
ARTICLE

Towards a robust criterion of anomalous diffusion
Vittoria Sposini 1, Diego Krapf 2,3, Enzo Marinari4,5, Raimon Sunyer 6, Felix Ritort 7,

Fereydoon Taheri 8, Christine Selhuber-Unkel8, Rebecca Benelli9, Matthias Weiss9, Ralf Metzler 10,11✉ &

Gleb Oshanin12

Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the

traditional law of Brownian-motion, is a signature feature of a large number of complex soft-

matter and biological systems. Anomalous-diffusion emerges due to a variety of physical

mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However,

sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that

the true motion is Brownian—or vice versa. This ambiguity in establishing whether the

dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions

for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-

diffusion is highly desirable for a vast host of applications. Here, we present a criterion for

anomalous-diffusion based on the method of power-spectral analysis of single trajectories.

The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a

ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of

two types of measurement errors. In particular, we find that our criterion is very robust for

subdiffusion. Various tests on surrogate data in absence or presence of additional positional

noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a

proof-of-concept based on diverse experiments exhibiting both normal and anomalous-

diffusion.
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The exploration of the dynamic properties of complex sys-
tems has been massively boosted by modern microscopic
techniques allowing single-particle tracking (SPT) of

micron- and submicron-sized tracers or even single molecules.
SPT is routinely used to probe the local properties of materials
and even live biological cells and tissue by passive and active
microrheology1. SPT now is a key tool to interrogate the
structure–function relationships in biophysical applications2,3,
and it plays a central role in uncovering thermal and energy-
fuelled intracellular transport of tracer particles or single mole-
cules in biological cells and tissues4. SPT is thus at the heart of the
newly emerging era of quantitative life sciences2–31. Specifically,
SPT unveiled different intracellular motion patterns of virus
particles10, Cajal bodies12, molecular motor-driven
transport15,17,23, the motion of telomeres25,32, green fluorescent
proteins21, DNA-binding proteins18,19, mRNA molecules5,22,26,
membrane proteins11,13,20, or endogenous granules24,27 and
vesicles28. SPT has also revealed protein interactions16 as well as
key details of submicron tracer motion in mammalian cells14 and
in the movement ecology of larger animals30,33.

In contrast to pre-averaged data such as those obtained from
fluorescence correlation spectroscopy (FCS) or fluorescence
recovery after photobleaching (FRAP), SPT provides high-
resolution “unprocessed” data: As raw data of test particle tra-
jectories, SPT offers the best possible basis for statistical
analysis34. Indeed, a large toolbox of methods is available for
analysing position time series Xt. Frequently, these data have
revealed that particles exhibit an anomalous diffusion behaviour,
defined by the power-law dependence hX2

t i ’ tα of the mean
squared displacement (MSD), where the angular brackets denote
averaging over different realisations of recorded trajectories. The
anomalous diffusion exponent α is commonly used to tell whe-
ther normal (Brownian, α= 1) or anomalous diffusion (α ≠ 1) is
observed. Here, the regimes of sub- and superdiffusion corre-
spond to 0 < α < 1 and α > 1, respectively. Distinguishing normal
from anomalous diffusion is vital for predicting various char-
acteristics of the systems under investigation—e.g., the diffusion-
control of molecular reactions or the relaxation dynamics after
manipulating the system—eventually allowing us to understand
the actual physical mechanisms underlying the observations.

Fitting the scaling exponent α to finite measured time series is
known to be a major challenge. For instance, contamination of
the true trajectories by measurement noise was shown to lead to
the erroneous conclusion to observe anomalous diffusion
(α ≠ 1)35. There exist methods to alleviate this problem, e.g., the
mean-maximal excursion statistics36. Moreover, Bayesian-
maximum-likelihood methods37–39, deep learning
strategies40–45, or feature-based methods42,43,46,47 also provide
the best estimates for α. However, all these methods have their
shortcomings. Quite severely, α values (along with D values48,49)
retrieved from fitting the MSD hX2

t i will vary from one trajectory
to the next due to finite statistics within single trajectories.
Indeed, trajectories from real experiments display different
regimes with different scaling exponents37,38,50, or due to the
spatial heterogeneity of the environment51,52. This leads to strong
variability in the scaling exponents measured for different tra-
jectories and renders predictions based on such fitting procedures
even less accurate. Moreover, for realistic situations with α values
closer to the Brownian value α= 1, it becomes increasingly dif-
ficult to distinguish anomalous from Brownian motion43. This
latter caveat is further exacerbated when considering the una-
voidable experimental sources of error in many SPT setups,
especially when based on fluorescence microscopy methods.

Likely the most notorious source of uncertainty is the static
localisation error that arises from the finite number of fluores-
cence photons garnered during an image of the particle from

which its position will be retrieved by elaborate tracking schemes:
Each of these photons is emitted from a point-like source in the
sample (the emitting fluorophore) and will hence be captured on
a locus of the camera sensor according to the microscope’s point-
spread function (PSF). In other words, individual photons are
stochastically recorded on the camera sensor, with a distribution
of positions around the actual particle location determined by the
PSF53. As a consequence, recording only a few photons will yield
a poor estimate of the actual particle position, and the char-
acteristic deviation is determined by the standard error. The latter
scales with the inverse root of the number of photons, i.e., for a
large number of photons the static localisation error can be as
small as a few nanometres54. However, for very large numbers of
photons, another perturbation becomes visible, the so-called
dynamic localisation error: Recording an image to determine a
particle’s position takes a finite time during which particles are
constantly on the move. As a result, many different positions are
visited during the acquisition of a single image and only the
temporal mean of these is retrieved from the acquired image as
the apparent, particle position. This dynamic localisation error
effectively adds a negative offset to hX2

t i whereas the static loca-
lisation error adds a positive offset55,56. Both sources of error will
therefore perturb the analysis of the scaling behaviour on short
time scales for which experimental trajectories typically yield the
best statistics. Thus, determining the value of α and deciding
whether diffusional anomalies are present is indeed a major
challenge.

The aim of this article is the analysis of a robust and easy-to-
implement method that allows one to decide on the type and
significance of an apparent anomaly, without being spoiled by
localisation errors. We concentrate here on the situation when Xt

belongs to a wide, experimentally relevant class of anomalous
diffusions—the so-called fractional Brownian motion (FBM)57.
Note, however, that the methodology we develop here will be
amenable to generalisation to any anomalous–diffusion process.
FBM is a Gaussian stochastic process characterised by a zero
mean value and the covariance function�

Xt1
Xt2

� ¼ D t2H1 þ t2H2 � t1 � t2
�� ��2H� �

; ð1Þ

where D is a proportionality factor with physical units of length2/
time2H commonly referred to as generalised diffusion coefficient
and H∈ (0, 1) is the traditionally used Hurst index, such that the
anomalous diffusion exponent is α= 2H. FBM thus describes a
process that can be subdiffusive (H < 1/2), diffusive (H= 1/2), or
super-diffusive (H > 1/2). From a physical point of view, FBM is
well suited to model diffusion in viscoelastic media26,27,58–60, but
it also governs observed motion patterns in movement ecology29,
the density profiles of serotonergic brain fibres61, or roughness in
financial data62.

As mentioned before, localisation errors are usually divided
into two kinds of contributions55,63: the static error, due to
intrinsic properties of the experimental setup, and the dynamic
one, due to the finite time needed for data acquisition, i.e., the
exposure time. From a mathematical point of view, the former is
generally treated as an independent additive noise source whereas
the latter is defined via temporal integration over the finite
exposure time. The effect of measurement error in SPT has been
investigated mainly by focusing on the MSD55,64,65. Few results
are also present in the literature concerning correlation functions
and power spectra55,56, but with a small range of applicability.
Spectral analysis of stochastic processes can be very helpful in
their characterisation, however the power spectrum, according to
the textbook definition, is a property that relies on the mea-
surement time going to infinity and on a very large statistical
ensemble. Both of these assumptions are typically not met when
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dealing with state-of-the-art SPT data, and this is why the spectral
analysis of individual trajectories was only recently introduced66.
The study of single-trajectory spectral densities has been carried
out for different stochastic processes13,67–72 and is based on the
study of the random variable66,67

Sð f ;TÞ ¼ 1
T

Z T

0
dteiftXt

����
����
2

¼ 1
T

Z T

0
dt1

Z T

0
dt2 cos f ðt1 � t2Þ

� �
Xt1

Xt2
;

ð2Þ

where f is the frequency, T is the finite observation time, and Xt is
an individual realisation of a given stochastic process. We will
refer to this quantity as the single-trajectory power spectral
density (PSD).

When the parental process Xt is Gaussian, the probability
density function (PDF) of the random variable S(f, T) is, likewise,
entirely defined by its first moment and variance

μð f ;TÞ ¼ hSð f ;TÞi; ð3Þ

σ2ð f ;TÞ ¼ hS2ð f ;TÞi � hSð f ;TÞi2: ð4Þ
Note that by taking the limit limT!1 μð f ;TÞ ¼ μð f Þ, we

recover the standard definition of the power spectrum. Interest-
ingly it was shown that the characteristic trend of the ensemble-
averaged power spectrum μ( f, T) of several stochastic processes at
high frequencies can be inferred already from a single-trajectory
PSD13,66–71.

A very interesting quantity to study when performing single-
trajectory spectral analyses is the so-called coefficient of variation
of the associated PDF, P(S( f, T)),

γð f ;TÞ ¼ σð f ;TÞ
μð f ;TÞ : ð5Þ

In particular, when dealing with FBM-like motion the limiting
value of γ(f, T) at high frequencies (or for a fixed frequency but
for long T) turns out to be distinctly different in the cases of
subdiffusion (γ( f, T)~1), normal diffusion (γð f ;TÞ � ffiffiffi

5
p

=2) and
superdiffusion (γð f ;TÞ � ffiffiffi

2
p

)67. This quantity was proposed in
ref. 67 as a criterion of anomalous diffusion. Here, we go a sig-
nificant step further and study how its trend towards specific
limiting values is affected by the experimentally unavoidable
presence of localisation errors in tracked trajectories. In parti-
cular, we show that: (i) this criterion is very robust for sub-
diffusion; (ii) in the case of superdiffusion the limiting value of
γ( f, T) is affected by the static measurement error and not by the
dynamic error; and (iii) for normal diffusion both static and
dynamic errors introduce correction terms in the limiting value of
γ( f, T). Knowledge of these results allows a reliable determination
of the anomalous nature of measured signals.

Results and discussion
As already mentioned above, for pure FBM trajectories it was
shown67 that the coefficient of variation at high frequencies
reaches the limiting values: (i) γ= 1 for subdiffusion, regardless
of the value of H, (ii) γ ¼ ffiffiffi

5
p

=2 for normal diffusion, and (iii)
γ ¼ ffiffiffi

2
p

for superdiffusion, regardless of the value of H. Here, we
analyse the case of FBM trajectories in the presence of localisation
errors.

Analytical predictions. Let us start by introducing the mathe-
matical description of the two localisation errors:

(i) The static error is usually modelled as an additive noise
term, thus we denote with Yt the joint stochastic process of the

form

Yt ¼ Xt þ et ; ð6Þ
where Xt is a pure FBM trajectory and et is the static error due to
an imperfect measurement. In a standard fashion63,64, we
stipulate that et is given by the stationary Ornstein–Uhlenbeck
(OU) process

et ¼
Z t

�1
dτe�ðt�τÞ=τ0ζτ ; ð7Þ

where τ0 is the characteristic relaxation time and ζt is a Gaussian
white noise with zero mean and covariance ζ tζ t0 ¼ 2σ2eδðt � t0Þ.
Moreover, it is commonly assumed that τ0≪ Δt, where Δt is the
temporal resolution of the trajectory. In other words, we suppose
that each time when an instantaneous position Xt is recorded, the
latter is specified up to a random “error” with the distribution

PðetÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4πσ2eτ0

s
exp � e2t

4σ2eτ0


 �
; ð8Þ

and is independent of the previous measurements.
(ii) The dynamic error depends on the acquisition or exposure

time τe, such that the acquired position Yt can be written as
Xt ¼ ð1=τeÞ

R τe
0 Xt�ξdξ, meaning that we cannot resolve the

particle motion below τe.
Note that the parameters σe and τ0 for the static error and τe for

the dynamic error are characteristic of the experimental setup and
thus they are usually known quantities when analysing SPT
experiments.

As treating the dynamic error within the single-trajectory PSD
framework is quite tedious and involved, we limit our analytical
study to the joint process (6) in which only the static error is
present and leave the dynamic error for numerical study, see
“Simulations” subsection in the “Methods” section.

Selecting the process in Eq. (6) and performing the single-
trajectory spectral analysis as described above we obtain our
central result

γ2Y ð f ;TÞ ¼
σ2Y ð f ;TÞ
μ2Y ð f ;TÞ

¼ σ2X þ σ2OU þ 2μXμOU
μX þ μOU
� �2 ; ð9Þ

expressing the coefficient of variation of the single-trajectory PSD
of the joint process Yt via the first moments and the variances of
the spectral densities of its constituents. In particular, for the OU
process under the assumption stated above, we have μOU � 2σ2eτ

2
0

and σ2OU � 4σ4eτ
4
0 (see Supplementary Note 1). The results for the

FBM process are dependent on H and are in general quite
involved. We report here just the asymptotic trends in the high
frequency limit and refer interested readers to ref. 67 for more
details,

H < 1=2 : μXð f ;TÞ �
2cHD

f 2Hþ1 ; ð10aÞ

H ¼ 1=2 : μXð f ;TÞ �
4D

f 2
; ð10bÞ

H > 1=2 : μXðf ;TÞ �
2D

f 2
T2H�1; ð10cÞ

and σ2Xð f ;TÞ � 4D2 c4H
f 4Hþ2 þ 2cH

f 2Hþ3 T2H�1 þ 2
f 4
T4H�2

� �
, where

cH ¼ Γð2H þ 1Þ sinðπHÞ, and Γ(z) is the Gamma function67.
Note that in the case of superdiffusion for fixed T the 1/f 2 trend
could erroneously lead us to the conclusion of having standard
diffusion. In addition, the superdiffusive result also shows a
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dependence on T, a clear feature of ageing, that helps in
differentiating it from normal diffusion.

The limiting value at high frequencies of the coefficient of
variation obtained in Eq. (9) is then given by

H < 1=2 : γ2Y ð f ;TÞ � 1; ð11aÞ

H ¼ 1=2 : γ2Y ð f ;TÞ � 1þ 1
4

1þ σ2eτ
2
0

2D
f 2


 ��2

; ð11bÞ

H > 1=2 : γ2Y ð f ;TÞ � 1þ 1þ σ2eτ
2
0

D
f 2

T2H�1


 ��2

: ð11cÞ

Thus, γY is completely independent of the static noise for
subdiffusion, while for normal and superdiffusion correction
terms enter. In all of these cases, the limit of zero frequency leads
us back to the values in absence of noise, that is γ2Y ð f ¼ 0Þ ¼ 2
(see Supplementary Note 2 for more details). Note that for
superdiffusion the limit of long measurement times also leads to
the noise-independent value of γY.

Analysis of simulation data. We start our discussion with results
from analytical predictions and simulations (see “Analytical
predictions” and “Simulations” subsections in the “Methods”
section). Results from 1D simulations are shown in Fig. 1. The
main goal of this analysis is to elucidate the separate contribu-
tions of the two localisation errors, i.e. static and dynamic, in the
study of the coefficient of variation γ. Results from simulations in
2D are reported in Fig. 2. The latter are obtained following a
procedure that imitates a real experiment (see “Simulations”
subsection in the “Methods” section for more details) and thus
provide more realistic results to be compared with the ones
shown below from experiments.

In Fig. 1, panels a and b we immediately observe that the
limiting value of γ in the case of subdiffusive FBM (H= 1/3) is
not affected by any of the two measurement noises. In the
presence of static error only this result was proved also
analytically in Eq. (11a).

For the normal diffusive case (H= 1/2), in Fig. 1, panels c and
d, the situation differs distinctly from the subdiffusive case.

Fig. 1 One-dimensional fractional Brownian motion (FBM) trajectories. We show the coefficient of variation from Monte Carlo simulations of one-
dimensional FBM trajectories in the presence of localisation noise. We set the generalised diffusion coefficient to D= 1 and the Hurst exponent to a and
b H= 1/3 (subdiffusion), c and d H= 1/2(normal diffusion) and e and f H= 2/3 (superdiffusion). Panels a, c, and e: n= 104 realisations consisting of
N= 223 discrete time steps with Δt= 1 from the joint process defined in Eq. (6), for static error only. The dashed lines represent the expected high-
frequency asymptotic trend reported in Eqs. (11a)–(11c) for the different values of σe and τ0= 1. Panels b, d, and f: n= 104 realisations consisting of N= 214

final steps with Δt= 1 obtained for pure FBM (black) and in the presence of dynamic error with τe. The horizontal dashed lines represent the limiting value
at high frequencies for pure FBM. Note that γ is reported as a function of fT, thus the limiting values obtained here for high-frequencies are also valid for the
case of fixed f and large T.
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Namely, the limiting value of γ is affected by both types of
measurement noise, resulting in two opposite effects. On the one
hand, the static localisation error leads to a drop in the value of γ
(Fig. 1, panel c). In particular, from the analytical result Eq. (11b)
one can see that when the ratio σ2e=D grows, γ decreases,
approaching the new limiting value γ= 1 at very high
frequencies. On the other hand, from our numerical study in
Fig. 1, panel d one can see that the dynamic localisation error
causes an increase in the limiting value of γ. The greater τe the
smaller the value of fT at which we observe a deviation from the
pure value γ ¼ ffiffiffi

5
p

=2.
For superdiffusive FBM, the results are reported in Fig. 1,

panels e and f, showing that the limiting value of γ is mostly
affected by the presence of static localisation errors. The latter,
similarly to the diffusive case, leads to a drop in the limiting value
of γ. In particular, if we look at the explicit analytic expression
reported in Eq. (11c) we see that upon increasing the ratio σ2e=D
the coefficient of variation drops, until it reaches the new limiting
value γ= 1, as for BM (α= 1). Moreover, in this case, the
trajectory length T also turns out to be a key parameter in
determining the final trend of γ: for very long trajectories the
presence of static measurement noise becomes less and less
influential. For the dynamic error instead, we see from Fig. 1,
panel (f) that, regardless of the value of τe, the trend of γ does not
present any relevant change.

In general, we observe that localisation errors affect the trend
of γ for normal diffusion and superdiffusive FBM only. For both
cases (α= 1 and α > 1), when the variance σe of the static error
increases, the drop of γ to the ultimate value 1 occurs at
progressively lower values of fT. Instead, when changing the key
parameter of the dynamic error (τe), the trend of γ is affected only
in the case of normal diffusion, showing an increase in its
limiting value.

The analysis of numerically obtained FBM data in 2D with
different localisation errors is reported in Fig. 2. As can be seen,
these results agree with the discussion for the case of the 1D
simulations. On the one hand, in the case of subdiffusive FBM the
coefficient of variation is insensitive to any of the localisation
errors, always converging to the prediction γ= 1. Therefore, this

measure is a very robust means to explore whether tracking data
indeed show a subdiffusive behaviour. On the other hand,
diffusive and superdiffusive FBM data do not appear to be very
sensitive to the presence of dynamic noise, but their results
change dramatically when static noise is present, causing a clear
drop in the value of γ at high frequencies.

Analysis of experimental data. Analytical and numerical results
are nicely confirmed by the analysis of experimental data. Fig-
ure 3 shows results from subdiffusive tracking data on (i) telo-
meres in the nucleus of mammalian culture cells73, and (ii)
p-granules in the cytoplasm of C. elegans embryos74, all distinctly
displaying a convergence to γ= 1, fully consistent with our
predictions.

Experimental data obtained by tracking the motion of beads in
water, reported in Fig. 4, show some nice results for the normal-
diffusion regime. For the pure experimental data (base-line) we
can see an increase in the value of γ at high frequencies. We

Fig. 2 Two-dimensional fractional Brownian motion (FBM) trajectories. We show the time-averaged mean squared displacements (TA-MSDs) and the
coefficient of variation from Monte Carlo simulations of two-dimensional FBM trajectories in the presence of localisation noise. a Representative time-
averaged mean squared displacements (TA-MSDs) of individual two-dimensional FBM trajectories created with H= 0.3 (red circles), H= 0.5 (black
diamonds), and H= 0.7 (blue squares) follow the anticipated power-law scaling (grey dashed lines) for sufficiently long lag times τ. Ensemble averages of
TA-MSDs are superimposed as coloured full lines. For short lag times, significant deviations due to a dominant dynamic localisation error (np= 900, filled
symbols) or a dominant static localisation error (np= 50, open symbols) are visible. These may significantly perturb the extraction of the TA-MSD’s scaling
exponent, α= 2H. b The coefficient of variation γ, for the case of a dominant dynamic localisation error (filled symbols) converges towards the predicted
values γ ¼ 1;

ffiffiffi
5

p
=2 and

ffiffiffi
2

p
(highlighted by the coloured dashed lines). While the subdiffusive case (red) converges rapidly, normal diffusion and

superdiffusion (black and blue, respectively) may need longer trajectories to eventually reach the predicted value. In contrast, for a dominant static
localisation error (open symbols) only the subdiffusive case (red) is in agreement with the predicted value γ= 1 whereas normal diffusion and
superdiffusion (black and blue) are very sensitive to this perturbation.

1.0

1.5

2.0

γ

fT101 102

Fig. 3 Coefficient of variation obtained from experimental subdiffusive
trajectories with a marked anti-persistence. Results from two datasets are
shown: experimental tracking of p-granules in C. elegans embryos (open red
circles) and telomeres in the nucleus of mammalian culture cells (filled red
circles). They both comply with the expectation for subdiffusive data that γ
converges to unity (indicated by the black dashed line). In both cases, the
MSDs contained a non-negligible static localisation error.
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showed that this deviation from the expected value is due to the
effect of the dynamic error. Moreover, if in a post-analysis we
artificially increase the static localisation error, we observe that
the value of γ starts decreasing upon the increase of σe,
approaching the new limiting value γ= 1 (red dashed line in
Fig. 4). These observations are fully in line with our predictions.

We now move to the analysis of superdiffusive experimental
data. Cytoskeleton fluctuations were measured by attaching
RGD-coated beads to the surface of human alveolar epithelial
cells (see the sketch in Fig. 5, panel a). The beads were connected
to the actin cytoskeleton and rearranged by internal molecular
motors. Given that molecular motor activity depends on
temperature, the data show a marked superdiffusive behaviour
at high temperatures (≥29 °C, green triangles and blue circles in
Fig. 5, panel b). Interestingly, at low temperatures (≤21 °C) the
data show that cytoskeleton fluctuations transition from a
subdiffusive behaviour at short timescales to a superdiffusive
behaviour at longer timescales (black squares in Fig. 5, panel b).
This crossover can be explained by the Arrhenius dependence of
the activity of molecular motors on temperature75. Using the
coefficient of variation γ to assess the diffusion regime, we
observe that cytoskeletal fluctuations obtained at high tempera-
tures (29 and 37 °C) display a robust superdiffusive behaviour at

all different timescales. The subdiffusive to superdiffusive cross-
over at 13 and 21 °C is well captured as γ approaches 1 for
frequencies >20 rad/s (Fig. 5, panel c). At longer timescales the
value of γ indicates superdiffusive behaviour, showing that at low
temperatures, molecular motors are active at longer timescales.
From the analysis of this dataset, we can draw two conclusions.
First, we see that there is no statistically relevant effect due to
localisation errors. Second, we observe that the value of γ is very
sensitive to crossovers between different diffusive regimes,
confirming that this quantity is useful for the statistical analysis
of experimental data.

Finally, we consider the diffusion of nanoparticles in the
cytoplasm of human Mesenchymal stem cells. In Fig. 6 panel a,
we report the MSD showing a mildly superdiffusive (α= 1.23)
regime, in agreement with the fact that the nanoparticles are
embedded into the active intracellular environment. However, the
MSD trend is strongly affected by the presence of the static
localisation error, making the fit less reliable. By calculating the
coefficient of variation, reported in Fig. 6, panel b, we clearly
confirm the superdiffusive trend, as γ converges nicely to the
analytical value for the superdiffusion regime, that is

ffiffiffi
2

p
, without

displaying large deviations due to the static error.

Conclusions
Departures from the Brownian behaviour of diffusive processes
are observed in a wide variety of systems of practical interest
across many disciplines, and these phenomena call for explana-
tions and understanding of the underlying physical processes and
microscopic mechanisms. Without such knowledge, one cannot
fully comprehend and reach a full picture of the phenomena.
Concurrently, a conclusion that the dynamics are indeed anom-
alous relies on proper data treatment, the size of statistical sam-
ples, blurring measurement errors and errors incurred by the
fitting procedures, or transients obscuring the true scaling expo-
nents. It is therefore indispensable to have at hand robust
methods allowing one to reach justified, sound conclusions on the
dynamics.

In this work, we test the coefficient of variation γ of the single-
trajectory power spectral density and show that it represents a
valuable method towards a robust criterion for anomalous dif-
fusion. We combine analytical, numerical and experimental stu-
dies of diffusive dynamics in very diverse systems, to demonstrate
how the values of γ for trajectories belonging to FBM are affected
by the presence of localisation errors. Within such a combined
effort, numerical simulations which imitate real experiments

Fig. 4 Coefficient of variation obtained from diffusive data of beads in
water. The baseline is marked in blue. Static localisation errors are
artificially added to the data to obtain the other two curves. The red and
black dashed lines indicate γ= 1 and

ffiffiffi
5

p
=2, respectively, which are the

values to which γ converges in the case of subdiffusion and normal diffusion
when no error is present.

Fig. 5 Cytoskeleton fluctuations of living cells exhibit superdiffusive behaviour. a Sketch of the experimental system for microbeads attached to the
surface of epithelial cells (see the “Experiments" subsection in the “Methods” section for more details) together with a representative experimental
trajectory. b MSD at varying temperatures. The straight lines show that the dynamics are superdiffusive with 2H between 1.5 and 1.7, depending on
temperature. c Coefficient of variation of the power spectrum of the motion of the surface-bound microbeads. The dashed lines indicate γ= 1,

ffiffiffi
5

p
=2, andffiffiffi

2
p

, the predicted limiting values of γ for the different diffusion regimes, in the absence of any noise.
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performed here serve us to elucidate the relative contributions of
static and dynamic measurement noise in a controllable way, and
therefore to prove our theoretical results and concepts. A further
comparison with experimental data obtained for rather diverse
systems permits us to verify the predicted trends and thus obtain
a fully comprehensive picture.

Apart from the case f→ 0 in which the coefficient of varia-
tion γ(f, T) converges to the universal value

ffiffiffi
2

p
, we found that

our results vary depending on the specific diffusive regime and
on the kind of localisation error. In particular, the coefficient of
variation represents a very robust way to define whether
tracking data show a subdiffusive behaviour. This can be of
decisive help in data analysis, in particular, when the deviation
of the anomalous exponent from unity is small and thus the
fitting of the MSD can produce misleading results. Conversely,
diffusive and superdiffusive data are more sensitive to mea-
surement noise. In these regimes the value of γ displays a clear
drop at high frequencies in the presence of a static localisation
error, which is corroborated by both numerical and experi-
mental data, while the effect of a dynamic error appears to be
relevant for the normal-diffusive regime only, causing an
increase in the limiting value of γ at high frequencies. As well,
this theoretical prediction is confirmed by our numerical and
experimental results. Thus, in the case of superdiffusion the
criterion remains very robust in the presence of dynamic error
while in general, it is not when static localisation error is pre-
sent. Nevertheless, the analytical expression obtained for the
correction term still allows us to control the effect of the
measurement error in this case. Finally, the criterion appears to
be the least robust for normal diffusion, which is affected by
both static and dynamic localisation errors. Arguably, the
observed trends in γ can be used also to post-process the data
by adding static and dynamic errors to explore the limiting
values of γ as a function of noise intensity.

The application of our method to diverse experimental systems
presented in our paper evidence that it provides a very robust tool
for the analysis of the anomalous character of random motion. In
conjunction with the MSD analysis, it will permit to make of
conclusive statements on the actual departures from standard
diffusive motion, even in the presence of unavoidable errors in
experimental measurements, and thus point towards the necessity
to understand the actual underlying physical mechanisms. Apart
from a stand-alone criterion, our power spectral method will also
represent an important ingredient in decision trees and feature-
based neural network approaches.

Methods
Simulation methods. We perform simulations of FBM trajectories in 1D and 2D
in order to complement and support our analytical predictions as well as the
analysis of experimental data. The simulations are performed in Python for the 1D
case and in Matlab for the 2D case.

1D case. FBM trajectories of length T=N × Δt, where N corresponds to the total
number of time steps and Δt to the discretisation time step, are generated for
different values of the Hurst index H to explore all three regimes via the fbm
package in Python. In order to include the dynamic error, given a fixed exposure
time τe corresponding to ne= τe/Δt time steps, we first simulate longer FBM tra-
jectories with a total number Ne=N × ne of time steps. Then, from each of these
trajectories, a new trajectory is obtained, whose points are given by the average over
ne subpoints of the original trajectory, i.e., XðtiÞ ¼ 1

ne
∑ne�1

j¼0 Xðti � jΔtÞ. As far as
the static error is concerned we use its definition (7) and generate stationary OU
trajectories with relaxation time τ0= Δt and varying noise amplitude σe.

2D case. An ensemble of M= 100 two-dimensional FBM trajectories, each with
N= 2500 positions covering a total time T=N × Δt with Δt= 0.1 s was created
with the Matlab routine wfbm for the Hurst coefficients H= 0.3, 0.5, and 0.7, hence
exploring FBM from the subdiffusive to the superdiffusive regimes. Mean step sizes
within Δt along each coordinate were chosen to be 0.01 μm. To account for the
dynamic and static localisation errors, each time step was subdivided into
ne= 10 substeps during each of which np positions according to a diffraction-
limited Gaussian PSF, centred at the particle position at that time, were calculated.
To this end, initial FBM tracks had a length i= 1,…,Nne and at each substep
location xi, a total of j= 1,…, np positions xi,j= xi+ ξj were produced, where ξj are
Gaussian random numbers with zero mean and standard deviation σ= 0.220 μm.
From this, track positions were determined via

Xk ¼ XðkΔtÞ ¼ 1
nenp

∑
kne

i¼ðk�1Þneþ1
∑
np

j¼1
xi;j: ð12Þ

For np < 100, this procedure creates a dominant static localisation error whereas
for np≫ 100 only a dynamic localisation error is seen.

Experimental systems. To assess the applicability of experimental data of the
coefficient of variation analysis in the presence of localisation errors, we analysed
experimental data displaying different diffusive regimes. In what follows we report
a short description of the experimental systems.

Subdiffusive data
Experimental tracking data for p-granules in C. elegans embryos: The data were
obtained and analysed as described in ref. 74. As shown before, p-granule trajec-
tories have a noticeable static localisation error that perturbs, e.g., the velocity
autocorrelation function. Here, only trajectories with N= 100 positions at a time
increment Δt= 210 ms with a subdiffusive TA-MSD scaling were considered.
Trajectories with scaling exponents α∈ [0.7, 0.9], α∈ [0.5, 0.7], and α ∈ [0.3, 0.5]
were grouped into three distinct sets. For each, γ was calculated as a function of fT,
and the average of these was used for Fig. 3 to soften fluctuations induced by the
fairly short trajectories.

Trajectories for telomeres in the nucleus of mammalian culture cells: The data were
obtained similar to our previous work73: U2OS cells (DSMZ Cat# ACC-785,

Fig. 6 Mean squared displacement (MSD) and coefficient of variation for superdiffusive nanoparticles in hMSCs. a MSD showing a superdiffusive
regime with large deviations due to the presence of the static localisation error. b The coefficient of variation confirms the superidffusive trend.
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RRID:CVCL_0042) were cultured as described and telomeres were highlighted by
transient transfection with a plasmid for GFP-tagged TRF-2 (24 h prior to
microscopy, using Lipofectamine3000 according to the manufacturer’s protocol).
For live-cell microscopy, cells were plated 24 h prior to transfection in four-well μ-
slide microscopy chambers; 15 min prior to imaging, the medium was changed to
MEM without phenol red supplemented with 5% FCS and 5% HEPES. Imaging
was performed with a customised spinning-disk confocal microscope based on a
DMI 4000 stand (Leica Microsystems, Germany) with a custom-made incubation
chamber, a CSU-X1 spinning-disk unit (Yokogawa Microsystems, Japan), an HC
PL APO ×100/1.40NA oil immersion objective, and an Evolve 512 EMCCD camera
(Photometrics, USA). Samples were illuminated at 488 nm and fluorescence was
detected in the range 500–550 nm. Trajectories were recorded at a time increment
Δt= 110 ms and only trajectories with at least N= 1000 positions were retained
(and trimmed to the same length if trajectories were longer). In line with our
previous finding, trajectories featured an anti-persistent subdiffusion with an
average scaling exponent of α ≈ 0.55.

In both cases, the generalised diffusion coefficients of individual trajectories
varied log-normally. To soften the influence of this locus- and particle-dependent
prefactor in the PSD analysis, each trajectory was normalised in each coordinate by
its respective root-mean-squared step taken within Δt before calculating γ.

Diffusive data. We analysed the motion of 1.2 μm-sized polystyrene beads in
aqueous solution as representative experimental data for Brownian motion.
Namely, we suspended the beads in phosphate-buffered saline with 1% bovine
serum albumin and 0.05% Tween 20 to avoid the aggregation and introduced the
suspension into a flow cell chamber. Subsequently, the flow cell chamber was sealed
for imaging. The beads were imaged at 100 frames per second in an inverted
microscope with a ×40 objective (Olympus PlanApo, N.A. 0.95) and a sCMOS
camera (Andor Zyla 4.2). Bead tracking in the plane was performed in LabView
using a cross-correlation-based tracking algorithm. A set of 150 trajectories, each
consisting of 4096 frames, was used in the analysis.

Superdiffusive data
Cytoskeleton fluctuations of living cells at different temperatures75: Cytoskeleton fluc-
tuations were measured by tracking the trajectory of refractive microbeads attached to
the surface of human alveolar epithelial cells (A549). The microbeads were previously
coated with Arginine–Glycine–Aspartic acid (RGD) containing peptide (Peptide 2000,
Integra Life Sciences, San Diego, CA) to link the probe to the actin cytoskeleton through
integrin membrane receptors. The movement of these beads was sensitive to a wide
range of cytoskeleton manipulations including actin polymerisation/depolymerisation
drugs, actomyosin relaxation, cell stretching, temperature changes, and ATP depletion76

indicating that spatial fluctuations of microbeads linked to integrin membrane receptors
reflect intrinsic cytoskeleton dynamics.

Microbead positions were tracked at ×40 magnification using an inverted
microscope (TE-2000E, Nikon, Japan) equipped with a charge-coupled device
(CCD) camera (Orca, Hamamatsu, Japan). The spontaneous microbead movement
was tracked for 200–400 s at a sampling rate of 5 Hz. The position of the microbead
was determined with subpixel resolution by computing the microbead centroid
with an intensity-weighted average algorithm implemented with custom-made
software (LABVIEW, National Instruments, USA). Data were corrected for the
drift of the stage of the microscope, which was computed as the average change in
the position of all microbeads within the field of view.

The temperature dependence of cytoskeleton fluctuations was measured by
heating or cooling the microscope stage with a microincubator system (HCMIS
MicroIncubator System, ALA Science, Westbury, NY) and closed-loop control. The
sample temperature was measured with a negative temperature coefficient
thermistor (332 Temperature Controller, Lakeshore, Westerville, OH).
Measurements were taken in n= 6 wells (~20 microbead/well) per temperature.

Human alveolar epithelial cells (A549) (cell line CCL-185 ATCC, Manassas,
VA) were cultured in RPMI 1640 medium supplemented with 1 mM L-glutamine,
100 U/ml penicillin, 100 mg/ml streptomycin and 2 μg/ml amphotericin B (all from
GIBCO, Gaithersburg, MD), 10% inactivated fetal calf serum (Biological Industries,
Kibbutz Beit Haemek, Israel), and buffered with HEPES (Sigma, St. Louis, MO).
One day before experiments cells were harvested with brief exposure to trypsin-
EDTA (Sigma) and plated (900 cells/mm2) on collagen-coated wells.

Diffusion of nanoparticles in the cytoplasm of human Mesenchymal stem cells:
Here we tracked yellow-green fluorospheres of size 100 nm injected carefully in the
cytoplasm of human mesenchymal stem cells (hMSCs). The fluorospheres (Fluo-
SpheresTM ThermoFisher, Cat. No. F8803) were negatively charged (carboxylated-
modified) polystyrene beads that are suitable for intracellular tracking. Samples were
prepared by diluting the suspension to 2mg/ml concentration after 20min sonication
of the stock solution to ensure even dispersion of the particles in the solution. The
diluted solution subsequently was vortexed for 2min for optimised mixing and then
loaded via a microloader pipette (Eppendorf) in manufactured glass capillaries appro-
priate for microinjection (Femtotips® Eppendorf Cat. No. 5242952008). Their micro-
injection was executed at room temperature using a micromanipulation system
(Eppendorf) at controlled pressure. Immediately after the injection, imaging was per-
formed 100 s at room temperature with an Olympus IX81 inverted microscope using an
Olympus UPLSAPO× 40/0.95 Objective and a Hamamatsu Orca-2 camera. At each

frame of the resulting video files, the particles were identified and their movement was
tracked using a publicly available Python package which also provides tools to spot the
candidate features based on high-intensity matches, filtering and different type of
corrections such as drift correction77.

Data availability
The data reported in this work are available from the corresponding authors upon
reasonable request.

Code availability
The codes used to obtain the results of this work are available from the corresponding
authors upon reasonable request.
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