
Journal of Computational Physics 435 (2021) 110264
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

First-passage problem for stochastic differential equations 

with combined parametric Gaussian and Lévy white noises via 

path integral method

Wanrong Zan a, Yong Xu a,b,∗, Ralf Metzler c, Jürgen Kurths d,e,f

a School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
b MIIT key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an 710072, China
c Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
d Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
e Department of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
f Saratov State University, 410012 Saratov, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 4 March 2021

Keywords:
First-passage problem
Stochastic differential equation
Fractional Fokker-Planck-Kolmogorov 
equation
Path integral method
Monte Carlo simulation
Combined parametric Gaussian and Lévy 
white noises

We study the first-passage problem for a process governed by a stochastic differential 
equation (SDE) driven simultaneously by both parametric Gaussian and Lévy white 
noises. We extend the path integral (PI) method to solve the SDE with this combined 
noise input and the corresponding fractional Fokker-Planck-Kolmogorov equations. Then, 
the PI solutions are modified to analyze the first-passage problem. Finally, numerical 
examples based on Monte Carlo simulations verify the extension of the PI method and 
the modification of the PI solutions. The detailed effects of the system parameters on the 
first-passage problem are analyzed.
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1. Introduction

The first-passage problem describes the instant in time when the dynamic variable of a system crosses a preset value 
for the first time in a given time interval. This problem widely appears in engineering, physical, chemical, and biological 
systems [1–5]. Typical examples include integrate-and-fire neuron dynamics, in which a neuron fires once a fluctuating 
voltage level first reaches a specified level [6]; ship roll motion, in which the ship capsizes once the ship roll angle first 
exceeds the safe range [7]; shallow curved structures (such as arches and shells), whose structure may be destroyed once 
a snap-through buckling occurs [8]; or financial mathematics, for instance, the stock price level at which a given stock is 
sold [9]. Prototypical examples also include chemical reactions [10,11] and molecular signaling processes in biological cells 
[12,13]. First-passage dynamics is often characterized in terms of (global) mean first passage times [2,14,15]. Recent studies 
show that even in simple geometries repeated first-passage events are vastly dissimilar [16,17] and that the associated 
spectra of first-passage times [18,19] and reaction-times [20,21] are characterized by time scales spanning several orders of 
magnitude.

While the above examples are based on continuous random walk processes or on Brownian motion, an important class 
of first-passage processes is based on jump processes with scale-free, power-law distributed jump lengths. Thus, Lévy flights 
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and Lévy walks [22–24] have been promoted as efficient search mechanisms due to their interplay of local and non-local 
search patterns [25]. This efficiency is engrained in the so-called Lévy foraging hypothesis [26]. Lévy search patterns have, 
inter alia, been observed in the motion patterns of individual albatross birds [27] or marine predators [28]. They have 
been proposed for the optimal search by robots [29] and observed in human motion patterns [30]. Recently, Lévy spread-
ing patterns have been revealed in the COVID-19 pandemic [31]. Theoretically, Lévy motion patterns may emerge due to 
dimensional reduction [32,33] or emerge from deterministic nonlinear systems near a critical point [34]. The efficiency of 
Lévy search-like patterns was studied in detail in, e.g., [33,35–38] for symmetric processes and in the presence of an exter-
nal drift, e.g., wind or an underwater water stream [39,40]. The Lévy flight foraging hypothesis is a driving force for much 
research on ongoing Lévy flight search. In recent years, Reynolds explored the mechanisms behind the Lévy movement by 
analyzing movement patterns of marine predators, bacteria, honeybees, etc. [41]. Coherently Klages illustrated the need to 
go beyond the Lévy foraging hypothesis by elaborating on search for food of birds, fish and insects [42].

It has been realized that Lévy is not always optimal for all search situations. Simon and Julien indicated that a composite 
Brownian walks outperform a Lévy walk when the resources encountered are systematically detected [43]. Random search 
processes purely based on Lévy search mechanisms in some sense are hampered by the intrinsic property of leapover [44]: 
the searcher may overshoot the target point considerably. Consequently first-passage and first-arrival acquire significantly 
different behaviors for Lévy search processes [44–46]. The reduced arrival probability for Lévy searchers may be mitigated 
by adding a second motion mechanism, namely, continuous Brownian motion [47,48]. Such combined Lévy-Brown search in 
fact occurs naturally in physical scenarios of molecular-diffusive search in reduced-dimensional settings [32,33]. In models 
for gene regulation, for instance, long, Lévy-like jumps across chemically distant but physically close DNA-segments are 
followed by Brownian sliding motion along the DNA chain [33,47]. Combined Lévy and Brownian search was applied to food 
search by animals [49] and movement patterns of marine predators [28]. In such search processes, Lévy search patterns are 
efficient when the target is far from the starting point, while the Brownian search mechanism is advantageous for close-by 
targets. Combined dynamics of Gaussian and Lévy noises is also found in models for climate systems [50,51], in which the 
climate dynamics is affected by both atmospheric forcing and extreme climate. Atmospheric forcing, for instance, by wind 
stress, heating, and freshwater transport, is modeled as Gaussian noise, but extreme climate changes are modeled in terms 
of Lévy white noise. For the study of all these systems, the first-passage dynamics is of great interest: when does molecule 
bind to its specific spot on the DNA to start follow up reactions, or how long does it take until an animal located a food 
source or reach unoccupied territory? How long does it take for the population in a given geographical region to be infected 
by a virus? Or when would we expect a given climate parameter to reach above-critical values?

Here we study in detail the first-passage behavior of stochastic processes driven by combined Lévy-Gaussian white noise. 
We quantify the dynamics in terms of the first-passage probability, the first-passage time probability density function (PDF), 
and the mean first-passage time. In addition to these quantities, we will also study the reliability function to be defined 
below which is complementary to the first passage probability. The reliability function essentially represents the probability 
that no first-passage occurs within a given time interval and is thus directly related to what in physics literature is called the 
survival probability. The reliability function is the cumulative density function of the reliability density function (RDF), that 
represents the transient solution of the corresponding Fokker-Planck-Kolmogorov (FPK) equation with absorbing boundary 
conditions. The FPK equation is a deterministic method to study dynamics, similar to research on distributed space-fractional 
diffusion in anomalous kinetics, the Voigt function in spectroscopy, fractional advection diffusion in diffusion, etc. [52–57]. 
However, the analytical solution of the FPK equation only exists for a few special cases. For most cases, the FPK equation is 
solved numerically [58–60], for instance, by finite difference methods, finite element methods, the path integral (PI) method, 
etc. Among these, the PI method can obtain the transient solutions with high accuracy.

Once formulated for a specific system, the PI approach is very well suited for numerical evaluations of given stochastic 
differential equations (SDEs) or the corresponding FPK equations. It is important to emphasize that the PI solutions are 
highly accurate both in the transient and stationary cases. For SDEs solely driven by Gaussian, Poisson, or Lévy white noise, 
the PI method has been developed and investigated. Wehner and Wolfer solve the FPK equation corresponding to an SDE 
with Gaussian noise by the PI method firstly [61–63]. This method has been widely used to solve practical systems and 
improved by interpolation methods for higher accuracy [64–67]. Recently, the PI method has been extended to SDEs with 
non-Gaussian, Poisson or Lévy noise. The extension of the PI method for SDEs with Poisson white noise can be found in 
[68,69]. For the Lévy white noise case, the PI method was proved to be applicable to SDEs and the corresponding governing 
equations [70,71]. Moreover, the PI method has also been extended to solve SDEs with both Gaussian and Poisson noises 
[72]. Here we demonstrate how to extend the PI method to SDEs driven by both Gaussian and Lévy white noises.

In this paper, we study the first-passage dynamics of SDEs with both parametric Gaussian and additive Lévy white noises 
by extending the PI method to this case. The remainder of this paper is arranged as follows. Firstly, section 2 describes 
the model, which contains the SDEs and the corresponding FPK equations. Secondly, the extension of the PI method for 
the model is presented in section 3. Thirdly, in section 4 the performance indices of the first-passage problem are listed 
and the PI solutions are modified to allow the calculation of the performance indices. Then, in section 5, the PI solutions 
are calculated and are verified by extensive Monte Carlo simulations. Moreover, the first-passage problem for a range of 
different parameters is studied. Finally, section 6 concludes the paper. Details of the extension of the PI method to SDEs 
with combined parametric Gaussian and parametric Lévy white noises are presented in the Appendix.
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2. The model

This section depicts the SDEs and the corresponding fractional FPK equations. The SDEs with both parametric Gaussian 
and additive Lévy noises are described in detail in section 2.1. In section 2.2, we derive the corresponding fractional FPK 
equations, which govern the PDFs of the solutions of the SDEs. The SDEs we used here is a stochastic differential equation 
in the Itô sense. For SDEs in the Stratonovich sense, we can transform the SDEs to Itô sense by use of the Wong-Zakai 
correction term. For more details, see [73] and the discussion with references in [74].

2.1. Stochastic differential equation

The scalar Itô SDE with Gaussian parametric noise and Lévy external noise reads{
Ẋ(t) = f (X) + g(X)ξ(t) + ξα(t),
X(0) = X0,

(1)

where ξ(t) and ξα(t) are Gaussian and α-stable Lévy white noises, respectively, and both noise sources are considered to 
be independent from another. Moreover, f (X) and g(X) are functions of X , and X0 is the initial value of X(t) at time 
t = t0, which can be a deterministic or random variable with a given PDF. The “noise strength” g(X) for non-constant g(·)
is considered as multiplicative noise. Finally, the function f (X) can be interpreted as a physical force, for instance, due to a 
finite territory of the searching animal.

The characteristic function of the α-stable Lévy white noise ξα(t) is Z(k) = exp(−D Lt|k|α), here and below, x is the 
variable in real space and k is the variable in the corresponding Fourier space. Here D L and α are the noise intensity and 
stability index of the α-stable Lévy white noise, respectively. ξα(t) is the formal time derivative of a symmetric Lévy stable 
processes Lα(t). In Eq. (1), ξ(t) is a Gaussian white noise with zero mean and the autocorrelation 〈ξ(t)ξ(s)〉 = 2DGδ(t − s), 
where DG is the intensity of the Gaussian white noise and δ(·) is the Dirac delta function. We note that ξ(t) is the formal 
time derivative of Brownian motion B(t). Next, we introduce the increment of the solution X(t) in a sufficiently small 
time increment δt as δX(δt). Namely, δX(δt) = X(t + δt) − X(t). We will introduce the corresponding cumulant generating 
function δK X (k, δt|x, t) of the increment δX(δt), which is needed for the derivation of the corresponding FPK equations.

For the increment δX(δt) the corresponding characteristic function δZ X (k, δt|x, t) and the cumulant generating function 
δK X (k, δt|x, t) can be expressed as [75]

δZ X (k, δt |y, t ) = exp [δK X (k, δt |y, t )] = E {exp [ik (X (t + δt) − X (t))] |X (t) = y }
= E {exp [ikf (y) δt + ikδL + ikg (y) δB] |X (t) = y }
= exp [ikf (y) δt]E [exp (ikg (y) δB)]E [exp (ikδL)] .

(2)

In the above equation, k is the conjugate variable of x − y. Moreover, the δB and δL are increments of Brownian motion and 
the Lévy stable process, respectively.

For the Lévy stable process Lα(t), the increment δL and the corresponding characteristic function δZ L(k, δt) and cumulant 
generating function δK L(k, δt) satisfy

δZ L (k, δt) = exp [δK L (k, δt)] = E [exp (ikδL)] = exp
[−δt D L |k|α]

. (3)

For the Brownian motion B(t), a similar relation among increment δB , characteristic function δZ B and cumulant generating 
function δK B reads

δZ B (k, δt) = exp [δK B (k, δt)] = E [exp (ikδB)] = exp
[
−δt DGk2

]
. (4)

Using Eqs. (3) and (4), expression (2) is recast into

δZ X (k, δt |y, t ) = exp [ikf (y) δt] exp
[
−δt DGk2 g(y)2

]
exp

[−δt D L |k|α]
. (5)

Thus, the cumulant generating function δK X (k, δt|x, t) can be obtained as

δK X (k, δt |y, t ) = ikf (y) δt − δt DGk2 g(y)2 − δt D L |k|α. (6)

2.2. Corresponding Fokker-Planck-Kolmogorov equation

In this subsection, the fractional FPK equations corresponding to the SDEs (1) are derived starting from the Chapman-
Kolmogorov-Smoluchowski (CKS) equation and using the characteristic function. From Eq. (1) it follows immediately that 
the process X(t) is Markovian (due to both Lévy process and Brownian motion with independent increments), thus the CKS 
equation holds. Namely, for ∀δt > 0 we have
3
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p (x, t + δt |x0, t0 ) =
+∞∫

−∞
p (x, t + δt |y, t ) p (y, t |x0, t0 )dy. (7)

In the above equation, p(x, t + δt|x0, t0) and p(y, t|x0, t0) are the PDFs at times t + δt and t with x(t0) = x0 as the initial 
value. Moreover, p(x, t + δt|y, t) is the transition PDF from time t to t + δt and from location y to x. By inverse Fourier 
transform F−1, the transition PDF p(x, t + δt|y, t) in Eq. (7) can be expressed as

p(x, t + δt|y, t) = F−1[δZ X (k, δt|y, t)] = F−1[exp(δK X (k, δt|y, t))]

= 1

2π

+∞∫
−∞

exp [−ik (x − y)] exp [δK X (k, δt |y, t )] dk.
(8)

Inserting Eq. (8) into Eq. (7), we get

p (x, t + δt |x0, t0 ) = 1

2π

+∞∫
−∞

+∞∫
−∞

exp [−ik (x − y) + δK X (k, δt |y, t )] p (y, t |x0, t0 )dkdy. (9)

Letting δt = 0, Eq. (9) reduces to

p (x, t |x0, t0 ) = 1

2π

+∞∫
−∞

+∞∫
−∞

exp [−ik (x − y)] p (y, t |x0, t0 )dkdy. (10)

Subtracting Eq. (10) from expression (9) we have

p (x, t + δt |x0, t0 ) − p (x, t |x0, t0 )

= 1

2π

+∞∫
−∞

+∞∫
−∞

{exp [−ik (x − y)] [exp (δK X (k, δt |y, t )) − 1]} p (y, t |x0, t0 )dkdy

= 1

2π

+∞∫
−∞

+∞∫
−∞

{
exp [−ik (x − y)]

[
δK X (k, δt |y, t ) + O

(
δt2

)]}
p (y, t |x0, t0 )dkdy

=
+∞∫

−∞
F−1 [δK X (k, δt |y, t )] p (y, t |x0, t0 )dy + O

(
δt2

)
.

(11)

Here F−1[δK X (k, δt|y, t)] can be calculated through Eq. (6) as

F−1[δK X (k, δt|y, t)] = f (y) δt (−1) δ′ (x − y) − δt DG g(y)2 (−�)δ (x − y) − δt D L(−�)α/2δ (x − y) . (12)

Next, substituting Eq. (12) into relation (11), we get

p (x, t + δt |x0, t0 ) − p (x, t |x0, t0 )

= −δt
∂

∂x
( f (x) p (x, t |x0, t0 )) + δt DG

(
�g(x)2 p (x, t |x0, t0 )

)
− δt D L

(
(−�)α/2 p (x, t |x0, t0 )

)
+ O

(
δt2

)
.

(13)

Thus, we get the corresponding governing equation

∂

∂t
p (x, t |x0, t0 ) = lim

δt→0

p (x, t + δt |x0, t0 ) − p (x, t |x0, t0 )

δt

= − ∂

∂x
[ f (x) p (x, t |x0, t0 )] + DG

[
�g(x)2 p (x, t |x0, t0 )

]
− D L

[
(−�)α/2 p (x, t |x0, t0 )

]

= − ∂

∂x
[ f (x) p (x, t |x0, t0 )] + DG

∂2

∂x2

[
g(x)2 p (x, t |x0, t0 )

]
+ D L

∂α

∂|x|α p (x, t |x0, t0 ) .

(14)

Equivalently, the PDF p (x, t) of the solution of Eq. (1) satisfies

∂
p (x, t) = − ∂

[ f (x) p (x, t)] + DG
∂2

2

[
g(x)2 p (x, t)

]
+ D L

∂α

α p (x, t) , (15)

∂t ∂x ∂x ∂|x|

4
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with the initial condition p(x, t0) = δ(x − x0) or an assigned PDF. In addition, the fractional FPK equation (15) can be directly 
inferred from the continuous time random walk theory under combined Gaussian and Lévy walk [47,48,76]. In Eq. (15) the 
fractional operator ∂α/∂|x|α · is understood in terms of its Fourier transform −|k|α · [76]. Eq. (15) can be viewed as a 
generalized case, as:

(i) For D L = 0 Eq. (15) becomes

∂

∂t
p (x, t) = − ∂

∂x
[ f (x) p (x, t)] + DG

∂2

∂x2

[
g(x)2 p (x, t)

]
, (16)

which is the governing equation of the SDE with parametric Gaussian noise.
(ii) For DG = 0 Eq. (15) reduces to

∂

∂t
p (x, t) = − ∂

∂x
[ f (x) p (x, t)] + D L

∂α

∂|x|α p (x, t) . (17)

This is just the fractional FPK equation corresponding to SDE with α-stable Lévy white noise [76–78].

3. Path integral solution

This section is about the extension of the PI method to the SDEs (1) as well as the corresponding fractional FPK equations
(15). Specifically, the short-time transition PDF is derived in detail. The PI solution obtained through this short-time tran-
sition PDF then is shown to satisfy the fractional FPK equation (15), which corroborates the correctness of the short-time 
transition PDF.

The PI method is an effective method to calculate the evolution of the resulting processes in terms of the short-time 
transition PDF in a step-by-step fashion. The PDF p(x, t) of X(t) can be obtained through

p (x, t) =
∫
R

p (x, t |x0, t0 ) p (x0, t0)dx0, (18)

where p(x0, t0) is the initial PDF of X(t) at t = t0. Dividing the time interval [t0, t] into N sub-intervals, we have

p (x, t) =
∫
R

p (x, t |xN−1, tN−1 )

∫
R

p (xN−1, tN−1 |xN−2, tN−2 ) · · ·
∫
R

p (x1, t1 |x0, t0 ) p (x0, t0)dx0 · · ·dxN−2dxN−1,

(19)

where t0 < t1 < t2 < . . . < tN = t . This expression indicates that the long-term evolution is composed of a series of short-
term evolutions. This means that the transient PDFs can be obtained starting from a given initial condition (deterministic or 
stochastic) once the short-time transition PDF is obtained.

3.1. Short-time transition PDF

Although the solution of the fractional FPK equations (15) is just the short-time transition PDFs (for sufficiently small 
t − t0), it is quite difficult to solve this kind of fractional FPK equations analytically. To overcome this difficulty, we derive 
the short-time transition PDFs through the SDEs (1) directly using the ideas developed in [68–70,72], which are depicted in 
Fig. 1.

In Fig. 1, the trajectories X̄(ρ), starting from the deterministic point x̄, are trajectories from the whole set of trajectories 
of the processes X(t) in the short-time interval [t, t + δt]. These trajectories still satisfy the SDE (1) and can be depicted as{ ˙̄X (ρ) = f

(
X̄
) + g

(
X̄
)
ξ (t + ρ) + ξα (t + ρ) ,

X̄ (0) = x̄.
(0 < ρ ≤ δt) (20)

Therefore, the short-time transition PDF p(x, t + δt|x̄, t) of the process X(t) in Eq. (1) coincides with the unconditional PDF 
p X̄ (x, δt) of the process X̄(ρ), namely, p(x, t + δt|x̄, t) = p X̄ (x, δt).

Despite the fact that the conditional PDFs can be derived through the unconditional PDFs, the derivation is still not easy. 
The transition PDFs for the combined Gaussian and Poisson white noises can be derived due to a particularity of Poisson 
white noise [72]. Different from Poisson white noise, Lévy white noise is defined through its characteristic function, such 
that we do not have similar access to a corresponding short-time transition PDFs for combined Gaussian and Lévy white 
noises. Moreover, it is apparent that the characteristic function of combined Gaussian and Lévy white noises cannot be 
expressed by a new α-stable distribution due to the different stability parameters. As stated by Nadarajah that the sum 
of random variables is a stable random variable only when the two random variable components have the same stability 
parameter α [79]. Thus, we cannot directly find the short-time transition PDFs through the characteristic function of α-
stable Lévy noises. In order to obtain these, the characteristic functions and their properties for Gaussian and Lévy white 
noises are used. The derivation goes as follows.
5
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Fig. 1. Sample functions of X̄(ρ) and conditional PDF.

From the perspective of the whole trajectory X(t), the trajectory X̄ (ρ) is approximately linear due to the small value of 
δt . In this small interval, the increment dB (t) of Brownian motion is a random variable that satisfies a Gaussian distribution 
with intensity 2DG . Moreover the increment dLα (t) of Lévy process is random variable with intensity D L and stability 
parameter α. Then, X̄(δt) can be approximated as

X̄ (δt) = x̄ + f (x̄) δt + g (x̄)dB (t) + dLα (t) . (21)

According to the characteristic function of dLα(t) and dB(t) in Eqs. (3) and (4), as well as the properties of the charac-
teristic function, we can get the characteristic function of X̄(δt) in the form

Z X̄ (k, δt) = exp
(

ikx̄ + ikf (x̄) δt − DGδtk2 g(x̄)2 − D Lδt|k|α
)

, (22)

which is the Fourier transform of the unconditional PDF p X̄ (x, δt).
Then, we get the conditional PDF as follows

p ( x, t + δt| x̄, t) = p X̄ (x, δt) = F−1 (
Z X̄ (k, δt)

) = 1

2π

+∞∫
−∞

exp (−ikx)Z X̄ (k, δt)dk

= 1

2π

+∞∫
−∞

exp (−ikx)exp
(

ikx̄ + ikf (x̄) δt − DGδtk2 g(x̄)2 − D Lδt|k|α
)

dk.

(23)

This short-time solution can be regarded as a general case of the following two particular cases:
(i) In the Gaussian noise case (D L = 0)

p ( x, t + δt| x̄, t) = 1

2π

+∞∫
−∞

exp (−ikx)exp
(

ikx̄ + ikf (x̄) δt − DGδtk2 g(x̄)2
)

dk

= 1

2π

√
DG g (x̄)2δt

exp

[
− (−x + x̄ + f (x̄) δt)2

4DG g (x̄)2 δt

]
,

(24)

this is just the short-time solution of the SDE with Gaussian white noise [1,80].
(ii) In the Lévy noise case (DG = 0)

p ( x, t + δt| x̄, t) = 1

2π

+∞∫
−∞

exp (−ikx)exp
(
ikx̄ + ikf (x̄) δt − D Lδt|k|α)

dk, (25)

this is the short-time solution of the SDE solely driven by white Lévy noise [70,71].
6
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3.2. Verification of the short-time transition PDF

In this section, the correctness of the short-time transition PDF is verified. Specifically, starting from the CKS equation 
where the short-time transition PDF (23) is used, we get the fractional FPK equation (15).

According to the CKS equation, the PDF p(x, t + δt) can be expressed by the conditional PDF p(x, t + δt|x̄, t) and its 
previous moment’s PDF p(x̄, t) as

p (x, t + δt) =
+∞∫

−∞
p ( x, t + δt| x̄, t) p (x̄, t)dx̄ =

+∞∫
−∞

F−1 (
Z X̄ (k, δt)

)
p (x̄, t)dx̄. (26)

Its Fourier transform can be obtained as

Z X (k, t + δt) = F [p (x, t + δt)] =
+∞∫

−∞
Z X̄ (k, δt) p (x̄, t)dx̄

= exp
(−D Lδt|k|α) +∞∫

−∞
exp

(
−DGδtk2 g(x̄)2 + ikx̄ + ikf (x̄) δt

)
p (x̄, t)dx̄.

(27)

For the integral we find

+∞∫
−∞

exp
(
−DGδtk2 g(x̄)2 + ikx̄ + ikf (x̄) δt

)
p (x̄, t)dx̄

=
+∞∫

−∞
exp (ikx̄)exp

[
ikf (x̄) δt − DGδtk2 g(x̄)2

]
p (x̄, t)dx̄

=
+∞∫

−∞
exp (ikx̄)

[
1 + ikf (x̄) δt − DGδtk2 g(x̄)2

]
p (x̄, t)dx̄ + O

(
δt2

)

=
+∞∫

−∞
exp (ikx̄)p (x̄, t)dx̄ +

+∞∫
−∞

exp (ikx̄) [ikf (x̄) δt]p (x̄, t)dx̄

−
+∞∫

−∞
exp (ikx̄)

[
DGk2δtg(x̄)2

]
p (x̄, t)dx̄ + O

(
δt2

)

=Z X (k, t) +E [exp (ikx) ikf (x) δt] −E
[

exp (ikx) DGk2 g(x)2δt
]
+ O

(
δt2

)
.

(28)

The Taylor series expansion of exp(−D Lδt|k|α) about δt is exp(−D Lδt|k|α) = 1 − D Lδt|k|α + O (δt2). Thus, Eq. (27) can be 
rewritten as

Z X (k, t+δt)

=
[

1 − D Lδt|k|α + O
(
δt2

)]{
Z X (k, t) +E [exp (ikx) ikf (x) δt] −E

[
exp (ikx) DGk2δtg(x)2

]
+ O

(
δt2

)}
= Z X (k, t) + ikδtE [exp (ikx) f (x)] − DGk2δtE

[
exp (ikx) g(x)2

]
− D L |k|αδt Z X (k, t) + O

(
δt2

)
.

(29)

Rewriting Eq. (29) and taking the limit δt → 0, we get

∂ Z X (k, t)

∂t
= lim

δt→0

Z X (k, t + δt) − Z X (k, t)

δt

= (−D L |k|α)
Z X (k, t) + ikE [exp (ikx) f (x)] − DGk2E

[
exp (ikx) g(x)2

]
.

(30)

After inverse Fourier transform, Eq. (30) becomes

∂ p (x, t)

∂t
= − ∂

∂x
[ f (x) p (x, t)] + DG

∂2

∂x2

[
g(x)2 p (x, t)

]
+ D L

∂α

∂|x|α p (x, t) , (31)

which is same as the fractional FPK equation (15). Thus, the correctness of the short-time transition PDF is verified.
7
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4. First-passage time statistics from path integral solutions

In this section, we modify the PI solutions to characterize the first-passage problem. The key to analyzing the first-
passage problem by PI solutions consists in defining the so-called reliability density function (RDF). The RDF is the PDF that 
the trajectories remain away from the absorbing boundary condition until the observation time [70,72]. In physical terms 
the cumulative reliability is called the survival probability.

Specifically, let [η, ζ ] denote the threshold barriers. The barriers are absorbing boundary conditions, at which the trajec-
tories need to be eliminated once they cross these barriers. This indicates that the RDF outside the “safe domain” must be 
zero. Considering that the initial condition in Eq. (1) can be a deterministic value or a random variable, the RDF qηζ (x, 0)

at the initial time step can be calculated through the PDF p(x, 0) by neglecting the part outside the safe area. This property 
can be expressed as

qηζ (x,0) = U (x − η) U (ζ − x) p (x,0) , (32)

where U (·) denotes the Heaviside function. Moreover, the RDF in a generic time instant t + δt is given as

qηζ (x, t + δt) = U (x − η) U (ζ − x)

ζ∫
η

p (x, t + δt |x̄, t )qηζ (x̄, t)dx̄, (33)

where the RDF qηζ (x̄, t) at a former time instant t is used to avoid that trajectories return to the safe domain after having 
left before. The Heaviside function U (·) is used again to neglect the trajectories, which first cross the safe domain during 
time interval [t, t + δt]. This definition states that the RDF qηζ (x, t) is an monotonically non-increasing function of time t . 
Eqs. (32) and (33) can be viewed as modification of the PI solutions. The RDF can be derived through the modified formulas 
directly. Moreover, through the RDF, we can derive other first-passage performance indices, such as the reliability function 
R(T ) at time T , the first-passage time PDF p f (T ) and the mean first-passage time.

The reliability function R(T ) is the probability that the process stays inside the interval [η, ζ ] over the time interval 
[0, T ]. We can get the reliability function by integrating the RDF as follows,

R (T ) =
ζ∫

η

qηζ (x, T )dx. (34)

Obviously, the complement of the reliability function is the first-passage probability P F (T ), which is the probability that the 
process crosses the barriers over the time interval [0, T ]. Then, the PDF of the first-passage time p f (T ) can be obtained as

p f (T ) = dP F (T )

dT
= −dR (T )

dT
. (35)

The first-passage time is a random variable and its first order moment is often used to define the degree of reliability. It is 
called the mean first-passage time (MFPT) and is defined as

MFPT = E [T ] =
∞∫

0

T p f (T )dT . (36)

In our approach, the RDF is calculated by discretizing the aforementioned formulas (32) and (33). The two formulas can 
be viewed as a modification of the PI solutions. Then, the other performance indices can be obtained via equations (34), 
(35), and (36).

5. Numerical results

In this section, simulation results are presented to show that the PI method is applicable to SDEs with both paramet-
ric Gaussian and additive Lévy white noises. Namely, the PI method can get the PDFs of this kind of SDEs or solve the 
corresponding fractional FPK equations. Moreover, the influences of the system parameters on the first-passage problem 
are analyzed through PI solutions. In all figures, the results from direct Monte Carlo simulations of the original SDEs (1)
are also given to verify the PI solutions. All Monte Carlo results in this paper are calculated with time step dt = 0.0001, 
space resolution dx = 0.01, and 8 × 106 sample paths for deterministic initial condition while 32 × 106 sample paths for 
Gaussian-distributed initial condition. Specifically, a single sample path is obtained by the forward Euler formula as

x (t + dt) = x (t) + f (x)dt + g (x) ξ(t)dt1/2 + ξα (t)dt1/α, (37)

where ξ(t) is a white Gaussian random variable with zero mean and variance 2DG , and ξα(t) is a white stable random 
variable with stability parameter α and intensity D L . Given the time t , the PDF and RDF is derived by dividing the space 
interval with space increment dx = 0.01 and counting the sample points on each space cell.
8
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Fig. 2. PDFs and RDFs for deterministic initial condition. (a, b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1. (c, d) are for a = −1.0, 
b = c = 1.0, α = 1.5, and D L = DG = 0.1. The left panels show the PDFs and the right panels the RDFs. For the RDFs in (b, d) the absorbing barriers are 
selected as η = −4 and ζ = 1 (PI: path integral solution, MC: Monte Carlo solution). (For interpretation of the colors in the figures, the reader is referred 
to the web version of this article.)

5.1. Validity of the path integral method

In this part, the validity of the PI method for solving the fractional FPK equations (15) (or obtaining the PDFs from the 
SDEs (1)) is presented for the concrete case f (x) = −ax −bx3 and g(x) = √

1 + cx2. Our model here is derived from a climate 
system [50,51], in which the climate information can be characterized by the calcium (Ca) signal in ice cores. Specifically, 
we will get the PDFs of the process X(t) for the following SDEs (Itô sense){

Ẋ (t) = −aX − b X3 + √
1 + c X2ξ (t) + ξα (t)

X (0) = X0
(38)

where the initial value X0 can be deterministic or a random variable with assigned PDF. In other words, we will get the 
solutions of the corresponding fractional FPK equations

∂ p (x, t)

∂t
= ∂

∂x

[(
ax + bx3

)
p (x, t)

]
+ DG

∂2

∂x2

[(
1 + cx2

)
p (x, t)

]
+ D L

∂α

∂|x|α p (x, t) , (39)

with the initial condition p(x, t0) = δ(x − x0) or other assigned forms. Next, our simulation results for two different initial 
conditions are presented. The two initial conditions are deterministic and Gaussian-distributed, respectively.

5.1.1. Example 1: Deterministic initial condition
The deterministic initial condition X(0) = X0, or equivalently p(x, t0) = δ(x − x0) is selected. The PDF and the RDF are 

calculated through the PI iteration (7) and its modification (33), respectively. The results are presented in Fig. 2 and the 
excellent agreement between the PI solutions and Monte Carlo solutions supports the validity of the PI method.
9
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Fig. 3. Log-linear plots of the PDFs and RDFs for deterministic initial condition corresponding to Fig. 2. (a, b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and 
D L = DG = 0.1. (c, d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left panels show the PDFs and the right panels the RDFs. (PI: path 
integral solution, MC: Monte Carlo solution).

We choose two different sets of parameters. Fig. 2 (a, b) are for one parameter set, and Fig. 2 (c, d) are for the other. 
Different parameter sets lead to different solutions: the stationary solution in Fig. 2 (a) is unimodal while that in Fig. 2
(c) is bimodal. For each parameter set, the PDFs on the left reach a stationary state at t = 30, but the RDFs on the right 
keep changing with time due to the absorbing barrier. Note that in order to better display the zero value of the RDFs 
outside the reliability domain [η, ζ ] = [−4, 1], we show the RDFs for the interval [−4, 2]. In our calculations, considering the 
independence of different sample paths, we divide the 8 ×106 sample paths into 100 copies, each copy with 8 ×104 sample 
paths. Finally a set of calculation results is obtained through 1.16273 × 104 s (about 3.22 h) for parameters a = 1.0, b =
0.0, c = 0.5 and 1.07881 × 104 s (about 2.99 h) for another set of parameters. Similarly, different points are independent of 
each other in the path integral transition probability density function, we run 500 points in parallel at a time and it takes 
2.57626 × 103 s (about 0.77 h) to get the result for parameters a = 1.0, b = 0.0, c = 0.5 and 2.59285 × 103 s (about 0.72 h) 
for another set. In Fig. 3, the PDFs and RDFs are also presented on a log-linear scale. These semi-logarithmic plots make 
it easy to see details for small values of PDFs and RDFs. It can be observed that the PDFs and RDFs fit well at a very low 
magnitude (about 10−6 to 10−4). To further quantify the accuracy of the PI solution, by taking the Monte Carlo solution as 
the standard solution, we define the L2 error norm as

L2 = {∑i, j[P P I (xi, t j) − P MC (xi, t j)]2}1/2

{∑i, j[P MC (xi, t j)]2}1/2
, (40)

where P P I is the numerical PI solution and P MC is Monte Carlo solution. For the two cases a = 1.0, b = 0.0, c = 0.5 and 
a = −1.0, b = c = 1.0 used in Fig. 2, their L2 error norm are 0.003981 and 0.006888, respectively. A smaller value of L2
indicates a better accuracy of the PI solution.
10
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Fig. 4. PDFs and RDFs for Gaussian initial condition. (a, b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and DL = DG = 0.1. (c, d) are for a = −1.0, b = c = 1.0, 
α = 1.5, and D L = DG = 0.1. The left panels show the PDFs and the right panels the RDFs. For the RDF in (b, d) the absorbing barriers are chosen as 
η = −4 and ζ = 1 (PI: path integral solution; MC: Monte Carlo solution).

5.1.2. Example 2: Gaussian initial condition
Now, we assume that the initial condition x0 is a random variable chosen from the Gaussian distribution

p (x0,0) = 1√
2πσ

exp

[
− (x0 − μ)2

2σ 2

]
, (41)

with μ = 0.2 and σ = 0.2. Then, we calculate the PDFs and RDFs by the PI method, starting from this Gaussian initial condi-
tion and using the same two sets of parameters as in Example 1. In addition, the Monte Carlo solutions of the original SDEs 
are also calculated for comparison. In our calculation, the computational cost for the Monte Carlo solutions is necessarily 
high to ensure the same smoothness as in the deterministic initial condition.

Fig. 4 presents the PDFs and RDFs for Gaussian initial conditions for two different sets of parameters. The good agreement 
between the PI solutions and Monte Carlo results in each plot indicates that the PI method works very well. Fig. 4 (a, b) 
are for one set of parameters and Fig. 4 (c, d) for the other parameter set. Analogously to the deterministic initial condition, 
the PDFs approach a stationary state, while the RDFs keep changing with time for each parameter set. Again we show the 
RDFs in the domain [−4, 2] to better display the zero value of the RDFs outside the reliability domain [η, ζ ] = [−4, 1]. In 
addition, comparing the PDFs in Example 1 and Example 2, we find that the initial conditions have no significant effect 
on the stationary solutions due to the uniqueness of the solution for the stationary FPK equation, as it should be. In our 
calculations, 32 × 106 sample paths are divided into 400 copies, and each copy with 8 × 104 sample paths, the calculation 
time for a = 1.0, b = 0.0, c = 0.5 and a = −1.0, b = c = 1.0 are 1.25206 × 104 s (about 3.4 h) and 1.26368 × 104 s (about 
3.5 h), respectively. Similarly, we run 500 points in parallel at a time to get the PI solution, and it takes 2.59224 × 103 s 
(about 0.72 h) and 2.49794 × 103 s (about 0.69 h) for parameters a = 1.0, b = 0.0, c = 0.5 and the other set. Again, the 
log-linear plots of the PDFs and RDFs are presented in Fig. 5 to show that PI is accurate at very low magnitudes. Moreover, 
11
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Fig. 5. Log-linear plots of PDFs and RDFs for Gaussian initial condition, corresponding to Fig. 4. (a, b) are for a = 1.0, b = 0.0, c = 0.5, α = 1.5, and 
D L = DG = 0.1. (c, d) are for a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. The left panels show the PDFs and the right panels the RDFs. (PI: path 
integral solution; MC: Monte Carlo solution).

the L2 error norm are 0.004208 and 0.007774 for the cases a = 1.0, b = 0.0, c = 0.5 and a = −1.0, b = c = 1.0, respectively. 
The smaller L2 error norm is consistent with the good fitting results.

5.2. First-passage statistics

After verifying the validity of the PI method, the influence of the system parameters on the first-passage statistics is 
analyzed based on the modified PI formula (33) in this section. The modified PI solutions under different noise intensities, 
barriers, and stability parameters are calculated and presented. The pertinent Monte Carlo solutions of the original SDEs 
(38) are also contained for comparison. For simplicity, only the most commonly used deterministic initial condition is 
considered.

5.2.1. Case 1: dependence on noise intensities
Fig. 6 presents the reliability functions and first-passage time PDFs for different noise intensities. Fig. 6 (a, b) are for 

different Gaussian noise intensities DG and Fig. 6 (c, d) are for different noise intensities D L . For each noise intensity, the 
reliability functions indicate that the initial condition x(0) is completely within the reliability interval with the reliability 
function R(t) = 1.0. As time increases, R(t) decreases nonlinearly to zero, where the process x(t) is completely gone from 
the reliability interval. Since R(t) depends nonlinearly on t , there is a time when the decay of the reliability function occurs 
most rapidly. This time is just the point where the first-passage time PDF P f (t) assumes its maximum. The solid points 
in the first-passage PDF curve reveal the time that the process is most likely outside the reliability interval. For different 
noise intensities, Fig. 6 shows that both D L and DG have a strong influence on the reliability function and the first-passage 
time PDF, respectively. Fig. 6 (a) and (c) indicate that the reliability is higher for smaller noise intensities. The most likely 
first-passage time decreases as the noise intensity increases, as expected, see Fig. 6 (b) and (d).
12



Fig. 6. Reliability functions and first-passage time PDFs for different noise intensities, for parameters a = −1.0, b = c = 1.0, α = 1.5, η = −4, and ζ = 1. (a, 
b) are for different DG with D L = 0.1; (c, d) are for different DL with DG = 0.1 (PI: path integral solution; MC: Monte Carlo solution).

Additionally, the results of Fig. 6 are presented on log-linear scale in Fig. 7. Analogously, Fig. 7 (a, b) are for different 
Gaussian noise intensities DG and Fig. 7 (c, d) are for different noise intensities D L . In each plot, the Monte Carlo solution 
and PI solution agree well with each other, supporting the correctness of the results. Indeed, the PI solution is accurate to 
order less than 10−6 at the tails. To obtain the same accuracy more sample paths are needed for the Monte Carlo method. 
Importantly, the plots indicate that the logarithm of the reliability function, log(R(t)), and the logarithm of the first-passage 
time PDFs, log(P f (t)), are inversely related to time t . This means that the reliability functions R(t) and the first-passage 
time PDF P f (t) decrease exponentially with time, as expected for a Markovian process in a finite domain. The value p f (0)

is the PDF that x(t) jumps out of the reliability domain [η = −4, ζ = 1] with the first jump staring from the initial point. As 
can be seen, the value is non-zero, a characteristic of the non-local jumps made possible by the Lévy noise, see the related 
results for the first-passage time PDF of pure Lévy flights and walks in Ref. [46]. We also find that different noise intensities 
D L or DG lead to different decays of the reliability functions R(t) and the first-passage time PDF P f (t): faster decay goes 
along with larger noise intensities.

In addition, the degree to which different noise intensities impact the results for the MFPT is shown in Fig. 8. The MFPT 
is obtained by the PI and Monte Carlo methods, and they agree well with each other. Fixing one of the noise intensities DG

or D L , the increase of the another noise intensity causes a decrease of the MFPT. Namely, the MFPT is a decreasing function 
of the noise intensities, as expected. Moreover, the MFPT is more sensitive to changes of the noise intensity when D L is 
fixed.

5.2.2. Case 2: dependence on barriers
Figs. 9 and 11 reveal the impact of the barrier positions on the first-passage problem. Fig. 9 presents the reliability 

functions and first-passage time PDFs with different barriers. Fig. 9 (a, b) are for several different left boundaries η with 
fixed right boundary ζ = 1. Fig. 9 (a) shows that the closer the boundary η to the initial zero, the smaller the reliability 
function at the same time instant. Namely, the process needs less time to reach the boundary. Fig. 9 (c, d) presents a similar 
W. Zan, Y. Xu, R. Metzler et al. Journal of Computational Physics 435 (2021) 110264
13



W. Zan, Y. Xu, R. Metzler et al. Journal of Computational Physics 435 (2021) 110264

Fig. 7. Log-linear plots for the reliability functions and first-passage time PDFs for different noise intensities for parameters a = −1.0, b = c = 1.0, α = 1.5, 
η = −4, and ζ = 1. (a, b) are for different DG with D L = 0.1; (c, d) are for different DL with DG = 0.1 (PI: path integral solution; MC: Monte Carlo 
solution).

Fig. 8. MFPTs for different noise intensities for parameters a = −1.0, b = c = 1.0, α = 1.5, η = −4, and ζ = 1 (PI: path integral solution; MC: Monte Carlo 
solution).
14



Fig. 9. Reliability functions and first-passage time PDFs for different barrier positions with parameters a = −1.0, b = c = 1.0, α = 1.5, DL = DG = 0.1. (a, b) 
are for fixed right barrier ζ = 1; (c, d) are for fixed left barrier η = −1 (PI: path integral solution; MC: Monte Carlo solution).

result for different right barrier positions ζ with a fixed left barrier η = −1. Moreover, the MFPT for different barriers are 
presented in Fig. 11. For fixed right barrier ζ = 1, Fig. 11 (a) shows that closer barrier position η leads to smaller MFPT, as 
expected. For fixed left barrier η = −1, Fig. 11 (b) shows the analogous result for the right barrier.

Corresponding to Fig. 9 we present the results on log-linear scale in Fig. 10. Fig. 10 (a, b) are for several different left 
boundaries η with fixed right boundary ζ = 1. Fig. 10 (c, d) present similar results for different right barriers ζ with a fixed 
left barrier η = −1. These plots indicate that the logarithm of the reliability functions log(R(t)) and the logarithm of the 
first-passage time PDFs log(P f (t)) are inversely related to time t , i.e., the reliability functions R(t) and the first-passage 
time PDF P f (t) decrease exponentially with time. Concurrently, a shorter safety interval length leads to faster decay. For 
the fastest cases (η = −1.5, ζ = 1 or η = −1.0, ζ = 1.5), the MC and PI results do not fit well when time t is too large. This 
is due to the fact that the Monte Carlo method is statistical in nature, and it is difficult to obtain an accurate estimate of 
small probability events.

5.2.3. Case 3: dependence on stability parameter α
In Fig. 12, the first-passage behavior is obtained from the PI method for different stability parameters α. Fig. 12 (a) shows 

the reliability functions and Fig. 12 (b) the PDFs of the first-passage time. Fig. 12 (a) shows that smaller stability indices lead 
to lower reliability function values at the same time. Indeed, one can see a crossover from higher first-passage probabilities 
at short times to the inverse behavior closer to the most likely time. A similar behavior was observed in [81,82]. Fig. 12 (b) 
presents the most probable time that the process crosses the barriers. Smaller α leads to longer most probable times. On the 
log-linear scale of Fig. 12, Fig. 13 shows a zoom into the plot for long times t and reveals the relationship. Good agreement 
of the MC results and the PI results is observed for all cases. Again, we see that the logarithm of the reliability functions 
log(R(t)) and the logarithm of the first-passage time PDFs log(P f (t)) are inversely related to time t , i.e., the reliability 
functions R(t) and the first-passage time PDF P f (t) decrease exponentially with time. The numerical results indicate that 
smaller α speeds up the decay. This is intuitive due to the fact that the jumps are longer for smaller α.
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Fig. 10. Log-linear plots for reliability functions and first-passage time PDFs for different barrier values with parameters a = −1.0, b = c = 1.0, α = 1.5, and 
D L = DG = 0.1. (a, b) are for fixed right barrier ζ = 1; (c, d) are for fixed left barrier η = −1 (PI: path integral solution; MC: Monte Carlo solution).

Fig. 11. MFPT for different barrier value for parameters a = −1.0, b = c = 1.0, α = 1.5, and DL = DG = 0.1. (a) for fixed right barrier ζ = 1; (b) for fixed left 
barrier η = −1 (PI: path integral solution; MC: Monte Carlo solution).
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Fig. 12. Reliability functions and first-passage time PDFs for different stability parameters α with a = −1.0, b = c = 1.0, DL = 0.1, DG = 0.05, η = −4, and 
ζ = 1 (PI: path integral solution; MC: Monte Carlo solution).

Fig. 13. Log-linear plots for the reliability functions and first-passage time PDFs for different stability parameters α with a = −1.0, b = c = 1.0, DL = 0.1, 
DG = 0.05, η = −4, and ζ = 1 (PI: path integral solution; MC: Monte Carlo solution).

Fig. 14. MFPT for different stability parameters α and noise intensities DG for parameters a = −1.0, b = c = 1.0, DL = 0.1, η = −4, and ζ = 1 (PI: path 
integral solution; MC: Monte Carlo solution).
17
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Moreover, the MFPT for different stability parameters α is plotted in Fig. 14. We calculate three sets of different param-
eters (with different noise intensities DG ) to analyze the impact of the stability parameters on the MFPT. For any set of the 
parameters, the MFPT increases as the stability parameters α increase, which is more obvious to see for smaller DG . Note 
that the MFPT does not increase monotonically when α increases. The study of the exact position of the apparent maxima 
of the MFPT for certain α is a topic of future work. In addition, for fixed α, the MFPT can be seen to be smaller when DG
is larger. This result is analogous to the result of Case 1.

6. Conclusions

In this paper we pursued two goals. In the first part we extend the PI method to SDEs with both parametric Gaussian 
and additive Lévy white noises and the corresponding fractional FPK equations. Specifically, short-time transition PDFs, 
which are used in the PI method, are derived from the SDEs. The fractional FPK equations corresponding to the SDEs are 
derived to verify the short-time transition PDFs. Based on different initial conditions and different system parameters, the 
PI solutions are implemented and agree well with Monte Carlo simulations. Thus, the PI method is applicable and indeed 
very efficient for this type of SDEs and the corresponding fractional FPK equations. The second part of this work concerns 
the modification of the PI solutions to analyze the first-passage problem. In section 5.2, we calculated the RDF, first-passage 
time PDF and the MFPT through the modified PI solutions, for different noise intensities, barriers and stability parameters. 
On average, the larger the noise intensity, the shorter the threshold barriers, and the smaller stability parameters will lead 
to a faster first-passage. Moreover, the comparison between the PI results and those from Monte Carlo simulations of the 
original SDEs indicates that the modification of the PI solutions yields highly accurate results.

We are confident that our conceptual results for the PI method and its application to first-passage problems will be 
useful in many applications. We finally note that while we analyzed a one-dimensional system here, generalization to 
higher dimensions is possible by combination of the component-wise PI solution.
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Appendix. Extension of the PI method

We consider the extension of the PI method to SDEs with parametric Gaussian and Lévy white noise and its correspond-
ing FPK equation,{

Ẋ (t) = f (X) + g1 (X) ξ (t) + g2 (X) ξα (t)
X (0) = X0

(42)

where ξ(t) and ξα(t) are Gaussian and α-stable Lévy white noises respectively, and they are independent. Here, f (X), 
g1(X) and g2(X) are functions of X , and X0 is the initial value of X(t) at time t = t0, which can be deterministic or random 
variable with given PDF.

According to the derivation in section 2.2, we can get the fractional FPK equation corresponding to the SDE (42) as

∂
p (x, t) = − ∂

[ f (x) p (x, t)] + DG
∂2

2

[
g1(x)2 p (x, t)

]
+ D L

∂α

α

[|g2 (x)|α p (x, t)
]
. (43)
∂t ∂x ∂x ∂|x|
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Moreover, the short-time transition PDF for this case is obtained through the derivation presented in section 3.1 as

p X ( x, t + δt| x̄, t) = 1

2π

+∞∫
−∞

exp (−ikx)exp
(

ikx̄ + ikf (x̄) δt − DGδtk2 g1(x̄)2 − D Lδt|k|α |g2 (x̄)|α
)

dk. (44)

The short-time transition PDF is verified by a similar procedure in section 3.2. We can obtain the fractional FPK equation 
(43) starting from the CKS equation, where the short-time transition PDF is used. Finally, through the CKS equation, the PI 
solutions for the SDE with parametric Gaussian and Lévy noise (and corresponding FPK equation) can be written as

p (x, t + δt)

= 1

2π

+∞∫
−∞

+∞∫
−∞

exp (−ikx)exp
(

ikx̄ + ikf (x̄) δt − DGδtk2 g1(x̄)2 − D Lδt|k|α |g2 (x̄)|α
)

p (x̄, t)dkdx̄.
(45)

Then, if a system can be modeled by an SDE with parametric Gaussian and Lévy noise, we can solve it through the 
extended PI method.
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