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Abstract
We present a Bayesian inference scheme for scaled Brownian motion, and
investigate its performance on synthetic data for parameter estimation and
model selection in a combined inference with fractional Brownian motion. We
include the possibility of measurement noise in both models. We find that for
trajectories of a few hundred time points the procedure is able to resolve well
the true model and parameters. Using the prior of the synthetic data generation
process also for the inference, the approach is optimal based on decision theory.
We include a comparison with inference using a prior different from the data
generating one.
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(Some figures may appear in colour only in the online journal)

1. Introduction

With Robert Brown’s observation of the random motion of micron-sized granules contained in
pollen grains [1], Albert Einstein’s explanation of the physical origin of Brownian motion [2],
and Jean Perrin’s [3] and Ivar Nordlund’s [4] subsequent quantitative measurements, the field
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of single particle tracking was born. More recently, with the advent of fluorescence microscopy,
it has become possible to track single particles inside highly complex environments such as
biological cells. This has revealed motion distinct from pure Brownian, and a wealth of anoma-
lous diffusion models have been put forward to quantify this behaviour [5, 6]. The question then
arises, how does one determine which of these models best fit the observed random motion?

Mathematical models of randomly fluctuating data—such as the position time series mea-
sured in single particle tracking experiments—are comprehensibly described by writing down
the probability of the complete data given the model: P(data|model). But when we do infer-
ence we would like to make deductions in the opposite direction. In Bayesian inference such
deductions are quantified by allowing probability to be interpreted as belief in different mod-
els (including the parameter values necessary to completely specify the model), and then the
beliefs are updated when data is revealed through the use of Bayes’ formula, which up to a nor-
malisation constant says that P(model|data) ∝ P(data|model)P(model) [7–10]. The main con-
troversies around Bayesian inference originates from the need to assign probabilities P(model)
that represent prior beliefs in the model in the absence of any data. For this assignment, there
is no universally accepted procedure.

The objections leading to this controversy, however, are not valid when the data are gen-
erated by procedures where probability distributions for all random assignments are known.
In this case P(model) is a known probability distribution and Bayes’ formula has the status
of a mathematical theorem with satisfied prerequisites. The problem of inferring a parameter
value in a way that optimises the average value of a certain score function thus becomes a
well-defined problem in decision theory with an optimal solution [9, 11].

In the AnDi challenge [12] artificial trajectories are generated from five disclosed models
of anomalous diffusion with announced limits on the model parameters. The precise param-
eter distributions, however, are not disclosed. This introduces some psychological guesswork
into the competition, since arbitrary choices have to be made, for instance, for the Bayesian
parameter priors. Similarly, for machine learning methods choices also have to be made for
the distributions of parameters with which the training sets are generated. However, the AnDi
challenge is very close to having disclosed the data generating procedure completely. Thus one
would expect that an approach based on Bayesian inference and decision theory in principle
should be able to come very close to an optimal solution.

Although an approach based on Bayesian inference and decision theory is optimal in princi-
ple, carrying out the necessary computations to evaluate the solution can be a difficult problem,
in particular when the model contains hidden variables that needs to be integrated out. Thus the
AnDi challenge team that many of the present authors participated in (BIT) did not succeed in
implementing effective computational solutions for all five models in time for the challenge.

In this article we present our Bayesian inference approach for one of the AnDi challenge
models: scaled Brownian motion (SBM)6. SBM is a simple Markovian model of anomalous
diffusion, where Brownian motion is modified by allowing the diffusion coefficient to depend
on time [17]. This approach with time dependent diffusion coefficient is a convenient way to
generalise for instance formulas for photobleaching recovery data [18]. We combine our imple-
mentation for SBM with the implementation of Bayesian inference for fractional Brownian
motion (FBM) presented in [14] to demonstrate model selection and inference of the anoma-
lous diffusion exponent for these two models. FBM is a modification of Brownian motion,
where correlations are allowed for the motion at different times [19]. Figure 1 shows exam-
ples for subdiffusive and superdiffusive two-dimensional trajectories of SBM and FBM. The

6 We refer interested readers to [13–16] for details of our implementation of Bayesian inference for other models of
diffusion.
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Figure 1. Sample trajectories for subdiffusive (left) and superdiffusive (right) two-
dimensional SBM and FBM with noise strength σmn = 0.1. We show trajectories of
FBM and SBM that look quite similar. The trajectories were chosen from four indepen-
dent realisations for the subdiffusive case and from five independent realisations for the
superdiffusive case. Each trajectory consists of N = 200 points. The SBM trajectories
were generated with t0 = 0 and σ1 = 1 while the FBM trajectories were generated with
σ = 1. See sections 2.2–2.4 for details on the parameters.

trajectories of these processes can look qualitatively different because while SBM is a process
with non-stationary increments, FBM has stationary increments. Subdiffusive SBM diffuses
progressively slowly with time, whereas superdiffusive SBM diffuses progressively fast. How-
ever, the trajectories of FBM and SBM can look similar, as is shown in figure 1 by selecting
trajectories that look alike from a few realisations.

The article is organised with our inference methods being presented in section 2, before we
present results showing how effective they are for parameter estimation and model selection
in section 3 and conclude in section 4.

2. Methods

In this section we briefly review Bayesian inference before presenting the likelihood functions
of the models in subsections 2.2–2.5. Finally, we state our computational methods.

2.1. Bayesian inference

If we have a time series ΔxN of N steps generated from a known model Mi with parameters θ
taken from a known probability distribution πi(θ) = P(θ|Mi), Bayes’ theorem tells us that the
probability distribution (called posterior) for the unknown parameter θ is

P(θ|ΔxN , Mi) =
Li(θ)πi(θ)

Ei
, (1)

where Li(θ) = P(ΔxN |θ, Mi) is called the likelihood function and the normalisation constant
(called evidence) is Ei = P(ΔxN |Mi) =

∫
dθ Li(θ)πi(θ). If, additionally, the model Mi is ran-

domly chosen from a set of M models: Mi, i = 1, . . . , M, with probabilities π(Mi), then we can
again use Bayes’ theorem to find the probability P(Mi|ΔxN) that the model was Mi given an
artificially generated trajectory ΔxN ,

P(Mi|ΔxN) =
Eiπ(Mi)∑M
i=1 Eiπ(Mi)

. (2)

3
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If the priors πi(θ) and π(Mi) are not known, for instance, if the trajectory is experimental
data from a system that is not well known, then Bayesian inference requires that we interpret
the priors as quantifying our lack of knowledge about the parameters and the true model. For
instance, if we have no basis for assuming that one model is more probable than another, we
should choose π(Mi) = 1/M. For a continuous parameter with unlimited range the choice of
a uniform prior is generally not possible. In this case one then has to shape the prior non-
uniformly according to judgement about realistic values of the parameter.

2.2. Scaled Brownian motion

Scaled Brownian motion (SBM) is a popular stochastic process that has been used to model
anomalous diffusion observed in experiments where the diffusion coefficient seems to be time-
dependent [20–25]. It is particularly convenient to describe experiments with fluorescence
recovery after photobleaching [18] in which the diffusion coefficient appears to depend on
time as a power law: D(t) = αKα(t + t0)α−1. Here Kα is the anomalous diffusion coefficient,α
the anomalous diffusion exponent, and t0 the ageing time of the system prior to t = 0 (all taken
to be real and positive numbers). SBM in one dimension can be described mathematically as
having the mean squared displacement

〈[x(t) − x(0)]2〉 = 2Kα[(t + t0)α − tα0 ] (3)

and zero mean independent Gaussian increments [17]. The corresponding probability density
P(x, t) for the position x satisfies a diffusion equation with explicit time dependence

∂P
∂t

= D(t)
∂2P
∂x2

(4)

and the increments are not stationary in general since

〈[x(t +Δt) − x(t)]2〉 = 2Kα[(t +Δt + t0)α − (t + t0)α] (5)

depends on the time t unless we are in the case of pure Brownian motion with α = 1. SBM
exhibits a number of interesting properties, such as ageing and non-ergodic behaviour. Regard-
ing ageing, this can be seen from equation (5), since the statistics of the increments depend on
the time t + t0 since initiation of the system, which is the characteristic feature of ageing. For
a further discussion of these properties we refer the reader to [26–29].

Since the increments are independent and Gaussian, we can obtain the probability den-
sity for a set of increments ΔxN = (Δx1, . . . ,ΔxN) where Δxi = xi − xi−1 and xi = x(ti)
for equidistant times ti = iΔt. The probability density is a product of the densities for each
increment,

P(ΔxN |θ, M1) =
N∏

i=1

1√
2πσ2

i

exp

(
−Δx2

i

2σ2
i

)
, (6)

where we have labelled the SBM model M1, θ = (α, Kα, t0) and σ2
i = 2KαΔtα[(i + t0/Δt)α −

(i − 1 + t0/Δt)α].

2.3. Scaled Brownian motion with measurement noise

The experimental observation of single particle motion is complicated by noise in the mea-
surement procedure [30, 31]. Here we model measurement noise as independent Gaussian

4
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displacements ηi of the underlying true positions xtrue
i resulting in a measured position at time

ti which is

xi = xtrue
i + ηi, (7)

where xtrue
i follows the statistics of SBM as presented in the previous subsection and ηi are

independent with zero mean and variance 〈η2
i 〉 = σ2

mn. For this situation, we can find a formula
for the probability of the observed trajectory

P(ΔxN |θ, M1) =
N∏

i=1

1√
2πσ̃2

i

exp

(
− 1

2σ̃2
i

(Δxi −Δx̃i)2

)
, (8)

where we have recursively for i � 1

Δx̃i+1 = E(Δxi+1|Δxi) = −σ2
mn

σ̃2
i

(Δxi −Δx̃i), (9)

σ̃2
i+1 = Var(Δxi+1|Δxi) = σ2

i + σ2
mn

(
2 − σ2

mn

σ̃2
i

)
, (10)

with base case σ̃2
1 = σ2

1 + 2σ2
mn and Δx̃1 = 0. Here E(a|b) means the expected value of a given

b and Var(a|b) means variance of a given b. The derivation of the above formulas is a straight-
forward generalisation of the derivation in [13], where the σi are assumed to be identical. This
is the case since according to the derivation in [13] the joint probability distribution for xi+1 and
ηi+1 at time ti+1 only depends on the corresponding distribution at time ti and what happens
during the time interval to ti+1.

Note from equation (9) that the measurement noise introduces anti-correlations between
steps: if a step was further to the right than expected, then the next step will tend to be to
the left. This is similar to subdiffusive FBM (i.e., with α < 1), but there the correlations are
long-range.

2.4. Fractional Brownian motion

Fractional Brownian motion (FBM) [19, 32] is a generalisation of Brownian motion to include
correlated increments that can successfully model anomalous diffusion in numerous experi-
ments, particularly in visco-elastic systems [33–42]. FBM with measurement noise is a station-
ary Gaussian process whose increments are correlated with covariance 〈ΔxiΔx j〉 = γ(i − j)
where

γ(n) =

⎧⎪⎪⎨
⎪⎪⎩

2KαΔtα + 2σ2
mn, n = 0

KαΔtα(2α − 2) − σ2
mn, |n| = 1

KαΔtα(|n + 1|α + |n − 1|α − 2|n|α), |n| � 2

(11)

with Kα being the diffusion coefficient [14]. Note that for α = 1, this becomes identical to
SBM with α = 1 and arbitrary t0. The probability for a trajectory (the likelihood function) can
be written as

P(ΔxN |θ, M2) =
1

(2π)N/2|ΓN |1/2
exp

(
−1

2
ΔxT

NΓ
−1
N ΔxN

)
, (12)

where ΓN is the covariance matrix with components ΓN,i j = γ(i − j) and we have labelled
FBM as M2. FBM does not display ageing, and it is ergodic, albeit with slow convergence of

5
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the time-averaged mean-squared displacement to its ensemble averaged limit [43–45]. Despite
these differences with SBM it obeys the same time dependent diffusion equation, equation (4),
and has mean square displacement as in equation (3), but with no effect of ageing, i.e., t0 = 0.
To calculate the likelihood function for FBM numerically, we employ the Durbin-Levinson
algorithm as done previously for Bayesian inference with FBM in [14].

2.5. Multiple dimensions

The likelihood functions for SBM and FBM described above straightforwardly generalises
to multiple dimensions, by assuming independent steps in each dimension. The likelihood
function then becomes a product of the likelihood functions in each dimension with shared α,
Kα and possibly t0. For instance in two dimensions we will have

Li(θ) = P(ΔxN |θ, Mi)P(ΔyN |θ, Mi), (13)

where ΔyN contains the coordinates along the second dimension. Keeping in mind the large
number of single particle tracking experiments in two dimensions [46, 47], we will mainly
consider two dimensions in the following. The results are similar in other dimensions and we
present results from one-dimensional trajectories in the appendix A.

2.6. Computational methods

To evaluate the model evidences Ei and sample from the posteriors P(θ|ΔxN , Mi) we use
the nested sampling algorithm of skilling [48, 49]. Our implementation is an update of the
one presented in [14], where the random walk Monte Carlo steps have been replaced by the
discontinuous Hamiltonian Monte Carlo method presented in [50]. We have uploaded our
implementation to GitHub: https://github.com/Samudrajit11/SBM.

3. Results

Here we specify our priors and parameters for the synthetic data generation before giving our
results for the parameter estimation in subsection 3.3 and model selection in 3.4. Finally, we test
our implementation on continuous time random walk (CTRW) trajectories, which illustrates
the use of Bayesian inference on data not generated by a model included in the inference.

3.1. Priors

We choose a uniform prior on α restricted to 0 < α < 2 for both SBM and FBM. We parame-
terise the diffusion coefficient Kα of FBM as Kα = σ2/(2Δtα) with log10σ having a standard
normal distribution, where σ is the step-deviation. In the case of SBM, the step-deviation σi

(and therefore diffusion coefficient) changes with time. We choose the standard deviation of
the first step σ1 as a parameter with log10σ1 having a standard normal distribution. For the
noise strength σmn we choose a uniform prior in the range 0 < σmn < 1 for the analysis of all
simulated data sets except for those generated with σmn = 10. We choose a uniform prior on
σmn in the range 0 < σmn < 10 for the latter case, such that the true value of the noise-strength
lies within the prior range. For the analysis with a wrong prior on α (see below) we use a linear
prior p(α) = α

2 with 0 < α < 2. Finally, the models have prior π(Mi) = 1/2.

3.2. Details of simulated data sets

In order to quantify the performance of our code, we simulated SBM and FBM trajectories
to constitute data sets that were used in the analysis described in the subsequent sections. All

6
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Figure 2. MAE vs αGT plot with the estimated MAE obtained from the analysis of Ñ =
100 two-dimensional SBM trajectories for each αGT. Each sub-plot shows the results
from the analysis of SBM trajectories generated with different noise-strengths σmn. The
error-bars are the standard error on the mean.

the SBM trajectories were generated with t0 = 0, Δt = 1 and log10σ1 drawn from a standard
normal distribution. The FBM trajectories were also generated with Δt = 1 and log10σ drawn
from a standard normal distribution. The other simulation parameters such as αGT, N and σmn

are specified in the subsequent sections for each data set used in the analysis. We remark here
that a choice of σmn = 0 means no measurement noise, while for σmn = 1 the measurement
noise will typically be comparable in strength to σ1, i.e., the diffusive noise of the first sin-
gle step. The codes for the simulations of both FBM and SBM trajectories are home-written
and presented at: https://github.com/Samudrajit11/SBM. The FBM generation algorithm is the
same that was used in [14].

7
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3.3. Quantification of parameter estimation

To quantify the parameter estimation results we use the mean absolute error (MAE), which for
a parameter θ is defined as [12]

MAE =
1

Ñ

Ñ∑
j=1

|θ j,p − θ j,GT| , (14)

where the subscript j denotes the trajectory number, θ j,p is the inferred parameter value, θ j,GT

is the true value (ground truth) and Ñ is the total number of trajectories. In what follows we
choose Ñ = 100 trajectories for each MAE estimate, except when we compare the results in the
case of different priors on α. For the latter case we choose Ñ = 1000 for each MAE estimate.
This is because, to highlight the effect of the choice of prior distribution, we need a sufficiently
large number of trajectories to achieve a significant difference between the two priors.

In order to compute the MAE in equation (14) we consider the median of the posterior
distribution (equation (1)) weighted with the corresponding model probability (equation (2))
as the inferred value. Therefore the inferred α from a particular trajectory j is obtained as

α j,p = α̃ j,1P(M1|(ΔxN) j) + α̃ j,2P(M2|(ΔxN) j), (15)

where α̃ j,i is the median of the posterior distribution of α for model Mi and trajectory j, whose
steps are collected in (ΔxN) j. We have chosen the median of the posterior as estimator of α,
since this choice is the optimal one based on decision theory, i.e., on average it minimises the
MAE [9, 11].

Figure 2 shows the results of MAE on the estimations ofα as a function ofαGT used to gener-
ate the two-dimensional SBM trajectories. As expected, we see the estimations get better with
the length N of the trajectories. The analysis of noise-free trajectories (σmn = 0) shows that
the estimation is better for high and low values of αGT, whereas it gets relatively worse close
to αGT = 1. A comparison of these results with those from the analysis of noisy trajectories
shows interesting differences. While in general the analysis of noisy trajectories gives worse
estimates of α as compared to the estimates from noise-free trajectories, the noise effects the
estimates of very low and very high values of α much more than the values close to αGT = 1.
We attribute part of the explanation of this to the enlarged possibility that a predicted α is far
away from the ground truth when the ground truth is extreme. For instance, if the measurement
noise strength is completely obscuring the actual position, we would expect the posterior on α
to become equal to the uniform prior. Averaging over this uniform distribution with 0 < α < 2
we obtain 〈MAE〉 = (αGT − 1)2/2 + 1/2, i.e., larger values in the cases where αGT is extreme.
Figure A1 shows similar results from the analysis of one-dimensional SBM trajectories.

On looking at the corresponding results from the analysis of two-dimensional FBM trajec-
tories in figure 3, we find that for the cases of noise-free (σmn = 0) and relatively less noisy
(σmn = 0.1) trajectories, the MAE as a function of the αGT shows an interesting asymmetry. It
decreases monotonically with increasing αGT. This can be understood from realising that the
measurement noise is anti-persistent in nature, i.e., it induces anti-correlation between steps
(see equation (9)), and because subdiffusive FBM itself is anti-persistent, it seems reason-
able that it becomes increasingly difficult to estimate the anomalous diffusion exponent with
increasing anti-persistence, i.e., for lower values of αGT. On increasing the noise-strength (the
cases of σmn = 1 and σmn = 10), we recover the systematic increase in the values of MAE
farther away from αGT = 1 in both directions like for SBM. Figure A2 shows similar results
from the analysis of one-dimensional FBM trajectories.

8
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Figure 3. MAE vs αGT plot with the estimated MAE obtained from the analysis of Ñ =
100 two-dimensional FBM trajectories for each αGT. Each sub-plot shows the results
from the analysis of FBM trajectories generated with different noise-strengths σmn. The
error-bars are the standard error on the mean.

Taking cognisance of the fact that parameter estimation can be performed with or with-
out conditioning on particular models, in figure 4 we compare our estimation of α using
equation (15)—where we considered the posterior median weighted with the model probabil-
ities—with the inference using the posterior median of the true model. The figure on the left
(right) shows results from the analysis of Ñ = 100 SBM (FBM) trajectories of length N = 200
at each αGT. For both SBM and FBM trajectories, and for both σmn = 0.1 and σmn = 10, we
find that using the posterior of the true model does not improve the MAE significantly.

In figure 5 we show what effect choosing a wrong prior on α has on its estimation. The
results labelled ‘wrong prior’ correspond to a linear prior on α whereas those labelled ‘correct
prior’ correspond to a uniform prior (see section 3.1). The figure on the left shows the MAE vs
N plot from the analysis of Ñ = 1000 noise-free SBM trajectories for each N. Each trajectory
was generated with a αGT drawn from a uniform distribution in the range 0 < αGT < 2. The
figure on the right shows the corresponding results from the analysis of Ñ = 1000 noise-free

9
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Figure 4. Comparison of the MAE vs αGT plot between the estimates from the weighted
average (labelled ‘weighted’) and the estimates from the true model without considering
model inference (labelled ‘true’). The error-bars are the standard error on the mean. The
labels are the same for the figure on the right as shown in the figure on the left.

Figure 5. MAE vs N plot with the estimated MAE obtained from the analysis of Ñ =
1000 two-dimensional SBM (left) and FBM (right) trajectories. The results labelled as
‘wrong prior’ were inferred using a linear prior on α. The error-bars are the standard
error on the mean.

FBM trajectories for each N. In both cases we observe that choosing the correct prior results in
a better estimate ofα at low N. The estimations get better with longer trajectories and converges
for the two choices of prior. Since the increments of FBM are correlated there are effectively
fewer independent data points and it makes sense that the convergence for the two choices of
prior happens more slowly with increasing N in that case.

10
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Figure 6. F1 score vs αGT plot from the analysis of two-dimensional FBM and SBM
trajectories. The F1 scores at each αGT are from the analysis of Ñ = 100 SBM and
Ñ = 100 FBM trajectories generated with that particular αGT. The error-bars are the
standard error on the mean for a Bernoulli random variable.

3.4. Quantification of model selection

To quantify the model comparison results we use the F1 metric, which is defined as [12]

F1 =
True positive

Ntotal
, (16)

where true positive denotes the total number of trajectories assigned to the correct model after
model comparison and Ntotal denotes the total number of trajectories considered. We assign
each trajectory ΔxN to the model Mi that has the highest value of the posterior model proba-
bility P(Mi|ΔxN) as defined in equation (2). Except when we compare the effect of different
choices of priors, we consider two models (FBM and SBM) with Ñ = 100 trajectories each,
and therefore with N total = 200. Just as in the case of parameter estimation, to study the effect
of different choices of priors on α we consider the F1 score from FBM and SBM trajectories
but with Ñ = 1000 trajectories each, and therefore with Ntotal = 2000. Note that F1 is always

11
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Figure 7. Plot of the confusion matrix highlighting the asymmetry between subdiffusive
and superdiffusive cases during model inference. For the subdiffusive case (αGT = 0.4)
shown in the upper panel, with increasing noise-strength model inference gets asymmet-
rically worse, with more SBM trajectories incorrectly inferred as FBM than FBM trajec-
tories inferred as SBM. The lower panel shows that for the superdiffusive case (αGT =
1.6), model inference gets more symmetrically worse with increasing noise-strength.

in the range 0 � F1 � 1 with a high value of F1 corresponding to better model prediction. The
error on the estimate of F1 is obtained as the standard error on the mean of a Bernoulli random
variable. This is estimated as

√
p(1 − p)/Ntotal where p is the fraction of trajectories for which

the model prediction is correct.
Figure 6 shows the F1 vs αGT plot for different lengths of the trajectories, N and each sub-

plot shows results from the analysis of trajectories generated with a specific noise-strength
σmn. For all noise-strengths, at αGT = 1, F1 ≈ 0.5 which is expected because at this value
of αGT both FBM and SBM are identical to Brownian motion and therefore should be indis-
tinguishable. In addition to the expected result that the F1 score gets better with increasing
length of the trajectories, and worse with increasing strength of the measurement noise, we
see some interesting features. The analysis of noise-free trajectories (σmn = 0) gives F1 scores
more or less symmetric around αGT = 1, with a score getting systematically better with αGT

farther away from αGT = 1 in both directions. The addition of measurement noise breaks this
symmetry, with the F1 score getting profoundly lower with increasing noise-strength for subd-
iffusive trajectories as compared to superdiffusive trajectories. This can be understood in terms
of the measurement noise being anti-persistent in nature. With increasing noise-strength the
SBM trajectories develop anti-persistent characteristics (see equation (9)) making them dif-
ficult to distinguish from subdiffusive FBM trajectories which are inherently anti-persistent.
This should lead a higher number of SBM trajectories incorrectly predicted as being FBM
trajectories in comparison to the number of FBM trajectories falsely detected as SBM trajec-
tories. Moreover, this effect should occur in the subdiffusive case but not in the superdiffusive
case where noise-free FBM is persistent, not anti-persistent. This is exactly what we see in
figure 7, which shows the comparison of model inference via the confusion matrix plot. The
upper panel shows the results from subdiffusive (αGT = 0.4) SBM and FBM trajectories while
the lower panel shows the results from superdiffusive (αGT = 1.6) SBM and FBM trajectories.
The trajectories were generated with N = 200 and fixed σmn (as specified on the title of each
sub-plot) for both cases. The model prediction is very good for both cases, and for both FBM
and SBM trajectories in the case of small noise-strengths (σmn = 0 and σmn = 0.1). However,
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Figure 8. F1 score vs N plot from the analysis of two-dimensional noise-free SBM and
FBM trajectories. The F1 score at each N are from the analysis of Ñ = 1000 SBM and
Ñ = 1000 FBM trajectories generated with that particular N and a αGT chosen from a
uniform distribution in the range 0 < α < 2. The results labelled as ‘wrong prior’ were
inferred using a linear prior on α. The error-bars are the standard error on the mean for
a Bernoulli random variable.

for large noise-strengths (σmn = 1 and σmn = 10) we clearly see an asymmetry in the model
prediction between subdiffusive FBM and SBM trajectories. With increasing noise-strength,
indeed a higher number of SBM trajectories are predicted as FBM whereas the model pre-
diction for FBM trajectories remain reasonably well. This asymmetry in the model prediction
results is not seen in the superdiffusive case where, with increasing noise-strength, the incor-
rect attribution of FBM trajectories to SBM and vice-versa increases almost symmetrically, as
expected.

Figure 8 shows what effect using a wrong prior on α has on model prediction. We consider
the same data sets used in figure 5 where we discussed the effect of a wrong prior on parameter
estimation. We observe a systematic decrease in F1 score on using a wrong prior on α for low
N. However the score itself is very close to the one obtained using the correct prior, and the
differences between the two choices of prior vanishes with more data.

3.5. CTRW trajectories

The results from Bayesian inference obviously depend on the list of models considered in
the analysis. We highlight this in figure 9 where we present results from the analysis of sim-
ulated two-dimensional CTRW trajectories of length N = 200, with an added measurement
noise of strength σmn = 0.1. CTRW has been used to model numerous experiments exhibiting
anomalous diffusion [51–54]. The chosen CTRW model is a renewal process with Gaussian
jump-lengths with an asymptotic power law waiting time between the jumps [55, 56]. The exact
probability density function of the waiting time is a one-sided α-stable distribution [55, 56],
where 0 � α � 1 is also the anomalous diffusion exponent [55, 56]. The CTRW trajectories
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Figure 9. Left: MAE vs αGT plot from two-dimensional CTRW trajectories of N = 200
points with added measurement noise of strength σmn = 0.1 (labelled ‘CTRW’). Ñ =
100 trajectories were generated for each αGT. The estimates from FBM and SBM trajec-
tories (labelled ‘FBM’ and ‘SBM’ respectively)—with σmn = 0.1 and N = 200 points
from figures 2 and 3—are presented for comparison. All the MAE estimates are done
using equations (14) and (15) with two models, FBM and SBM. Right: model inference
using FBM and SBM models on two-dimensional CTRW trajectories generated with
added measurement noise of strength σmn = 0.1. Ñ = 100 trajectories were generated
for each αGT.

were simulated following reference [57].7 The Bayesian inference was done with SBM and
FBM models. The MAE estimates using equations (14) and (15) clearly show the bad perfor-
mance for the CTRW trajectories—except when αGT is very small or close to 1—as compared
with the estimate from SBM and FBM trajectories with the same noise strength of σmn = 0.1
and number of points N = 200. The results from model inference with FBM and SBM models
on CTRW trajectories are also interesting, albeit expected. The right panel in figure 9 shows
the model inference results on the same CTRW trajectories which were analysed to generate
the MAE vs αGT plot on the left. It shows the fraction of trajectories inferred as most probably
SBM (FBM) as the proportion of purple (blue) colour in a bar at a given αGT. We clearly see
that most of the CTRW trajectories are inferred as SBM unless αGT → 1 when CTRW, SBM
and FBM all converge towards BM and thus towards becoming indistinguishable. In this case,
we see a comparable fraction of trajectories inferred as FBM. Indeed, the inference of CTRW
trajectories as SBM rather than FBM—in the absence of CTRW in the list of models con-
sidered—is expected. This is because SBM can be considered as a homogenised (mean-field)
approximation to CTRW and therefore is its close relative, as was argued in [58]. In particular,
the increments of FBM are stationary and anti-persistent, while this is not the case for both
CTRW and SBM.

4. Conclusion

We implemented Bayesian inference for SBM, and tested the procedure in combination with
FBM on synthetic data. The results obtained in these tests are an upper limit on how well any
inference method can perform, since the procedure is singled out as optimal by Bayes’ theorem

7 We choose Δs = 0.01 and Δt = 1 in the simulations. See reference [57] for details.
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and decision theory. In this connection we note that the issue of falsely inferring many SBM
trajectories as FBM (see our figure 7) also applies for the top machine learning method in the
AnDi competition (see figure 3(e) in [12]). For the computational efficiency of the Bayesian
approach it is important that the hidden variables (e.g., measurement noise) can be integrated
out analytically, which can be achieved for SBM and FBM. For models where this analytic
integration is too difficult, one can instead attempt to integrate the hidden variables numerically
or with Monte Carlo simulations. However, if this is too expensive computationally, one might
resort to machine learning methods as an alternative for both parameter and model inference
[12]. But note that while a Bayesian analysis automatically provides uncertainty estimates for
the inferred parameters, this is not the case for neural networks [59]. This is because the result
of a Bayesian analysis is a posterior distribution for the parameters, unlike point estimates from
a neural network.

Bayesian inference is sometimes criticised for being subjective, because a prior has to
be chosen, which specifies the beliefs in the models and parameters prior to any data being
revealed. The problem diminishes, as more data is obtained, something we also tested here by
comparisons with results from using a wrongly skewed prior on the α-parameter. We would
like to point out, that machine learning methods suffer from the same issue of having to choose
a prior distribution, since distributions of models and parameters have to be chosen for the data
that is used for training these methods.

For real experimental data any simple mathematical model will not be an exact match of
the underlying process. Thus the methods discussed in this article cannot stand alone, but has
to be supplemented by model checking [10] (also called goodness-of-fit tests) to check how
well the inferred model describes the observed data, and possibly, if too big discrepancies are
found, improved models have to be designed and the inference process reiterated with these
models.
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Appendix A. Additional figures (from the analysis of one-dimensional
trajectories)

See figures A1–A3.
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Figure A1. MAE vsαGT plot with the estimated MAE obtained from the analysis of Ñ =
100 one-dimensional SBM trajectories for each αGT. Each sub-plot shows the results
from the analysis of SBM trajectories generated with different noise-strengths σmn. The
error-bars are the standard error on the mean. This figure is equivalent to figure 2, except
that it is for one-dimensional trajectories instead of two-dimensional ones.
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Figure A2. MAE vsαGT plot with the estimated MAE obtained from the analysis of Ñ =
100 one-dimensional FBM trajectories for each αGT. Each sub-plot shows the results
from the analysis of FBM trajectories generated with different noise-strengths σmn. The
error-bars are the standard error on the mean. This figure is equivalent to figure 3, except
that it is for one-dimensional trajectories instead of two-dimensional ones.
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Figure A3. F1 score vs αGT plot from the analysis of one-dimensional FBM and SBM
trajectories. The F1 scores at each αGT are from the analysis of Ñ = 100 SBM and
Ñ = 100 FBM trajectories generated with that particular αGT. The error-bars are the
standard error on the mean for a Bernoulli random variable. This figure is equivalent
to figure 6, except that it is for one-dimensional trajectories instead of two-dimensional
ones.
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