < 2, and hyperdiffusion for μ > 2.
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Often, however, in single-particle-tracking experiments,
the particle trajectories are not numerous and “uniform
enough”—regarding the “environmental conditions” of mo-
tion, dispersion of the tracer sizes, distribution of observation
times, etc. [45]—to construct a satisfactory statistical en-
semble for ensemble-based averaging (1). Often fewer but
long time series xi(t ) are recorded so that the concept of the
time-averaged MSD (TAMSD) is more appropriate for their
quantitative statistical analysis.

The TAMSD is commonly defined as the sliding average
of the squared increments along a single trajectory of the ith
particle of length T , namely [42,44]

δ2
i (�, T ) = 1

T − �

∫ T −�

0
[xi(t + �) − xi(t )]2dt, (2)

where � is the lag time. The concept of ergodicity we im-
plement below—first introduced by Boltzmann [46]—implies
the MSD-to-TAMSD equivalence in the limit of short lag
times and sufficiently long (ideally, infinite) trajectories, ad-
equately sampling the entire phase space and visiting during
time T the phase-space cells in an infinitesimal proximity to
any chosen cell, so that

lim
�/T →0

δ2
i (�, T ) = 〈

x2(�)
〉
. (3)

Averaging over N realizations of a fluctuating variable δ2
i (�),

the so-called mean TAMSD at a given value of � is evalu-
ated from the already computed TAMSDs (2) as an ensemble
average,

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (4)

The degree of reproducibility of individual TAMSD trajec-
tories from one realization of the process to the next is, in
addition to the MSD-to-TAMSD equivalence prescribed by
Eq. (3), another characteristic feature of ergodic diffusion
[44] both for experimental and in silico generated time series.
Hereafter, the angular brackets denote ensemble averaging,
while time-averaged quantities are supplemented with the
overline.

C. Example of reset fractional Brownian motion

As a concrete example of a stochastic process [47], both
normal and ADPs [42–44] can be considered, with a single or
probabilistically distributed reset points [18] and with a preset
distribution of waiting times between the return events. For
instance, fractional Brownian motion (FBM) is a paradigmatic
ergodic ADP [48,49] widely employed to describe experimen-
tal observations of anomalous diffusion on different length-
and timescales. The question we want to address is how var-
ious resetting protocols affect ergodicity of FBM and other
ADPs. The TAMSD of FBM under Poissonian resetting with
the waiting-time density (WTD)

φ(t ) = θ−1e−t/θ (5)

of resetting events—that is the most widely used protocol in
the resetting literature [18]—was first derived in Ref. [20].
The asymptotic growth of the TAMSD at short lag times

� � θ � T was obtained, based on the results of systematic
computer simulations of Ref. [20], in the form〈

δ2
reset(�, T )

〉 ≈ 2Kμ[�μ + (�/θ )1θμ�(μ + 1)]. (6)

Hereafter θ denotes the mean reset-waiting time. To distin-
guish the physical quantities of reset processes we denote
them by the subscript “reset” in Eq. (6) and hereafter. Thus,
at short lag times the 〈δ2

reset(�)〉 has two distinct leading-
order regimes, switching from ∝ �μ growth for subdiffusive
to ∝ �1 growth for superdiffusive parental ADPs. Thus, the
nonequivalence of the reset MSD〈

x2
reset(t )

〉 ≈ 2Kμ�μ (7)

and the reset mean TAMSD (6) at short times was revealed for
superdiffusive FBM, indicative of weak ergodicity breaking
[42,44]; see also Sec. II C. At long times, in the NESS, the
plateau of 〈δ2

reset(�)〉 for reset FBM was shown to be twice
that of the reset MSD [20].

D. Problem formulation and concept of iMSD

Two natural general questions arise. First, does the exis-
tence of such two distinct exponents and switching of the
TAMSD growth for sub- to superdiffusion also stay the same
for other reset ADPs, beyond the model of reset FBM [20]?
Second, what is the effect of the actual resetting protocol
used—with different WTDs implemented, such as Gamma,
Poissonian, power-law, etc.—and what is the mean TAMSD
limit for rare resetting? The latter situation is possible ex-
perimentally when the length of the observed time series is
considerably shorter than the [finite] mean reset time for a
given WTD. In particular, if a given reset ADP does attain
the NESS, how does stationarity affect nonergodicity of reset
trajectories?

For a stationary reset ADP the ergodicity is discussed
below in terms of the new concept of the increment-MSD
(iMSD) defined as

iMSD(t,�) = 〈(xreset(t + �) − xreset(t ))2〉, (8)

where time t is located in the NESS region of the process.
Moreover, for a reset ADP which has not yet reached the
NESS, what is the critical condition for having or restoring
the ergodicity?

Additionally, computing the mean TAMSD of a stochas-
tically reset ADP via integrating the iMSD (8) can often be
difficult. We thus present below an alternative way to avoid
such complicated calculations and obtain an approximate ex-
pression for the mean reset TAMSD in the limit of short lag
times. This limit—where the statistics of time-averaging along
a single time series is most reliable [44]—is the focus of
numerous single-molecule-tracking experiments.

E. WTDs and survival probabilities

We start by introducing the basic concepts used below. A
reset is a sudden transition to a single preselected position;
below this position is chosen xreset = x0 = 0 for simplicity.
The probability-density function (PDF) of waiting times be-
tween two successive reset events is denoted by φ(t ). If the
first moment of reset WTD φ(t ) exits, the mean reset-waiting
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time is given by

〈t〉 =
∫ ∞

0
t ′φ(t ′)dt ′. (9)

The survival probability—namely, the probability of no reset-
ting event occurring until time t—is expressed as

�(t ) = 1 −
∫ t

0
φ(t ′)dt ′ =

∫ ∞

t
φ(t ′)dt ′. (10)

The reset rate or the density of renewals at time t is defined as
[10,38]

κ (t ) =
∞∑

n=1

φn(t ), (11)

where φn(t ) is the PDF of time of the nth resetting event,

φn(t ) =
∫ t

0
φn−1(t ′)φ(t − t ′)dt ′. (12)

In particular, if the reset rate is independent of time—it can,
in general, be a function of the parameters of a given resetting
protocol—one gets κ (t ) = κ.

In this work, we derive the general formulas for stochas-
tically reset ADPs for arbitrary resetting protocols and
demonstrate the iMSD-TAMSD similarity in the case of fre-
quent resetting (finite resetting times) under a weaker and
more general condition than that for the NESS. We verify
these theoretical computations via performing computer sim-
ulations for the two prototypical resetting scenarios involving
the Gamma- and the power-law WTD of resetting events, see
Sec. IV.

Specifically, the distribution of waiting times for the
Gamma-WTD resetting with the parameters α and θ is

φ(t ) = tα−1e−t/θ

�(α)θα
, (13)

with the reset rate independent of time κ (t ) = (αθ )−1. Here
�(α) is the Gamma function and θ is the characteristic time
of Eq. (13). The situation of Poissonian resetting,

φ(t ) = θ−1e−t/θ , (14)

is a special case of the Gamma protocol (13) at α = 1.
For power-law resetting, the WTD with the parameters β

and ρ has the form

φ(t ) = β/ρ

(1 + t/ρ)1+β
, (15)

where ρ is a characteristic time. For β > 1 the mean reset-
waiting time is finite and the reset rate is independent of time,
κ (t ) = (β − 1)/ρ. In contrast, for 0 < β < 1 the waiting time
has an infinite mean and the reset rate is time-dependent,
namely, κ (t ) = tβ−1ρ−β/[�(β )�(1 − β )].

F. Plan of the paper

In this paper, we address these problems from conceptual
viewpoints. The first goal is to derive the general formulas for
the iMSD with the renewal approach. To obtain the respective
TAMSD, one option would be to integrate the iMSD over
time straightforwardly (that is, however, not possible in gen-
eral due to potentially complex forms of the underlying reset

WTD). Alternatively, we propose a timescale-decomposition
approach to obtain the approximate mean-TAMSD expression
in the limit of short lag times. This enables us to reveal the
generic form of the mean TAMSD, with a switching between
the two exponents for arbitrary stationary-increment ADPs
under the conditions of stochastic resetting with arbitrary
reset WTDs. In particular, the ergodicity of reset ADPs in
the NESS as well as at the conditions of a rare-resetting
setup is discussed. In the current work, we use the Gamma-
and power-law-based reset WTDs and verify the analytical
theoretical results by presenting their close agreement with
the results of stochastic computer simulations.

The (rest of the) paper is organized as follows. In Sec. II we
present the renewal-approach results for the iMSD. In Sec. III
we propose the general timescale-decomposition approach to
obtain the mean TAMSD for any ADP and any resetting pro-
tocol. The phenomenon of “restoration of ergodicity” in terms
of the iMSD-to-TAMSD correspondence—as compared with
the formerly obtained [20] MSD-to-TAMSD nonequivalence
for reset FBM given by Eqs. (6) and (7)—for frequent reset-
ting and the switching behaviors of the scaling exponents for
rare resetting of general ADPs is also discussed. In Sec. IV,
the examples for reset FBM are presented and the general
analytical formulas are demonstrated to agree closely with the
results of simulations. In Sec. V the conclusions are drawn
and further discussions are presented.

II. RENEWAL APPROACH FOR THE iMSD

A. General formula

The statistics of increments of a reset ADP xreset(t ) given
by the iMSD (8) are calculated here using the renewal
approach—first proposed in Refs. [2,47] and developed to
resetting-containing problems in Ref. [9]—for an arbitrary
type of the resetting WTD. We consider two time points
t1,2 separated by time � = �12 = t2 − t1, with the posi-
tions of the reset walk xreset(t1) and xreset(t2), and calculate
〈(xreset(t2) − xreset(t1))2〉, where the average is taken over all
possible realizations of the ADP for the fixed time instances
t1 and t2 (the standard ensemble-based average, with no sam-
pling of resetting events being performed). Let us introduce
three additional times: t− is the time of the last renewal pre-
ceding t1, t f is the time of the first renewal after t1, and t+ is the
time of the last renewal preceding t2. Let us use �1 = t1 − t−
and �2 = t2 − t+ as the times elapsed from the last renewal
and prior to the measurement. We use here � = �12 for
simplicity: �12 is related to time t1 that can be nonzero, as
compared to the lag time � in the TAMSD related to the very
start of the time series, t = 0.

Three situations (a, b, and c) for the iMSD as a function of
Ra,b,c—covering all possible arrangements of the reset times
for given values of t1 and t2—are to be distinguished, as illus-
trated in Fig. 1. In the first case (a) t f > t2, i.e., there were no
renewals between t1 and t2, wherein t+ will coincide with t−.
Then the increment of xreset(t ) between t1 and t2 is that of the
pure displacement process featuring stationary increments. Its
mean square, conditioned on the corresponding event, is

Ra = 〈(xreset(t2) − xreset(t1))2〉 = 2Kμ�μ. (16)
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FIG. 1. Schematic of three situations for the iMSD (8) (denoted
by the function Ra,b,c). Three characteristic reset timings t−, t+, and
t f are labeled by the red ticks.

The probability of such a situation is denoted as

Pa(t1, t2) =
∫ ∞

t2

pa(t f |t1)dt f , (17)

where pa(t f |t1) is the PDF of t f conditioned on t1,

pa(t f |t1) = φ(t f ) +
∫ t1

0
κ (t−)φ(t f − t−)dt−. (18)

The first term in Eq. (18) accounts for the case of no resetting
occurring before time t1, while the second one accounts for
the last renewal taking place at t− before t1. The probability
that t f is larger than t2 is then

Pa(t1, t2) =
∫ ∞

t2

p(t f |t1)dt f

=
∫ ∞

t2

φ(t f )dt f +
∫ ∞

t2

dt f

∫ t1

0
κ (t−)φ(t f − t−)dt−

= �(t2) +
∫ t1

0
dt−κ (t−)�(t2 − t−), (19)

where �(t ) is given by Eq. (10).
The case (b) in Fig. 1 corresponds to at least one renewal

between t1 and t2 and there were no renewals prior to t1.
The coordinate of the walker at t1 is xreset(t1) = x(t1) and its
position at t2 is xreset(t2) = x(t2 − t+). For fixed times t1 and t2,
these two coordinates are independent random variables. The
iMSD (8) for case (b) then is

Rb = 2Kμ

[
tμ
1 + (t2 − t+)μ

] = 2Kμ

(
tμ
1 + �

μ
2

)
. (20)

To obtain the corresponding PDF for the case (b), we consider
two situations: If t+ = t f then there is only one reset event
between t1 and t2, whereas if t+ 
= t f then more than one
resetting takes place within the same period. Therefore, the
conditioned PDF corresponding to Rb is

pb(t+|t1, t2) = φ(t+)�(t2 − t+)

+
∫ t+

t1

φ(t f )κ (t+ − t f )�(t2 − t+)dt f . (21)

The third case (c) illustrated in Fig. 1 is when there was at
least one renewal between times t1 and t2 and t− 
= 0. Then the
coordinate of the walker at t1 is xreset(t1) = x(t1 − t−) and its
position at t2 is xreset(t2) = x(t2 − t+). The iMSD of this case
is

Rc = 2Kμ[(t1 − t−)μ + (t2 − t+)μ] = 2Kμ

(
�

μ
1 + �

μ
2

)
(22)

and the corresponding conditional PDF becomes

pc(t−, t+|t1, t2) = κ (t−)φ(t+ − t−)�(t2 − t+) +
∫ t+

t1

κ (t−)

×φ(t f − t−)κ (t+ − t f )�(t2 − t+)dt f . (23)

Using the iMSDs (16), (20), and (22) as well as (19), (21),
and (23), we arrive at the general expression for the iMSD

〈(xreset(t2) − xreset(t1))2〉

= 2Kμ

[
Pa(t1, t2)�μ +

∫ t2

t1

pb(t+|t1, t2)
(
tμ
1 + �

μ
2

)
dt+

+
∫ t1

0
dt−

∫ t2

t1

dt+ pc(t−, t+|t1, t2)
(
�

μ
1 + �

μ
2

)]
. (24)

Here either the times t± or �1,2 can be considered as indepen-
dent integration variables. Changing the variables, the iMSD
of a reset ADP (24) can be simplified to give

〈(xreset(t1 + �) − xreset(t1))2〉

= 2Kμ

(
�(t1 + �) +

∫ t1

0
κ (t1 − �1)�(� + �1)d�1

)
�μ

+ 2Kμ(�(t1) − �(t1 + �))tμ
1 + 2Kμ

∫ t1

0
κ (t1 − �1)

× (�(�1) − �(�1 + �))�μ
1 d�1

+ 2Kμ

∫ �

0
κ (� − �2)�(�2)�μ

2 d�2. (25)

Here we remind the reader that κ (t ) is the reset rate (11) and
�(t ) is the survival probability (10).

The iMSD (25) obtained by the renewal approach is our
first result valid for an arbitrary reset WTD. Obviously,
the iMSD is a nonstationary characteristic, depending on
t1. Except for Poissonian resetting, the general analytical
computation of the iMSD (25)—for instance, for Gamma-
or power-law-type resetting—is complicated. The analytical
iMSD and the mean TAMSD for ADPs under Poissonian re-
setting are provided in Sec. IV A, with the approximate results
discussed there for the MSD (t1 = 0) and iMSD (t1 > 0) for
any form of the reset WTD.

B. Case t1 = 0

The general iMSD (25) depends on the start time of the
observation, t1. For t1 = 0 the iMSD reduces to the standard
MSD measuring the average distance from the starting posi-
tion xreset = 0, namely,〈

x2
reset(�)

〉
= 2Kμ

[
�(�)�μ +

∫ �

0
κ (� − �2)�(�2)�μ

2 d�2

]
. (26)

The MSDs for different ADPs under resetting were intensely
studied recently {for example, for FBM [20], heterogeneous
diffusion processes [20] and geometric Brownian motion
[22,50] under Poissonian resetting, for continuous-time ran-
dom walks under power-law resetting [12,13], for (renewal
and nonrenewal) scaled Brownian motion under Poissonian
and power-law resetting [10,11]}. Here we provide a general
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expression for the MSD of an arbitrary ADP under arbitrary-
WTD resetting.

The derivation procedure is as follows. We note that the
convolution integral

J (T ) =
∫ T

0
κ (T − t ′)�(t ′)dt ′ (27)

can be given in the Laplace domain as

Ĵ (s) = κ̂ (s)�̂(s) = φ̂(s)

1 − φ̂(s)

1 − φ̂(s)

s
= φ̂(s)

s
. (28)

Hereafter, the “hat” denotes the Laplace transform,

φ̂(s) =
∫ ∞

0
φ(t )e−st dt . (29)

Therefore, the integral (27) equals

J (T ) =
∫ T

0
φ(t ′)dt ′ = 1 − �(T ). (30)

Using the expansion at short lag times,

�(�) ≈ �(0) + �′(0)� = 1 − φ(0)�, (31)

the second term in Eq. (26) can be neglected. We stress that
expansion (31)—and thus the entire approximate computation
procedure based on it—necessitates (i) the existence of the
derivative d�(t )/dt at t = 0 and (ii) requires φ(0) 
= 0 (for
the leading-order lag-time-dependence to be captured cor-
rectly).

The condition (i) may be violated around t1 = 0, e.g., for
the Gamma distribution with α < 1. Before discussing the
conditions of existence of �′(0), we show that at short lag
times the second term can be neglected in Eq. (26). With
the Laplace-transform scheme for Eq. (27) yielding expres-
sion (30), the second MSD term reads∫ �

0
κ (� − �2)�(�2)�μ

2 d�2

< �μ

∫ �

0
κ (� − �2)�(�2)d�2 = �μ(1 − �(�)).

If �′(0) exits and is nonzero, the Taylor expansion (31)
works and the second term in Eq. (26) is of order o(�μ+1),
namely, �μ[1 − �(�)] ≈ φ(0)�μ+1. If �′(0) does not exist
the order of the second term depends on the parameters of
a given distribution. For instance, for the Gamma distribu-
tion (13) and the corresponding survival probability �(t ) =
1 − γ (α, t/θ )/�(α), the second term in Eq. (26) is of order
o(�μ+α ), namely,∫ �

0 κ (� − �2)�(�2)�μ
2 d�2 < �μ(1 − �(�))

= �μγ (α,�/θ )/�(α) ≈ �μ+αθ−α/�(α + 1),

which at 0 < α < 1 can be neglected compared to the first
term of the MSD (26) scaling as ∝ �μ. We thus obtain the
short-lag-time MSD asymptotic law (32) for a reset ADP for
the case t1 = 0. For the case t1 
= 0, the γ requirements (i) and
(ii) are satisfied unconditionally.

Therefore, for any ADP under any reset-WTD at short lag
times, 〈

x2
reset(�)

〉 ≈ 2Kμ�μ. (32)

At long lag times, in contrast, the MSD is determined by the
second term in Eq. (26) (as the first term can be neglected),〈

x2
reset(�)

〉 ≈2Kμ

∫ �

0
κ (� − �2)�(�2)�μ

2 d�2. (33)

If the reset rate is time-independent, κ (t ) = κ , we get〈
x2

reset(�)
〉 ≈2KμκQμ,�, (34)

where Qμ,� depends on the anomalous-diffusion exponent μ

and lag time � as follows

Qμ,� =
∫ �

0
sμ�(s)ds. (35)

The reset ADP attains the NESS after a characteristic time
(depending on a chosen reset WTD), as long as the integral
Qμ,∞ = ∫ ∞

0 sμ�(s)ds converges. In the NESS, the MSD ap-
proaches a plateau (here the subscript “st” indicates stationary
quantities), with the height 〈x2

reset(�)〉st ≈ 2KμκQμ,∞. Reset-
ting, therefore, acts similarly to potential- or interval-induced
confinements [51] of a random walk and yields a saturating or
“stagnating” long-time behavior of the MSD.

For any resetting protocol, at short lag times the MSD
(or the iMSD taken at t1 = 0) has the same power law as
the pure/nonreset ADP, 〈x2(�)〉 = 2Kμ�μ. However, for the
reset ADP the NESS emerges if and only if the expression
(33) is converging. In particular, for the case of reset rate
independent of time, the integral Qμ,∞ exists that ensures the
existence of the NESS in this case.

C. Case t1 �= 0

At short lag times, using the expansion of the survival
probability, �(t1 + �) ≈ �(t1) − φ(t1)�, we get

〈(xreset(t1 + �) − xreset(t1))2〉 ≈ 2Kμ�μ + o(�μ)

+ 2Kμ

(∫ t1

0
κ (t1 − �)φ(s)sμds + φ(t1)tμ

1

)
�1. (36)

As the term φ(t1)tμ
1 can be neglected compared with the first

integral in the brackets of Eq. (36), this iMSD becomes

〈(xreset(t1 + �) − xreset(t1))2〉

≈ 2Kμ

(
�μ +

∫ t1

0
κ (t1 − �)φ(s)sμds × �1

)
. (37)

If the reset rate is time-independent, κ (t ) = κ , this iMSD
expression turns into

〈(xreset(t1 + �) − xreset(t1))2〉 ≈2Kμ(�μ + κMμ,t1�
1), (38)

where Mμ,t1 is the following integral

Mμ,t1 =
∫ t1

0
sμφ(s)ds. (39)

If it converges after time t1 (that is much longer than a
characteristic time), then Mμ,∞ = ∫ ∞

0 sμφ(s)ds. We note that
the iMSD for a reset ADP—at short lag times and at long
enough times t1 (depending on the time-scale of the reset
WTD)—has two distinct exponents which are switching from
∝ �μ to ∝ �1 for subdiffusive and superdiffusive nonreset
ADPs. Obviously, for a fixed μ and constant reset rate, the
convergence of Qμ,t1 at long times ensures the convergence of
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Mμ,t1 . This implies that a reset ADP attaining the NESS has a
stationary (independent of t1) iMSD in the limit of short lag
times �.

The iMSD (37) at short lag times is our second result. We
find the existence of two distinct growth exponents, switching
in the leading order from ∝ �1 to ∝ �μ for superdiffusive
and subdiffusive ADPs under a general process of resetting.

III. TIMESCALE-DECOMPOSITION APPROACH FOR
THE TAMSD

A. General formula

We consider a time series of a resetting ADP, denoted
xi,reset(t ), with the trajectory length T and discretize it into
T/δt intervals with the time step δt . The resetting events for
the ith trajectory—when the random walk visits the origi-
nal position x0 = 0—occur instantly at times ti,k = tk , with
the index k = 1, . . . , mi, consecutively after a waiting time
τi,k = τk = tk − tk−1 − δt . Here mi is the number of resetting
events for the ith trajectory. The strategy of the timescale-
decomposition approach for computing the TAMSD is first
to divide the path into independent intervals according to the
successive reset-waiting time and then to collect the magni-
tudes of the squared increments of the reset ADP at times
of resetting,

∑mi
k=1[xi,reset(tk ) − xi,reset(tk − �)]2. Under the

condition that the lag time is much shorter than the mean reset-
waiting time (if the resetting protocol has an infinite waiting
time, we set 〈t〉 = ∞) and shorter than the trace length, � �
{〈t〉, T }, we discretize the definition of the TAMSD to get at
short lag times (for simplicity, we set � = δt below) for the
ith trajectory that

δ2
i,reset(�, T )

= 1

T − �

∫ T −�

0
(xi,reset(t + �) − xi,reset(t ))2dt

= �

T − �

[
mi∑

k=1

tk−�∑
t=tk−1+�

(xi,reset(t ) − xi,reset(t − �))2

+
T∑

t=tmi +�

(xi,reset(t ) − xi,reset(t − �))2

+
mi∑

k=1

(xi,reset(tk ) − xi,reset(tk − �))2

]
. (40)

The first two terms in (40) correspond to a path of the pure
ADP between the consecutive reset times. Namely, if the ADP
is ergodic [44], the sum of the squared increments between the
consecutive reset times is

tk−�∑
t=tk−1+�

(xi,reset(t ) − xi,reset(t − �))2� ≈ 2Kμ�μτk . (41)

The third term in the reset TAMSD (40) is the collection of
the iMSDs at reset times, amounting to

(xi,reset(tk ) − xi,reset(tk − �))2 = x2
i (τk ) = x2

i,k (τi,k ). (42)

The right-hand side of Eq. (42) describes the free, nonreset
diffusion of duratition τi,k starting from the reset time ti,k ,

which are building sets of specific values for the partial tra-
jectories xi,k . Substituting Eqs. (41) and (42) into (40) we get
the approximate TAMSD of the reset ADP at short lag times
in the form

δ2
i,reset(�, T ) ≈ 2Kμ

T − �

(
mi∑

k=1

τk + (T − tmi )

)
�μ

+ �

T − �

mi∑
k=1

x2
i (τk )

≈ 2Kμ

T − mi�

T
�μ +

(
�

T

)1

×
mi∑

k=1

x2
i (τk ).

(43)

Averaging over the realizations of the ADP and neglecting
small terms, we ultimately arrive at

〈
δ2

reset(�, T )
〉 ≈ 2Kμ�μ +

〈
mi∑

k=1

x2
i (τk )

〉(
�

T

)1

. (44)

Here N is the number of traces, the times τk contain informa-
tion about the resetting events, and 〈m〉 = N−1 ∑N

i=1 mi (to be
used below). The expression (44) for the mean reset TAMSD
at short lag times is our third result that is also mathematically
the hardest to derive.

Some remarks are in place here. The mean TAMSD in the
limit of short lag times, Eq. (44), has two distinct exponents,
switching the signature behaviors from ∝ �μ to ∝ �1, the
same as for the iMSD in Eqs. (37) and (38). The behavior (44)
is valid for all resetting protocols, including those with infinite
average reset-waiting times, 〈t〉 = ∞. If the lag time is longer
than the time step δt , but still well shorter than the mean reset-
waiting time, � � 〈t〉, the derived TAMSD expression (44)
is still applicable. In the following, we discuss the detailed
forms of the mean TAMSD when the mean reset-waiting time
is finite (the reset rate is independent of time).

B. Frequent resetting: iMSD restores ergodicity

Here we focus on the situation when the mean reset-
waiting time is much shorter than the measurement time,

T � 〈t〉. (45)

As the mean TAMSD is the sum over independent realizations
of the process, the sum in Eq. (44) can be written as〈

mi∑
k=1

x2
i (τk )

〉
= 1

N

N∑
i=1

mi∑
k=1

x2
i (τk )

=
∑m1+..+mN

k=1 x2
i (τk )∑N

j=1 mj

∑N
j=1 mj

N
. (46)

According to the central-limit theorem, with
∑N

j=1 mj → ∞,

one gets〈
mi∑

k=1

x2
i (τk )

〉
≈ 〈x2(τk )〉〈m〉 = 2KμκT

∫ T

0
sμφ(s)ds. (47)
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We thus note that the mean reset TAMSD of a reset ADP has
two different exponents,〈

δ2
reset(�, T )

〉 ≈ 2Kμ(�μ + κMμ,T × �1), (48)

where Mμ,T is defined by Eq. (39). We emphasize that Eq. (48)
is similar in form to the iMSD result (38).

Expressions (38) and (48) describe the limiting behaviors
with the first leading-order terms ∝ �1 and ∝ �μ. Higher-
order terms are negligible for vanishing lag times, � → 0; for
short but finite lag times, the statement about the iMSD-to-
TAMSD equality becomes less precise.

Obviously, as the reset MSD (32) at short times behaves
always as 〈x2

reset(�)〉 = 2Kμ�μ, the nonequivalence of the
mean reset TAMSD and reset MSD emerges at short lag
times for superdiffusive (μ > 1) ADPs under resetting, indi-
cating weak ergodicity breaking. However, comparing with
the iMSD (38), we find that for μ > 1 the iMSD restores
ergodicity in terms of the approximate equality of the reset
iMSD and reset mean TAMSD at long initial times t1 → ∞
only if the μth moment Mμ,∞ exits, namely, Mμ,∞ < ∞.

Therefore, in this case we have at sufficiently short lag times
the iMSD-to-TAMSD correspondence,〈

δ2
reset(�, T )

〉 = 〈(xreset(t1 + �) − xreset(t1))2〉, (49)

for time t1 being in the NESS region, the fourth result of the
study.

C. Rare resetting: Outliers dominate the mean

Here we focus on the reset TAMSD in the presence of rare
resetting, i.e., when the trace length is much shorter than the
mean reset-waiting time,

T � 〈t〉. (50)

As resetting is so rare, the number of resetting events within
a single trajectory is almost zero. Thus m1 + ... + mN does
not tend to infinity any longer in

∑N
j=1 mj . However, if the

number of resets is regarded as a random variable taking the
values of 0 or 1, we can get the mean reset TAMSD from
Eq. (44) as

〈
δ2

reset(�, T )
〉 ≈ 2Kμ�μ + N−1

N∑
k=1

H (T − τk )x2(τk )

(
�

T

)1

≈ 2Kμ�μ + 2Kμ

∫ T

0
sμφ(s)ds

(
�

T

)1

. (51)

Here H (x) is a Heaviside step-function (it is zero for x < 0
and unity when x > 0). Therefore, we get〈

δ2
reset(�, T )

〉 ≈ 2Kμ(�μ + Mμ,T × (�/T )1). (52)

Surprisingly, the 〈δ2
reset(�)〉 expression features again two

scaling exponents, with ∝ �μ and ∝ �1 scalings. In particu-
lar, for superdiffusive ADPs the mean reset TAMSD with rare
resetting will have (in the limit of short lag times) a linear
dependence on �. This leads to a rather intriguing effect that
“minorities” in the Gesamtheit of TAMSD trajectories domi-
nate the mean-TAMSD behavior. These rare realizations with
a linear-in-lag-time TAMSD change the overall long-lag-time
behavior of the ensemble-averaged TAMSD even though most

of the TAMSD trajectories are of a power-law form ∝ �μ (as
they do not contain resetting events). This is our fifth result.

IV. EXAMPLES

To support the general model-free results of Secs. II and III,
we consider below the examples of Poissonian- and power-
law-type resetting and also validate the theoretical predictions
by the results of computer simulations.

A. Poissonian resetting

1. iMSD

For Poissonian resetting the exact TAMSD can be ob-
tained by integrating the iMSD and one can verify the validity
of the approximate TAMSD obtained from the timescale-
decomposition approach.

For the WTD (14), the mean reset-waiting time is 〈t〉 = θ

and the survival probability is �(t ) = e−t/θ in Eq. (25). The
iMSD for Poissonian-reset ADPs becomes

〈(xreset(t1 + �) − xreset(t1))2〉
= 2Kμ[e−�/θ�μ + θμγ (μ + 1,�/θ )

+ (1 − e−�/θ )
(
e−t1/θ tμ

1 + θμγ (μ + 1, t1/θ )
)
], (53)

where the lower incomplete Gamma function is defined as

γ (a, z) =
∫ z

0
e−xxa−1dx. (54)

When the initial time vanishes, t1 = 0, the iMSD reduces to
the MSD and follows〈

x2
reset(�)

〉 = 2Kμ(e−�/θ�μ + θ−1Qμ,�), (55)

where

Qμ,� = θμ+1γ (μ + 1,�/θ ). (56)

At short lag times, at � � θ , the MSD of a reset ADP has
a power-law dependence similar to that for a pure ADP. At
long lag times, at � � θ , the MSD attains a plateau (after the
process has reached the NESS), with the plateau (index “pl”)
height 〈

x2
reset(�)

〉
pl ≈ 2Kμθ−1Qμ,∞, (57)

where Qμ,∞ = θμ+1�(μ + 1).
Second, we present the iMSD for long initial times, t1 � θ,

after which a general ADP attains the NESS. As in this case
γ (μ + 1, t1/θ ) ≈ �(μ + 1), the iMSD becomes

〈(xreset(t1 + �) − xreset(t1))2〉
≈ 2Kμ[e−�/θ�μ + θμγ (μ + 1,�/θ )

+ (1 − e−�/θ )θμ�(μ + 1)]. (58)

At short lag times, when � � θ , neglecting the small terms
here, the iMSD has two exponents,

〈(xreset(t1 + �) − xreset(t1))2〉 ≈ 2Kμ(�μ + θ−1Mμ,∞�1),

(59)
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FIG. 2. FBM under the conditions of frequent Poissonian re-
setting [20], presented as the results of computer simulations and
theoretical predictions. The reset MSD 〈x2

reset(�)〉 (the blue circles),
the reset iMSD 〈(xreset(t1 + �) − xreset(t1))2〉 (the green triangles), the
individual reset TAMSD trajectories δ2

reset(�) (the thin red curves),
and the mean reset TAMSD 〈δ2

reset(�)〉 (the thick blue curves)
are shown in the plots. The scaling relations (59) and (64) are
shown as the black dashed lines. The stationary plateaus (60) are
the dot-dashed lines. The main plot shows the MSD-to-TAMSD
nonequivalence and the approximate equality of the iMSD to the
TAMSD for superdiffusive FBM. The inset illustrates the MSD-
TAMSD correspondence at short lag times for subdiffusive reset
FBM. We illustrate the behavior of the MSD, iMSD, and TAMSD
from the minimal to the maximal lag times [including the long-lag-
time regime of the NESS realized for the conditions of frequent
resetting]. The scaling exponents μ are given in the legend(s). The
trajectory length is T = 102 for superdiffusive and T = 101 for
subdiffusive walks. Other parameters: the simulation time step is
dt = 10−2 and 10−3 for super- and subdiffusion, respectively; the
mean reset time of the WTD (14) is θ = 1.

where Mμ,∞ = θμ�(μ + 1). These expressions summarize
the general iMSD formulas for an arbitrary ADP with the
Poissonian WTD of resetting events.

2. Example of Poissonian WTD for reset FBM

In Fig. 2 we present the results of computer simulations for
Poissonian-reset FBM with μ = 1.6 and μ = 0.4. The details
of the numerical scheme are presented in our recent study
[20] (without the iMSD concept), so we avoid its repetition
here. We clearly find that for reset FBM the MSD-to-TAMSD
nonequivalence for superdiffusive μ turns into the iMSD-
TAMSD correspondence [at short and long lag times]. This
restores ergodicity of superdiffusive reset FBM in terms of
this new iMSD quantifier if the process is considered after
long-enough times t1 in the NESS regime. The iMSD and the
mean TAMSD are approximately equal both for superdiffu-
sive and for subdiffusive reset FBM, both at short and long
times. The previously observed [20] discrepancy in the plateau
region of the stationary (index “st”) NESS-related behavior,

TAMSDreset,st = 2 × MSDreset,st, (60)

is no longer present for the “corrected” description in terms of
the iMSD, where

TAMSDreset,st ≈ iMSDreset,st. (61)

This statement is the sixth result of the current study; its region
of validity is based on the assumptions listed after Eq. (31).

3. TAMSD: Frequent resetting

To verify the expression for the mean TAMSD obtained
via the timescale-decomposition approach, here for the case
of Poissonian resetting we integrate the iMSD over time and
get the exact mean reset TAMSD as〈

δ2
reset(�, T )

〉 = 2Kμ[e−�/θ�μ + θμγ (μ + 1,�/θ )]

+ 2Kμ(1 − e−�/θ )θμ[γ (μ + 1, (T − �)/θ )

+ θ

T − �

(
γ

(
μ + 1,

T − �

θ

)
− γ

(
μ + 2,

T − �

θ

))]
.

(62)

When T � θ , namely for the case of frequent resetting, the
mean reset TAMSD (62) approximately equals the iMSD (58),〈

δ2
reset(�, T )

〉 ≈ 2Kμ[e−�/θ�μ + θμγ (μ + 1,�/θ )

+ (1 − e−�/θ )θμ�(μ + 1)]

= 〈(xreset(t1 + �) − xreset(t1))2〉. (63)

It means that the iMSD restores ergodicity of an arbitrary
Poisson-reset ADP. At short lag times, when � � θ , the reset
TAMSD has two different exponents,〈

δ2
reset(�, T )

〉 ≈ 2Kμ(�μ + θ−1Mμ,∞�1). (64)

The mean reset TAMSD coincides with that from the
timescale-decomposition approach given by Eq. (48). We can
also draw the same conclusion without exact calculations
based on the critical condition for recovering the ergodicity
discussed in Sec. III as the μth moments of Poissonian reset-
ting is finite, Mμ,∞ = θμ�(μ + 1).

4. TAMSD: Rare resetting

When T � θ the probability of reset for a single trajectory
is small. The mean rarely-reset TAMSD (62) at short times,
� � θ , using the relation γ (y, t ) ≈ t y/y, becomes〈

δ2
reset(�, T )

〉 ≈ 2Kμ(�μ + (μ + 1)−1T μ(�/θ )1). (65)

This mean reset TAMSD still has a linear dependence on
lag time combined with a power-law dependence, indicating
the short-lag-time nonequivalence of the reset mean TAMSD
〈δ2

reset(�)〉 and the reset MSD 〈x2
reset(�)〉 = 2Kμ�μ for su-

perdiffusive Poisson-reset ADPs. Rare resetting is inherently
out of equilibrium and thus no MSD-to-TAMSD equality is
intuitively expected. The MSD-to-TAMSD nonequivalence
therefore persists. This is our seventh result for an arbi-
trary rarely reset ADP. For certain experimental situations
with a priori unknown mean reset time, both ergodic and
nonergodic dynamics and MSD-TAMSD relations might be
realizable/observed at the same time (also changing as a func-
tion of the length of recorded trajectories).
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FIG. 3. Population splitting for superdiffusive FBM with rare
resetting (main plot). The effect of “minorities” in the ensemble
of trajectories—dominating the short-lag-time scaling of the mean
TAMSD—is demonstrated. The scaling exponents of Eqs. (55) and
(65) are the black dashed lines at short times. The inset illustrates
reproducible realizations of subdiffusive reset FBM. The notations
for the curves are the same as in Fig. 2. Parameters: T = 10−1, dt =
10−5, θ = 1.

5. Example of rarely reset FBM

The results of computer simulations of rarely reset FBM
with the Hurst exponents μ = 1.6 and μ = 0.4 under Pois-
sonian resetting are presented in the main plot and the inset
of Fig. 3, respectively. In the superdiffusive case μ > 1 we
find that at short lag times the mean reset TAMSD switches
to the linear growth due to the dominant influence of a mi-
nor fraction of trajectories containing one or more events
of resetting. Subdiffusive FBM with rare resets does not re-
veal such a splitting: fairly reproducible TAMSD trajectories
are observed signifying ergodic dynamics, also featuring the
MSD-TAMSD equality; see the inset of Fig. 3.

B. Power-law resetting

1. Reset iMSD and mean TAMSD

It appears to be difficult to compute the mean TAMSD for a
general ADP under power-law resetting exactly by integrating
the iMSD, as we did for Poisson resetting in Sec. IV A. As
the NESS is attained at β > μ + 1 (where the ergodic behav-
ior is obviously restored [10]), we verify below the critical
condition Mμ,∞ < ∞ in the non-NESS regime of the model
parameters, namely, for 1 < β < μ + 1.

Consider the μth moment of reset WTD (15) with a finite
mean reset time, namely

Mμ,T = βT 1+μ

(1 + μ)ρ

∫ T/ρ

0
xμ(1 + x)−(1+β )dx. (66)

The integral in Eq. (66) can be expressed via the hypergeo-
metric function 2F1 as follows:∫ T

ρ

0
xμ(1 + x)−(1+β )dx = 2F1(1 + μ, 1 + β, 2 + μ,−T/ρ).

(67)

Using the Pfaff transformations [52],

2F1(a, b, c, z) = (1 − z)−a
2F1

(
a, c − b, c,

z

z − 1

)
= (1 − z)−b

2F1

(
b, c − a, c,

z

z − 1

)
, (68)

and the representation of 2F1 via the Gamma functions,

2F1(a, b, c, 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (69)

valid for Re(c) > Re(a + b), the integral in Eq. (66) for the
μth moment will exist when β > μ and T � ρ, namely

Mμ,∞ = βρμ�(1 + μ)�(β − μ)/�(1 + β ). (70)

In the opposite case, when β < μ and T � ρ, the value of the
integral depends on the upper integration limit T as

Mμ,T = β(μ − β )−1ρβT μ−β. (71)

It means that if β > {μ, 1}, the ergodic behavior is restored in
the short-lag-time limit (with the approximate equality of the
reset iMSD and the mean reset TAMSD),〈

δ2
reset(�, T )

〉 = 〈(xreset(t1 + �) − xreset(t1))2〉

= 2Kμ

(
�μ + β(β − 1)ρμ−1�(1 + μ)�(β − μ)

�(1 + β )
�1

)
.

(72)

For 1 < β < μ, on the other hand, the nonequivalence of
the mean reset TAMSD to the reset iMSD emerges because

〈
δ2

reset(�, T )
〉 = 2Kμ

(
�μ + β(β − 1)ρβ−1

μ − β
T μ−β�1

)
, (73)

while

〈(xreset(t1 + �) − xreset(t1))2〉
= 2Kμ

(
�μ + β(β − 1)ρβ−1(μ − β )−1tμ−β

1 �1
)
, (74)

implying weak ergodicity breaking in this region of parame-
ters.

2. Example of power-law WTD for reset FBM

As an example, the simulations of FBM with μ = 1.6
under power-law resetting with the non-NESS parameters 1 <

β < 1 + μ are presented in Fig. 4. We find that for β = 1.9—
when β > μ giving rise to a finite μth moment (70)—the
reset iMSD and the mean reset TAMSD are approximately
equal. The standard reset MSD is not equal to the mean reset
TAMSD, however, as shown in Fig. 4(a). In the other case, for
β = 1.3—when β < μ is satisfied—we find based on the re-
sults of computer simulations that the reset iMSD is not equal
to the mean reset TAMSD, as our theory indeed predicts; see
Fig. 4(b). Last, as intuitively expected, for the last situation
of 0 < β < 1 and thus for infinite mean reset-waiting time,
the ergodicity-breaking behavior and the spread of individual
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FIG. 4. Simulations of superdiffusive FBM with μ = 1.6 un-
der power-law-WTD frequent resetting, computed for (a) β = 1.9,
(b) β = 1.3, and (c) β = 0.6. The scaling behaviors of 2Kμ�μ, of
Eqs. (74) and (73) are shown as the black dashed asymptotes (for the
case of finite reset-waiting times). For infinite mean reset-waiting
times, the dashed black line for the mean TAMSD is the approxi-
mation of Eq. (48) with κ being replaced by κ (T ). The exact iMSD
(25) is shown by the green dashed line. The curves have the same
notations as in Fig. 2. The plots only show the regions of short lag
times. Parameters: T = 103, dt = 10−2, ρ = 1, t1 = 102.

TAMSD realizations is similar to the rare-resetting scenario,
with many TAMSD realizations not featuring a single event of
resetting; see Fig. 4(c).

V. CONCLUSIONS AND DISCUSSIONS

In this work, we established a general framework to assess
ergodicity—in terms of the MSD-to-TAMSD approximate
equality—of arbitrary stationary-increment ADPs with the
MSD of the form 〈x2(t )〉 = 2Kμtμ under stochastic resetting
with an arbitrary WTD. We derived the analytical expres-
sions for the newly introduced iMSD [the first key result;
Eq. (25)] and the mean TAMSD [the third main result;
Eq. (44)] employing the general approach of renewal and
the timescale-decomposition scheme for arbitrary resetting
protocols. A characteristic switching between the two distinct
growth behaviors is revealed for subdiffusive and superdif-
fusive nonreset ADPs, ∝ �μ and ∝ �1, for both the iMSD
[the second key result, Eq. (37)] and the mean TAMSD of
the reset process with no weak ergodicity breaking [the fourth
main result; Eqs. (48) and (49)].

The renewal approach to the iMSD is applicable to such
stationary-increments ADPs as FBM [20,53], Brownian mo-
tion, Ornstein-Uhlenbeck process [54], as well as Brownian
motion with “diffusing diffusivity” [55]. The approach is not
applicable to nonstationary and intrinsically ageing ADPs,
such as scaled Brownian motion [10,11,56,57], heterogeneous
diffusion processes [20,58], and continuous-time random
walks [59–61].

In addition, we found a critical condition that if the μth
moment of the resetting WTD exits, the correspondence of the
iMSD to the mean TAMSD emerges. This condition for a su-
perdiffusive reset ADP with μ > 1 is

∫ ∞
0 sμφ(s)ds < ∞ that

is an extension of a stronger NESS condition
∫ ∞

0 sμ�(s)ds <

∞. For Poissonian resetting they both give the same result.
This means that the reset iMSD behavior observed at short
times after the system attains the NESS follows exactly the
same exponents and has the same magnitudes as the mean
reset TAMSD in the same limit [the sixth key result; Eq. (61)].

We also derived the mean reset TAMSD for a generic ADP
under the conditions of rare resetting (50) [the fifth key result;
Eq. (52)]. It was demonstrated again to feature two scaling
exponents, with the ∝ �μ and ∝ �1 growth, indicating the
nonequivalence of the reset mean TAMSD and reset MSD
in the regime of short lag times [the seventh main result;
Eq. (65)]. The analytical results were verified by computer
simulations of FBM ADP with rare Poissonian resetting.

The timescale-decomposition approach we employed is
applicable not only to ergodic but also to nonergodic nonreset
initial processes. The TAMSD of a nonergodic pure ADP
under frequent resetting with a constant reset rate κ can be
obtained via employing the TAMSD with the dependence on
the path length (41),

tk−�∑
t=tk−1+�

(xreset(t ) − xreset(t − �))2� ≈ δ2(�, τk ) τk . (75)

Then, the mean TAMSD at short lag times is

〈
δ2

reset(�, T )
〉 ≈ κ

∫ T

0
(〈δ2(�, s)〉s + 〈x2(s)〉�)φ(s)ds. (76)

This approach is applicable to all ADPs. For nonreset pro-
cesses with the MSD of, for instance, an exponential or loga-
rithmic form [62], the approach works too, with the TAMSD
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at short lag times acquiring a dependence on the path length
τk; see Eq. (75). As an example, the short-lag-time asymptotic
behavior of the mean reset TAMSD for reset geometric Brow-
nian motion [22] can be obtained from there. This approach is
also applicable for ADPs with the TAMSD at short lag times
being a function of the trajectory length T , like for nonstation-
ary and ageing ADPs [44] (e.g., the processes of scaled Brow-
nian motion [10,11] and heterogeneous diffusion [20,58]).

Recently, the ergodic features of normal diffusion (with
and without drift) under Poissonian resetting were examined
in Ref. [63]. Via computing the autocorrelation function and
the mean TAMSD, the nonergodicity of the reset process in
terms of the MSD-to-TAMSD nonequivalence was assessed
[63]. For drift-free normal-diffusion walks with resets, the
results of Eq. (47) in Ref. [63] are identical to our Eq. (63) for
generic ADPs. In contrast to Poisson-reset normal diffusion
of Ref. [63], our findings are general and valid for arbitrary
ADPs and any WTDs of the resetting protocol.

The information about the mean TAMSD of a reset ADP
can be extracted prior to the experiment as long as we have
knowledge about the statistics of the nonreset ADP and char-
acteristics of the resetting protocol. From the experimental
perspective, it would be interesting to look at ADPs with
two different scaling exponents, which turn from μ1 to μ2

at a known lag time �12. This situation is ubiquitously
observed in single-particle-tracking setups, with μ2 < μ1 typ-
ically [45,64]. The conclusions for such a switching-diffusion
scenario in the presence of stochastic resetting, at least in
certain regimes, can be the goal of the future research.

The approach of the system to the NESS is an interesting
problem per se; being studied in several pivotal resetting
studies [18] for conventional Brownian motion, the transition
regime will be of interest to investigate also for general pro-
cesses of anomalous diffusion (e.g., the duration and spatial
extent of this regime as a function of the exponent μ, etc.).
This can become a separate future investigation, beyond the
scope of the current analysis.

Finally, the question about particle-particle interactions—
especially at the conditions of the NESS—is similarly
appealing. Its implementation will, however, require severe
modifications of the current approaches developed for dif-
fusion and resetting of inert or noninteracting particles,
including the introduction of concepts of interparticle inter-
action range and particle density (on a discrete lattice of
potentially accessible sites).
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