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Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x) = D0|x|α .
Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between
ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion
(FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion.
Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with
position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant
for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time
scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared
displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic
way. Our analysis of the simulated data in terms of the rescaled variable y ∼ |x|1/(2/(2−α))/tH coupling particle
position x and time t yields a simple, Gaussian probability density function (PDF), PHDP-FBM(y) = e−y2

/
√

π . Its
universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.
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I. INTRODUCTION

Classical Brownian motion (BM) is characterized by two
fundamental properties: the Gaussian form of its probability
density function (PDF),

P(x, t ) = 1√
4πK1t

exp

(
− x2

4K1t

)
, (1)

where K1 is the diffusion coefficient, and the linear time
dependence of the mean-squared displacement (MSD),

〈x2(t )〉 = 2K1t . (2)

Hereafter we consider a one-dimensional setting. Despite
the universal nature of the Gaussian PDF (1), in many real
systems the fundamental properties (1) and (2) are violated.
Particularly, anomalous diffusion of the non-Fickian power-
law form [1–14]

〈x2(t )〉 = 2Kγ tγ (3)

has been widely observed across many disciplines. Here Kγ

is the generalized diffusion coefficient of physical dimension
m2/sγ and γ is the anomalous diffusion exponent. A process
characterized by the MSD (3) is called subdiffusive for 0 <

γ < 1 and superdiffusive for 1 < γ < 2. The range γ > 2 is
sometimes referred to as hyperdiffusive. For γ = 1 we recover
normal (Fickian) BM, while ballistic motion corresponds to
γ = 2.

Experimentally, subdiffusion was observed for submicron
tracers in the crowded cytoplasm of biological cells [15–20],
in artificially crowded liquids [21–23], and for motion of
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proteins embedded in the membranes of living cells [24–27].
Subdiffusion is also seen in extensive simulations studies, for
instance, of lipid bilayer membranes [13,28–30] and relative
diffusion in proteins [31]. Superdiffusion fuelled by molecular
motors was observed in various types of biological cells
for both introduced and endogenous tracers including virus
particles [16,17,32–35].

In lieu of the universal Gaussian law (1) governing BM,
anomalous diffusion may emerge from a variety of stochastic
processes [1–14]. Among these is the famed Scher-Montroll-
Weiss continuous-time random walk (CTRW) characterized
by independent of coupled probability densities of the single-
jump lengths and waiting times [36–38]. When the waiting
times are scale-free power laws, this process describes subd-
iffusion, as, e.g., observed for the short-time motion of lipid
granules in yeast cells [19], diffusion of potassium channels
in cell membranes [25], or the relative dynamics in single pro-
teins [31]. Superdiffusive versions of CTRW, so-called Lévy
walks [8], were, e.g., observed for active molecular-motor-
driven motion in biological cells [34,35]. Another prominent
model for anomalous diffusion is the random walk on fractal
structures [3], e.g., as observed as ingredient of potassium
channel diffusion in cell membranes [25]. We also mention
scaled BM (SBM) [39] yielding anomalous diffusion due to a
power-law time dependence of the diffusion coefficient. This
type of dynamics is, e.g., systemic for diffusion in granular
gases in the homogeneous cooling phase [40].

Two important classes of anomalous diffusion are long-
range power-law correlated fractional Brownian motion
(FBM) and heterogeneous diffusion processes (HDPs) based
on power-law scaling forms of the diffusivity as function of
distance. These two processes are at the core of this study
and will be discussed along with concrete applications in the

2470-0045/2020/102(1)/012146(16) 012146-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0516-9900
https://orcid.org/0000-0002-6013-7020
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.012146&domain=pdf&date_stamp=2020-07-23
https://doi.org/10.1103/PhysRevE.102.012146


WANG, CHERSTVY, LIU, AND METZLER PHYSICAL REVIEW E 102, 012146 (2020)

next section. The main goal is to quantify the behavior of the
compound HDP-FBM process.

In fact, the need to combine more than a single stochastic
process in order to faithfully describe measured data does
not come as a surprise, given the highly complex environ-
ment of, e.g., living biological cells and their constituents or
crowded and structured liquids. For instance, the motion of
lipid granules in yeast cells [19] was shown to follow scale-
free waiting-time-dominated subdiffusion at short and FBM at
long times. The potassium channel motion in membranes [25]
and the diffusion of insulin granules in cells [20] showed
that clear signatures of the simultaneous action of scale-free
power-law waiting times and, respectively, a fractal geometry
of the support and FBM-like correlations conspire the data.

The paper is structured as follows. In Secs. II A and II B
we introduce FBM and HDPs, respectively, and discuss their
relevance to actual systems. We overview some details of
simulations in Sec. III and present the main results of the
theoretical analysis and simulations for the HDP-FBM model
in Sec. IV. The discussion and conclusions are provided in
Sec. V. We discuss the shape similarities of the PDF in
Appendix A and present additional figures in Appendix B.

II. FBM AND HDPS

A. FBM

A widely used class of anomalous-diffusion models is
based on correlated yet stationary noise. For example,
the famed model of FBM [41–45] obeys the overdamped
Langevin equation

dx(t )

dt
= ξH (t ), (4)

where the correlation function of the (external) fractional
Gaussian noise ξH (t ) for t1 �= t2 is given by

〈ξH (t1)ξH (t2)〉 � K2H 2H (2H − 1) × |t1 − t2|2H−2. (5)

Here H = γ /2 is the Hurst exponent. In contrast to standard
BM driven by white Gaussian noise, for FBM the increments
feature strong long-range correlations (non-Markovian). Per-
sistent (positive) and antipersistent (negative) correlations, in
Mandelbrot’s terms [43], lead to superdiffusion and subdiffu-
sion, respectively. Such long-range power-law correlations are
prototypical for viscoelastic systems [19,22,23,29,33,46–48].

The PDF for FBM is Gaussian,

PFBM(x, t ) = 1√
4πK2Ht2H

exp

(
− x2

4K2Ht2H

)
, (6)

for the initial Dirac-δ condition

P(x, t = 0) = δ(x) (7)

and natural boundary conditions P(|x| → ∞, t ) = 0. The
PDF (6) satisfies the generalized diffusion equation [49]

∂

∂t
PFBM(x, t ) = 2Ht2H−1K2H

∂2

∂x2
PFBM(x, t ) (8)

and yields the MSD,

〈
x2

FBM(t )
〉 =

∫ ∞

−∞
x2PFBM(x, t )dx = 2K2Ht2H . (9)

Note that Eq. (8) cannot be simply used for FBM in the
presence of reflecting or absorbing boundaries [39,50,51].

In contrast to the MSD (9) in the sense of ensemble aver-
aging, many experiments based on single-particle tracking or
simulations of individual particle trajectories are evaluated in
terms of the time-averaged MSD (TAMSD) [6,7]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt . (10)

For BM, the TAMSD (10) converges to the MSD for long
measurement times T on the single-trajectory level,

lim
�/T →0

δ2(�) = 〈x2(�)〉. (11)

In the Boltzmann-Khinchin sense, this is an ergodic behav-
ior; Bouchaud called a system weakly nonergodic when this
equivalence is violated [52]. This definition is practically
important for applications of stochastic models but is less
stringent than definitions of nonergodicity used in ergodic
theory [53]. An overview of weakly nonergodic behavior of
various stochastic processes can be found in Refs. [6,11].

The mean TAMSD for an ensemble of N independent
TAMSD measurements at a given lag time � and measure-
ment time T is computed as

〈δ2(�)〉 = 1

N

N∑
i=1

δ2
i (�). (12)

For any finite � and T each trajectory exhibits cer-
tain variations of δ2(�). This amplitude variation between
the TAMSDs (10) of individual trajectories around their
mean (12) is quantified by the ergodicity breaking parameter
[6,11,45]

EB(�) = 〈ξ (�)2〉 − 1, (13)

where ξ (�) = δ2(�)/〈δ2(�)〉 such that 〈ξ 〉 = 1. For standard
BM in the continuous-time limit one finds the convergence
lim�/T →0 EBBM(�) = 4�/(3T ) to ergodic behavior, with
full reproducibility of long trajectories, limT →∞ EBBM(�)=0
[45,54,55].

For FBM the ergodicity condition (11) holds,〈
x2

FBM(�)
〉 = 〈

δ2
FBM(�)

〉 = 2K2H�2H . (14)

The ergodic properties of FBM are quantified in terms of EB
in Refs. [45,56]. Note that for EB of FBM the implications of
external confinement [57,58] as well as modifications due to
random-diffusivity effects (see Refs. [59–61]) and finiteness
of the step size [62] were examined as well. A combined
model of FBM and CTRWs was recently applied to describe
the nonergodic dynamics in heterogeneous media with ran-
dom characteristic length scales [63].

Diverse mathematical models of FBM-based anomalous
diffusion have been successfully applied to describe the dy-
namics in a number of physical and biological systems. The
list includes the dynamics of various tracers in artificially
crowded solutions and in the cell cytoplasm, e.g., the dif-
fusion of individual labeled mRNA molecules in living Es-
cherichia coli cells [64], long-time diffusion of lipid granules
in living fission-yeast cells [19], telomere diffusion in the
nuclei of human cancer U2OS cells [48,65], fluorescence-
correlation-spectroscopy-based analysis of crowded dextran
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solutions [22], etc. The effect of localization errors on the
degree of MSD anomaly for FBM-based trajectories was
examined recently [66].

Moreover, the diffusive motion based on the overdamped
fractional Langevin equation (a thermal process closely re-
lated to FBM) was shown to describe the dynamics of the
lipid and cholesterol molecules in lipid bilayers [29] and
subdiffusive motion of chromosomal loci in the bacterial
cytoplasm [47]. A combination of ergodic FBM and non-
ergodic CTRWs [67] was shown to be consistent with the
motion of insulin granules in human cells [20]. The dy-
namics of tracked chromosomal loci in yeast was shown
to be subdiffusive and consistent with FBM [68] (after ac-
counting for particle-localization errors). Chromosomal loci
in bacterial-cells were demonstrated to diffuse similar to
fractional-Langevin-equation-driven motion [69]. A feasible
physical rationale for subdiffusive dynamics based on frac-
tional Langevin equation and FBM-type dynamics in many
of these systems are the viscoelastic properties of the (often
highly crowded) environments inside biological cells [70].
We finally mention that FBM-based models were applied to
generalize aspects of gene regulation [71,72] and chemical
reactions [73,74] in Refs. [75,76].

B. HDPs

Recently, we proposed the model of HDPs [77–82], a class
of stochastic processes driven by standard Gaussian white
noise ξ (t ) with zero mean 〈ξ (t )〉 = 0 and pair correlation,

〈ξ (t1)ξ (t2)〉 = δ(t1 − t2), (15)

in media with a position-dependent diffusivity (or state-
dependent diffusion [83]). In most situations, a power-law
variation of the diffusion coefficient is prescribed for such
(generally nonequilibrium) physical systems, namely

D(x) = D0|x|α. (16)

Here the physical dimensions of D0 are [D0] = m2−α/s. In
fact, a diffusion equation with D(x) ∝ |x|4/3 was first formu-
lated by Richardson to study atmospheric turbulence [84], see
also Refs. [85–88]. Our major advance regarding this non-
ergodic system was the analytical and numerical analysis of
the MSD and mean TAMSD [77–82], as well as the physical
characteristics of the particle dispersion for general scaling
exponent α.

Systems with exponentially and logarithmically varying
diffusivities [78] were examined as well based on their MSD
and TAMSD. We also considered HDPs with external hard-
wall confinement and ageing [80]. Modifications of HDPs
with Lévy noise [89], in potential landscapes [90], in comb
or fractal structures [91] (see also Ref. [92]), in different
stochastic interpretations and for higher moments [93], as
well as with respect to infinite ergodic theory [94] were
recently developed. Effects of D(x) on diffusion in periodic
channels were recently studied as well [95]. Quantum BM for
inhomogeneous diffusion was also investigated [96,97].

For HDPs with D(x) = D0|x|α the standard overdamped
multiplicative-noise Langevin equation

dx(t )

dt
=

√
2D(x)ξ (t ) (17)

is solved. In the Stratonovich representation—see below and
Sec. V for a discussion of other conventions [98,99]—the
exact solution for the MSD of HDPs is [77]

〈
x2

HDP(t )
〉 =

∫ ∞

−∞
x2PHDP(x, t )dx = Cpt p. (18)

Here the prefactor reads

Cp = 	(p + 1/2)

π1/2

(
2

p

)2p

Dp
0 (19)

in terms of the 	 function, and the scaling exponent is

p = 2/(2 − α). (20)

HDPs are superdiffusive for 2 > α > 0 (or p > 1) and subd-
iffusive for α < 0 (i.e., 0 < p < 1).

The PDF of the particle displacements after time t starting
from the initial δ-condition (7) is given by the modified
stretched or compressed Gaussian function

PHDP(x, t ) = |x|1/p−1

√
4πD0t

exp

[
− |x|2/p

(2/p)2D0t

]
(21)

satisfying the symmetrized [100] diffusion equation (see
Ref. [77])

∂

∂t
PHDP(x, t ) = ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)PHDP(x, t )]

}
. (22)

For α < 0 (or p < 1) the PDF (21) has a bimodal shape with
two symmetric peaks spreading with time, while for α > 0
(or p > 1) PDF PHDP(x, t ) features a single cusp at x = 0 with
the PDF tails spreading with time. The cusp corresponds to
particle localization in the region of low diffusivity near x = 0
(see Fig. 1 of Ref. [77]).

While above we used the Stratonovich interpretation of the
multiplicate-noise stochastic equation (17), we note that other
stochastic interpretations for HDPs were shown [93] to lead to
different prefactors Cp and also differen PDF shapes, but leave
the scaling (18) for the MSD unaltered. Using the generalized
notation

∂

∂t
PHDP(x, t ) = ∂

∂x

(
[D(x)]κ

∂

∂x

{
[D(x)]1−κPHDP(x, t )

})
(23)

we mention explicitly the Itô (prepoint, κ = 0) [101], Fisk-
Stratonovich (middle point, κ = 1/2) [102,103], and Hänggi-
Klimontovich (postpoint, κ = 1, also called “isothermal”
or “kinetic”) [104,105] conventions (see Refs. [83,100,105–
110] for more details). As we mainly have nonequilibrium
systems in mind—such as living biological cells or actively
moving particles in heterogeneous environments—we are not
confined to thermalization conditions and use the convenient
Stratonovich convention.

The TAMSD for HDPs remains strictly linear in lag time
for all diffusivity exponents α, namely [77]

〈
δ2

HDP(�)
〉 = Cp

�

T 1−p
, (24)
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giving rise to the conclusion that HDPs are weakly noner-
godic [77], 〈

δ2
HDP(�)

〉
〈
x2

HDP(�)
〉 =

(
�

T

)1−p

. (25)

Diverse physical systems exhibit features of heteroge-
neous diffusion. For instance, the diffusion equation in
atmospheric diffusion of substances with height-dependent
diffusion coefficient and wind velocity of the form (16)
was considered long ago (see Refs. [111,112] and the his-
torical overview [112]). Note that exponentially decaying
diffusivities D(x) ∝ e−κx were applied to the description of
impurity-concentration profiles in irradiation-enhanced dif-
fusion [113] and to bombardment-enhanced diffusion [114],
while D(x) ∝ eκ/x was employed for diffusion near nonequi-
librium grain boundaries [115]. Classical examples of
power-law D(x) (16) include hydrodynamic-mediated tracer
diffusion near walls and the spreading dynamics in confined
geometries [116–120].

Water and contaminant diffusion in porous heteroge-
neous and fractured geological media often involves space-
dependent and anisotropic diffusivity profiles [121–123] (see
also Ref. [124])—heterogeneous media with stratified and
randomly distributed diffusivity were also considered. We em-
phasize here the emergence of bimodal concentration profiles
for superdiffusive propagation of passive tracers in hetero-
geneous media [122]. Certain heterogeneous systems feature
different D(x)-trends on different spatial scales. Recent exam-
ples in a more general context of D(x) systems related to cell
biophysics include the diffusion of tracers in heterogeneously
crowded cytoplasm of living cells [125–127], obstructed
tracer diffusion in heterogeneously crowded in silico environ-
ments mimicking the cell cytoplasm [128], protein diffusion
on heterogeneous landscapes on DNA molecules [129,130],
etc. In the context of transport in periodic channels heteroge-
neous diffusion was shown to significantly alter the transport
efficiency [95]. Finally, heterogeneity on the tissue level was
shown to influence cardiac electrical propagation [131].

For a generalized HDP-SBM scenario, with position- and
time-dependent diffusivity of the form

D(x, t ) ∼ |x|αtβ (26)

we obtained [82] that the MSD and mean TAMSD scaling
relations (18) and (24) remain valid with the intuitive renoma-
lization

p → p(1 + β ). (27)

This scaling exponent is the product of the original HDP
exponent (20) and the respective exponent of SBM [39,132].
The same renormalization was shown to be true for the aged
TAMSD, defined as [6,11]

δ2
a (�) = 1

T − �

∫ ta+T −�

ta

[x(t + �) − x(t )]2dt, (28)

with the ratio of the aged to the nonaged TAMSDs [82]

�p,β

(
ta
T

)
=

〈
δ2

a (�)
〉

〈
δ2(�)

〉 ∼
(

1 + ta
T

)p(1+β )

−
(

ta
T

)p(1+β )

.

(29)

Remarkably, an identical ageing form was observed for
CTRWs [133,134] and pure SBM [40,135]. One can antici-
pate that for the HDP-FBM model a similar renormalization
of the scaling exponents in the MSD and mean TAMSD will
be valid, as we indeed show below.

III. SIMULATION METHODS
FOR THE HDP-FBM PROCESS

In the current study, we combine the model of HDPs with
FBM noise and solve the stochastic differential multiplicative-
noise equation

dx(t )

dt
=

√
2D(x)ξH (t ), (30)

with the noise correlator (5) (where ξH is normalized below,
as compared to Eq. (4), by the dimensions of 1/

√
D being√

time/length that yields the units [ξH ] = 1/
√

s, where s
denotes seconds) and the space-dependent diffusivity (16). We
split the consideration of the HDP-FBM model into four sce-
narios: (i) superdiffusive HDPs and subdiffusive FBM (α > 0
and 0 < H < 1/2), (ii) superdiffusive HDPs and superdiffu-
sive FBM (α > 0 and 1 > H > 1/2), (iii) subdiffusive HDPs
and superdiffusive FBM (α < 0 and 1 > H > 1/2), and (iv)
subdiffusive HDPs and subdiffusive FBM (α < 0 and 0 <

H < 1/2). These four regimes are shown in Fig. 1.
For α > 0 we simulate the original diffusivity D(x) =

D0|x|α (without any modification), while at α < 0 to avoid
excessive localization of the particles near the origin we
“regularize” the diverging diffusivity (16). For instance, for
D(x) = D0/x2 we employ the regularized form [77]

D(x) = D0A/(A + x2), (31)

with A = 0.1 and D0 = 1 fixed throughout the paper. The
same procedure is employed for all the values of α < 0.
The time step used in the discretized simulation scheme for

FIG. 1. Variation of the resulting MSD scaling exponent for the
HDP-FBM process, see Eq. (35), in the plane of exponents H and
α. The gray-shaded exclusion region defined by Eq. (34) cannot
be considered within the employed Stratonovich-based simulation
technique (32).
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Eq. (30) is δt = 10−2 for most of the results presented below
(except for those in Fig. 6).

We simulate Eq. (30) effectively in the Itô represen-
tation using the algorithm and simulation code developed
recently [62] and employing the conversion algorithm be-
tween the Stratonovich and Itô schemes proposed for FBM
in Ref. [136]. According to this procedure, the Stratonovich
version of (30) requires adding the following term to the
right-hand side of the Itô form,√

2D(xi )dBH |Strat =
√

2D(xi )dBH |Itô

+
∞∑

m=1

∂m

∂xm
[
√

2D(xi−1)]
[
√

2D(xi−1)]m(δt )(m+1)H

2mm!
. (32)

Here BH (t ) denotes FBM. For H = 1/2 [the pure HDP (17)]
we see that for x > 0 and D(x) = D0xα this additional term is
D0αxα−1(δt )/2 (see also Eq. (3.54) in Ref. [93]). For H > 1/2
and small simulation time steps δt , all terms containing δt in
Eq. (32) have powers higher than unity and can be neglected
to leading order. Thus, in the diffusion scenarios (ii) and (iii)
categorized above the Stratonovich-based simulation scheme
will give the same results as the Itô-based scheme. We refer
the reader to chapters 5 and 6 in Ref. [137] for stochastic and
pathwise integrals for FBM, in particular for 0 < H < 1/2.

For H < 1/2 the same conditions on the powers of terms
∝ δt (m+1)H to be higher than unity yields that the sum in
Eq. (32) should be taken at least up to the order

mmin = �1/H� − 1, (33)

where �·� is the floor function. Computing the magnitude
of the mth term in (32) and taking the derivatives, we have
to assure that no divergence occurs at x = 0. This condition
requires for the mth order of this additional term (scaling
as ∝ |x|α/2−m+αm/2) to have a positive exponent, in order to
avoid additional renormalization of D(x), as in Eq. (31). This
condition yields an increasing function of m, namely αm �
2 − 2/(m + 1), and the lower boundary for αm follows from
using (33) as m = mmin. As a result, the condition for regions
(i) and (iv), in which a consistent Stratonovich-based scheme
can be employed is

α � 2 − 2

�1/H� . (34)

The latter restricts the region of the permitted model param-
eters α and H . In particular, consistent Stratonovich-based
simulations are not possible for region (iv) and only possible
in the restricted domain of α and H for scenario (i)—namely,
outside of the shaded region of parameters in Fig. 1.

As we show below, the MSD and mean TAMSD for the
combined HDP-FBM process scale, respectively, as

〈
x2

HDP-FBM(t )
〉 = Cpt2H p � t2H× 2

2−α (35)

and

〈
δ2

HDP-FBM(�)
〉 = Cp

(
�

T 1− 2
2−α

)2H

� �2H . (36)

We show in Fig. 1 the variation of the MSD scaling exponent
2H p in Eq. (35) in the plane of the Hurst exponent H and the
D(x)-scaling exponent α.

IV. RESULTS FOR THE HDP-FBM PROCESS

A. MSD and TAMSD

We start by presenting the MSD as well as the magnitude
and amplitude variation of the TAMSDs for scenarios (i),
(ii), and (iii) in Figs. 2(a), 2(b), and 2(c). We observe that
after the initial MSD relaxation from a small initial parti-
cle displacement (x0 = 0.01) the MSD indeed follows the
asymptotic law (35). In Fig. 2 we examine the actual particle
positions, instead of the typical MSD definition 〈[x(t ) − x0]2〉.
We note that the current D(x)-system has no translational
invariance and, thus, the value of x0 affects 〈[x(t ) − x0]2〉,
making it a nonuniversal measure. The relaxation time to-
ward this long-time MSD asymptote, naturally, depends on
the actual x0 value used in the simulations [specifically, on
the deviation of x2

0 from the initial value 〈x(t = δt )2〉] as
well as on the exponents H and α. Plotting the measure of
the particle displacements in terms of 〈x(t )2〉, rather than
in the standard MSD manner, enables us to instantly identify
the initial particle position that becomes important below (for
instance, in Sec. IV B 2 where we vary x0 and study the
resulting PDF variations).

For the case of superdiffusive HDPs the magnitude of the
TAMSD is higher than that of the MSD 〈x2(t )〉 in the entire
range of (lag) times, see Eq. (25). In Figs. 2(a) and 2(b) we
show that this trend is also valid for the HDP-FBM process
with superdiffusive HDPs, provided sufficiently small initial
displacement x0 of the particles. For the HDP-FBM model
with superdiffusive HDPs the agreement of the results be-
tween computer simulations and theoretical predictions (35)
and (36) is excellent and quantitative. The mean TAMSD
follows the expected scaling dependence (36) almost in the
entire range of lag times. At the last point � = T , the MSD
and mean TAMSD become equal, as they should due to the
(weak) singularity in the definition of the TAMSD [6,11].

In contrast to superdiffusive HDPs, for pure subdiffusive
HDPs the MSD 〈x2(t )〉 is higher in magnitude than the mean
TAMSD [77,81]. The same is true for the HDP-FBM process.
Here, again, the initial particle displacement |x0| should not be
chosen too small in order to avoid possible MSD-TAMSD in-
tersection at short times during the period of MSD relaxation
to the long-time asymptote, see Fig. 2(c). This figure shows
that the long-time MSD asymptote from simulations agrees
well with that from the theory, while for the magnitude of the
mean TAMSD we detect a discrepancy. This discrepancy—
present also in the analysis of the original HDPs (see Fig. 2(a)
of Ref. [77])—may, in part, stem from the regularization of
D(x) employed in the simulations, see Eq. (31).

To check the amplitude of the MSD quantitatively, we
performed computer simulations for systematically vary-
ing Hurst exponent H and restored the dependence of the
prefactor Cp in Eqs. (35) and (36) for different α values versus
H . These results, together with the theoretical prediction (19),
are presented in Fig. 5. We find that for the HDP-FBM process
the agreement of Cp with the theoretical predictions is good
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FIG. 2. MSD (in terms of 〈x2(t )〉, green symbols and solid green
curves), mean TAMSD 〈δ2(�)〉 (blue symbols and solid blue curves),
and individual TAMSD δ2(�) (thin red curves) for the HDP-FBM
process. The MSD and TAMSD depend on their respective variables,
t and �. The diffusion scenarios (i), (ii), and (iii) correspond to pan-
els (a), (b), and (c) with the FBM and HDP exponents, respectively;
(a) H = 0.4 and α = 1, (b) H = 0.8 and α = 1, and (c) H = 0.8 and
α = −2. Thick green and blue curves are the theoretical predictions
Eqs. (35) and (36). Other parameters: the initial position of the
particles is x0 = 10−2, the trajectory length is T = 102, the time
step in simulations is δt = 10−2, and averaging is performed over
N = 103 time series. For all figures the noise strength is K2H = 1/2.

particularly, for superdiffusive FBM. We also checked that
MSD and TAMSD results are nearly insensitive to the value
of the time step used in the simulations, see Fig. 6.

To check the dependence of the magnitude of the mean
TAMSD (36) on the trajectory length T , we performed sim-

ulations for systematically varying T . In Fig. 7 we present
the variation of the TAMSD at the shortest lag time, �1 =
δt , namely 〈δ2

HDP-FBM(�1)〉 versus T for the same H and α

exponents as in Fig. 2. We find that the agreement of the
TAMSD with respect to both scaling behavior and magnitude
is particularly good for the case of superdiffusive HDPs and
subdiffusive FBM [scenario (i) of the HDP-FBM model]. For
superdiffusive HDPs and superdiffusive FBM some deviations
in the amplitude are detected. For subdiffusive HDPs and su-
perdiffusive FBM small discrepancies in the scaling exponent
as well as in the mean-TAMSD magnitude are observed, see
Fig. 7. This fact, again, may be due to the regularization of
the divergence of D(x) = D0|x|α for α < 0 near the origin,
see Eq. (31), as proposed in Ref. [77]. Other choices for the
regularization of D(x) for α < 0—such as capping the diffu-
sivity at D(|x| < ε) = D(ε)—are also possible to be imple-
mented in simulations.

Naturally, as HDPs are weakly nonergodic [77,81,82], we
expect weak nonergodicity also for the HDP-FBM process.
Indeed, weak ergodicity breaking is clearly demonstrated by
the nonequivalence of the MSD and TAMSD for all values of
the model parameters studied in Fig. 2. Using expressions (35)
and (36) for the MSD and mean TAMSD, we find that the
nonergodicity of pure HDPs quantified by (25) is simply
rescaled for the HDP-FBM process to yield〈

δ2
HDP-FBM(�)

〉
〈
x2

HDP-FBM(�)
〉 =

(
�

T

)(1−p)×2H

. (37)

The detailed evaluation of the EB parameter (13) for the HDP-
FBM model, a nontrivial task due to the calculation of the
fourth-order moments, is postponed for a separate study.

B. PDF

1. Symmetric distributions

The PDFs of the particle displacements—plotted for the
same sets of the Hurst exponents H and diffusivity exponents
α as in Fig. 2—are shown in Fig. 3. Figures 3(a), 3(b), and 3(c)
of this figure correspond to the cases (i), (ii), and (iii) of the
HDP-FBM model, respectively. By analogy with the parent
processes of FBM and HDP, see the PDFs (6) and (21), the
PDF of the HDP-FBM model for the initial condition (7) can
be constructed as

PHDP-FBM(x, t ) =
|x|1/p−1 exp

{−[ |x|1/p

(2/p)
√

D0t2H

]2}
√

4πD0t2H
. (38)

This form explicitly satisfies the diffusion equation

∂

∂t
PHDP-FBM(x, t )

= 2Ht2H−1 ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)PHDP-FBM(x,t )]

}
, (39)

and is consistent with the MSD relation (35), namely

〈
x2

HDP-FBM(t )
〉 = 2

∫ ∞

0
x2PHDP-FBM(x, t )dx = Cpt2H p. (40)

The analytical PDF (38) describes the data of our computer
simulations reasonably well, see Fig. 3 obtained for small
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FIG. 3. PDFs of particle displacements for the HDP-FBM model
evaluated for the same parameters as used in Fig. 2 (for the cor-
responding panels). The solid curves in the main plots—with the
corresponding colors for varying trajectory lengths T or overall
diffusion times t = T , as indicated in the legend of each panel—are
the analytical predictions for the PDF given by Eq. (38). The insets
show the same simulation data in terms of the similarity variable (41)
and demonstrate the agreement with the analytical prediction (42)
shown as the solid lines (the diagonal in the insets). The initial
position of the particles is x0 = 10−2.

initial displacements, x0 = 10−2. Specifically, for the su-
perdiffusive HDPs and slightly subdiffusive FBM—scenario
(i) illustrated in Fig. 3(a)—the PDF of the HDP-FBM model
is unimodal, with a cusp at x = 0. This form is similar to the
PDF of pure superdiffusive HDPs, see Eq. (21). The effect
of the fractional Gaussian noise at H = 0.4 onto the shape
of PHDP-FBM(x, t ) as compared to PHDP(x, t ) with the same α

is rather weak (at this H value the FBM dynamics is only
slightly subdiffusive).

For superdiffusive HDPs and superdiffusive FBM—
scenario (ii) depicted in Fig. 3(b)—the PDF is similarly
unimodal, but the smoothening of the PDF cusp for longer
trajectories is significantly more pronounced. This effect
is particularly visible for the longest trajectories (with
T = t = 103 corresponding to 105 simulation steps). We ar-
gue, however, that this PDF-smoothening—not captured by
the analytical PDF form (38)—has only a marginal effect
on the final long-time scaling predictions (35) for the MSD.
The latter is dominated by large particle displacements and
thus by the tails of PHDP-FBM(x, t ). These tails are indeed
correctly described by our analytical form (38), as quantified
in the insets of Figs. 3 and 8, compare Eq. (42) below.

For subdiffusive HDPs and superdiffusive FBM—scenario
(iii) shown in Fig. 3(c)—the PDF of the HDP-FBM process
is bimodal, as the PDF for pure subdiffusive HDPs with
α < 0 (see Fig. 1(a) in Ref. [77]). For this situation we also
detect that the region of slow diffusivity near x = 0—depleted
of particles for subdiffusive HDPs—becomes populated due
to a certain smoothening of PHDP-FBM(x, t ) in the results of
simulations. This effect is present also for rather short trajec-
tories, see the data for T = 10 in Fig. 3(c).

We confirm the prediction of Eq. (38) for the tails of the
PDF obtained by computer simulations. Namely, using the ar-
gument of the Gaussian function in (38) as the dimensionless
rescaled variable

y = |x|1/p

(2/p)
√

D0t2H
, (41)

we arrive at the simple Gaussian PDF

PHDP-FBM(y) = e−y2

√
π

. (42)

To confirm its leading dependence in y—the variable involv-
ing the peculiar anomalies of the spacial dynamics [due to
D(x)] and the temporal dynamics (due to fractional Gaussian
noise)—the final PDF for the HDP-FBM model obtained from
simulations is plotted in terms of − log [

√
πPHDP-FBM(y)]

versus y2 in log-log scale as the insets in Figs. 3 and 8.
We observe that in this “natural” renormalized coordinate the
long-displacement data from simulations follow the predicted
diagonal line in the plots. The universal PDF shape is de-
tected for all trajectory lengths T and all values of the HDP
exponent p (both superdiffusive—p > 1 and subdiffusive—
0 < p < 1) as well as all values of the of FBM exponent H
(both superdiffusive—1/2 < H < 1 and subdiffusive—0 <

H < 1/2). This supports the universality of the predicted
behavior (42), which is one of the central results of the current
analysis. Here we also refer to Appendix A for the discussion
of similar universal PDF shapes for fractional diffusion equa-
tions.

As seen Figs. 3 and 8, for small particle displacements
the results of the simulations are not in full agreement with
the analytical prediction (42). This fact manifests itself as a
“smoothening” of the PDF cusps at x → 0, detected in partic-
ular for long trajectories and superdiffusive HDPs choices. In
log-log scale of the insets of Fig. 3 this PDF discrepancy at
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small x is clearly visible as deviations from (42) at small y2.
This is observed both for superdiffusive [Figs. 3(a) and 3(b)]
and subdiffusive [Fig. 3(c)] HDPs. Note that for superdiffu-
sive HDPs the region at small y2 values, where the deviations
of PHDP-FBM(y) between simulations and theory are observed,
does not change with the trajectory length T , see the insets of
Figs. 3(a) and 3(b). For longer T , nearly the same region with
PHDP-FBM(y) discrepancies in terms of the y-variable spreads in
space for PHDP-FBM(x, t ) in terms of the x variable. For highly
subdiffusive HDPs contributing to the HDP-FBM process,
the agreement with the prediction (42) is also not perfect (in
particular near the origin), see the inset in Fig. 3(c) plotted for
α = −2. We show in Fig. 8 that for less subdiffusive HDPs
(for α = −1) the universal slope of − log [

√
πPHDP-FBM(y)]

versus y2 becomes valid in a perceivably larger region of y2.
A more detailed study of PHDP-FBM(x, t ) near the origin—

both for super- and subdiffusive HDPs as well as super- and
subdiffusive FBM as parent processes—reveals the relation

PHDP-FBM(x = 0, t ) ∼ 1/t pH , (43)

confirmed by simulations of varying length, see Fig. 9. The
behavior of the PDF (43) for small displacements in terms of
the similarity variable y is consistent with the functional form

PHDP-FBM(y) ≈ C(p, H )√
π

yp−1e−y2
, (44)

as demonstrated in Fig. 10. We emphasize here that this
heuristic form of the PDF is not derived, but rather conjectured
from the detailed analysis of simulation data for the behavior
of the PDF PHDP-FBM(y) in the region of small y. Specifically,
when the data from simulations are divided by the functional
form (44), we unveil a plateaulike behavior at small y, univer-
sal for all values of the HDP and FBM exponents examined
here. The variation of the PDF PHDP-FBM(y) for different tra-
jectory lengths T is also universal. The normalization constant
C(p, H ) in Eq. (44) corresponds to the plateau values at y → 0
in Fig. 10. The PDF (44) at small displacements is consistent
with the relation (43).

The smoother profiles and finite values of PHDP-FBM(x =
0, t ) at x → 0 obtained in the computer simulations appear
instead of the theoretically expected PDF shape (38). Namely,
at p > 1 we observe no diverging cusp of PHDP-FBM(x, t ) at
the origin and at 0 < p < 1 there is no “inverse cusp” or
vanishing PHDP-FBM(x, t ) at the origin. These discrepancies
of PHDP-FBM(y) for the case p > 1 can partly stem from a
finite (constant) time step in the simulations. Namely, the
gradually slowed-down particle dynamics near the origin
(with vanishing diffusivities) is not sampled sufficiently fre-
quently to yield the diverging value of PHDP-FBM(x = 0, t )
at x → 0 predicted analytically in Eq. (38). An improved
simulation scheme would require certain adjustment of the
time step to the value of the local diffusion coefficient.
This effect is well documented for diffusion in heteroge-
neous media and emerges on modeling the spreading dy-
namics of particles polydisperse in size [138–140]. Given
limited computer resources, we could not use a significantly
smaller and diffusivity-value-sensitive time step value in these
simulations.

The discrepancies of the PDF PHDP-FBM(x, t ) at small x val-
ues for the case p < 1 can, in turn, also partly originate from

the regularization of D(x) [employed to avoid the divergence
at the origin for α < 0, Eq. (31)]. We also checked that the
disagreement of the PDF close to x = 0 stems neither from a
particular value for the constant time step δt in the simulation
scheme nor from the preset PDF-binning width used to display
P(x, t ) variations. Different values of δt and of bin widths lead
to rather similar results for the PDFs (not shown).

Despite the discrepancies for the PDF PHDP-FBM(y) at the
origin, that we have discussed and quantified, the agree-
ment of the simulations with the theoretical predictions for
PHDP-FBM(x, t ) is overall convincing with respect to both posi-
tion and time dependencies, see the main panels of Fig. 3.

2. Off-center initial conditions

For nonzero initial particle conditions

P(x, 0) = δ(x − x0), (45)

the general analytical expression for the PDF of pure HDPs
was derived for an arbitrary stochastic convention κ as (see
Eq. (3.57) of Ref. [93])

PHDP(x, t |x0) = x1/2x(κ−2)α/2x1/2
0 x−κα/2

0

(2 − α)D0t

× exp

[
− x2−α + x2−α

0

(2 − α)2D0t

]
I 1−κα

α−2

[
2(xx0)

2−α
2

(2 − α)2D0t

]
.

(46)

Here I j (z) denotes the modified Bessel function of the first
kind. This expression was obtained for D(x) = D0xα for dif-
fusion on the positive semiaxis x > 0 [93]. Analogously to the
FBM-based generalization of Eq. (39) and its solution (38),
for the general PDF of the HDP-FBM process for initial
particle positions sufficiently far away from the origin, we
conjecture the form (46) with the simple rescaling

t → t2H . (47)

Then, in the Stratonovich representation with κ = 1/2 used
herein, Eq. (46) leads to (for x > 0 only)

PHDP-FBM(x, t |x0)

= x3/(2p)−1x1/(2p)
0

(2/p)D0t2H
exp

[
− x2/p+x2/p

0

(2/p)2D0t2H

]
I−1/2

[
2(xx0)1/p

(2/p)2D0t2H

]
.

(48)

For small arguments of I−1/2(z0) in Eq. (48), namely at

z0 = 2(xx0)1/p

(2/p)2D0t2H
� 1, (49)

using I−1/2(z0) ≈ √
2/(πz0) we arrive at the PDF (38). In

the opposite limit z0 � 1 we use the expansion I−1/2(z0) ≈
ez0/

√
2πz0 and (for x0 > 0) arrive at the “shifted” stretched

or compressed Gaussian

PHDP-FBM(x, t |x0) ≈
x1/p−1 exp

{
−

[
x1/p−x1/p

0

(2/p)
√

D0t2H

]2}
√

4πD0t2H
. (50)

In Fig. 11 we quantify the region of the model parameters x
and T as well as of the HDP and FBM exponents for which
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FIG. 4. PDF of the HDP-FBM process PHDP-FBM(x, t |x0) (shown
on the positive half-axis only) for α = 1, H = 0.8, and (strongly) off-
centered initial particle position, x0 = 102. Results of simulations are
the empty colored circles, the analytical PDF prediction (48) are the
solid curves, the large-argument approximation (50) are the dots in
the large-z0 regime, and the approximate small-argument analytical
results (38) are the dots in the large-z0 region (see the legend). The
results of these approximations are shown in the region of x and T
and for exponents H and α when the conditions z0 � 1 and z0 � 1
are satisfied, correspondingly (see Fig. 11). The color scheme is the
same as in Fig. 3 (see the legend).

the conditions z0 � 1 and z0 � 1 are valid (for a given initial
position x0).

In Fig. 4 we demonstrate that the results of computer sim-
ulations for the PDF PHDP-FBM(x, t |x0) at large off-centered
initial particle positions. The HDP and FBM exponents cho-
sen here as α = 1 and H = 0.8 [the same as in Figs. 2(b)
and 3(b)]. At very long times, we find that the influence of
nonzero x0 progressively diminishes and the PDF becomes
insensitive to the initial position. Naturally, this happens on
shorter time-scales for superdiffusive realizations of the HDP-
FBM process, as compared to subdiffusive ones (results not
shown). For the initial stage of the diffusion process, the
particles are almost exclusively in the half-space x > 0 near
x = x0 and the PDF expression (48) is used, see the data for
T = 100 and 101 in Fig. 4. The data are well described by
Eqs. (48) and (50) in the entire region of particle positions.
In the long-time limit, the effects of nonzero x0 are almost
lost and the PDF becomes nearly symmetric with respect to
x = 0 (results not shown). To describe the simulations data,
the half-space PDF (48) should then be divided by 2 for proper
normalization, see the data obtained for T = 102 and 103

in Fig. 4.
We quantify the tails of the PDF PHDP-FBM(x, t |x0) for

nonzero x0 in terms of the shifted variable (y − y0)2 via
plotting the PDF data from simulations in Fig. 12. Here y0

is computed via (41) for x0. Using the large-displacement
PDF (50) we then arrive at

PHDP-FBM(y|y0) = e−(y−y0 )2

√
π

, (51)

with this leading functional dependence being scaled out in
the presentation of Fig. 12 (for the case of subdiffusive parent
HDPs). We find that for all choices of the HDP and FBM ex-
ponents considered in Fig. 3 the tails of the off-centered PDFs
PHDP-FBM(y|y0) are consistent with the simple form (51).

We argue, however, that the PDF (48) only describes well
the long tails of the PHDP-FBM(x, t |x0) data, while in the region
of small particle displacements the analytical predictions (48)
and (38) fail to match the simulation data. In fact, expres-
sion (50) cannot be applied in this region as well, because
the condition z0 � 1 is not always satisfied. This discrepancy
between simulations and theory in the region of small x
manifests itself in the same PDF “smoothening”, as observed
in Figs. 3 and 8.

We checked the validity of the scaling relation (43) for sub-
stantially off-center initial particle positions for sufficiently
long trajectories (after the overall symmetric PDFs have been
established). We present the PDF results for sub- and su-
perdiffusive parent HDPs in Figs. 13 and 15, correspondingly.
For short trajectories, naturally, the scaling (43) is not valid
because no symmetry of the PDF with respect to x = 0 has
been achieved yet. For short simulation times, the starting
positions are clearly visible from the PDF, while at long
times the PDF shape is nearly symmetric with respect to
x = 0.

The validity of Eq. (43) for off-center initial positions at
long simulation times is demonstrated by simulations for both
sub- and superdiffusive HDPs in the HDP-FBM model in
Figs. 14 and 16, respectively. Thus, the PDF deviations we
detected near x = 0 in Figs. 3 and 8 are no artifacts of some
close-to-zero x0 positions chosen in the simulations (e.g.,
x0 = 10−2). We also observe that as the initial particle position
|x0| is shifted away from the origin, naturally, the simulation
times (or the trajectory lengths T ) required to reach nearly
symmetric PDF shapes also increase. As a result, the universal
scaling relation (43) starts to be followed at longer T (with
nearly symmetric PDFs), as demonstrated in Fig. 16. Never-
theless, at this point we cannot unequivocally identify distinct
mechanisms for the discrepancies between simulations and
theoretical predictions for the PDF PHDP-FBM(x, t ) at small x.

V. DISCUSSION AND CONCLUSIONS

We presented the results of computer simulations of a
combined HDP-FBM stochastic process. We analyzed the
statistical properties of this anomalous-diffusion process
based on the MSD and TAMSD as well as the displacement
PDF. We compared and contrasted its characteristics to those
of the parent processes, FBM and HDPs. Specifically, we
confirmed that in a large range of HDP and FBM exponents
α and H , as demonstrated in Fig. 1, the scaling relations for
the MSD and mean TAMSD of the HDP-FBM process are
similar to those for HDPs with the intuitive redefinition of the
exponents,

〈
x2

HDP(t )
〉 � t

2
2−α → 〈

x2
HDP-FBM(t )

〉 � t
2

2−α
×2H (52)

and 〈
δ2

HDP(�)
〉 � �1 → 〈

δ2
HDP-FBM(�)

〉 � �2H . (53)
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This indicates that the effects of the position-dependent diffu-
sivity and of fractional Gaussian noise are independent from
one another in their impact onto the particle dynamics. This
conclusion is similar to that obtained for the HDP-SBM model
considered in Ref. [82].

For stochastic processes with multiplicative noise, here due
to position-dependent diffusivity D(x), several questions have
been addressed in the literature: namely, those of consistent
formulations of the general statistical mechanics, differences
in the over- and underdamped limits, generalization of the
fluctuation-dissipation theorem (the Stokes-Einstein relation),
equilibration of the particles and the modified Boltzmann
distribution as its measure, and the emergence of the “spuri-
ous drift” [110,119,120,141–143], as well as self-consistent
links between the space-local diffusivity and damping
[83,95,144–152]. For a thermally equilibrated particle the
thermodynamic consistency can only be satisfied in the
Hänggi-Klimontovich convention [110]. The definition of
an effective temperature—a measure of the average kinetic
energy, m〈v2〉/2 = kBT/2, of the diffusing particle based on
the Maxwell-Boltzmann statistics, where kB is the Boltzmann
constant—was also discussed in some of these studies (for the
underdamped Langevin equation for a particle of mass m).
These general questions for the current HDP-FBM system
deserve special consideration. We note, however, that in the
realm of living biological cells with their plethora of energy-
consuming, active molecular processes the assumption of
equilibrium cannot be made a priori and thus the discussion
of the general effects in this work is physically legitimate.

The spectrum of physical systems for the HDP-FBM
model includes, i.e., the above listed HDP-relevant systems
driven now by fractional (instead of white Gaussian) noise.
The occurrence of the correlated noise in these systems is
expected, e.g., in biological cells and artificially crowded
liquids in which “passive-antipersistence” of the noise is due
to crowding, while “active-persistent” noise arises for active
processes such as motor-driven motion. The deterministic
structural disorder is given by the cell morphology or the
designed pore properties of a given environment, such as
hydrogels. Evidently, as a first step, the applicability of the
overdamped approximation (30) to the dynamics at short-
to-intermediate times, the specific choice of the power-law
position-dependence (16) of the diffusion coefficient D(x) and
the power-law time decay of the increment correlations (5)
need to be validated for a specific system. For instance, the
increment correlations of the fractional Gaussian noise may
have to be cut-off in system-specific ways [153] or some
modifications of the power-law forms of D(x) may be needed.

We also note that the current results can also be applied,
e.g., to the inverse problem of inferring the spatial scaling
exponent of the D(x) dependence and the Hurst exponent
of FBM from analyzing the decay of the tails of the PDF
PHDP-FBM(x, t ) that are sensitive to the underlying space-time
dynamics, as evidenced by Eq. (41).
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APPENDIX A: PDFS

We note the remarkable similarity between the bimodal
double-hump PDF form (38) featured by subdiffusive HDPs
and the large-displacement tails of the PDF satisfying the
fractional wave equations [154–156] (with 0 < β � 1)

∂2

∂t2
PFWE(x, t )

= K2−β

∂

∂t

[
1

	(β )

∫ t

0

dt ′

(t − t ′)1−β

∂2

∂x2
PFWE(x, t ′)

]
. (A1)

For this case, however, the PDF with the two off-center humps
is realized for superdiffusive (rather than subdiffusive) MSD
growth,

〈
x2

FWE(t )
〉 = 2K2−β

	(3 − β )
t2−β. (A2)

We refer the reader to Fig. 1 and Eq. (6) in Ref. [156] as
well as to Fig. 4 and Eq. (38) in Ref. [155] describing the
compressed-Gaussian tails of the respective PDFs. Interest-
ingly, in terms of a new universal rescaled variable,

y2
β = β

2

(
2 − β

2

) 2−β

β

(
|x|√

K2−βt2−β

)2/β

, (A3)

these expressions for the PDF tails yield a simple Gaus-
sian (42),

PFWE(yβ ) ≈ e−y2
β /

√
(2 − β )π. (A4)

For β → 1 we get y2
β → x2/(4K1t ) and Eq. (A4) reduces to

the canonical Gaussian (42).
For the subdiffusive fractional diffusion equation (0<β̄<1)

of the form

∂

∂t
PFDE(x, t ) = Kβ̄

	(β̄ )

∂

∂t

[∫ t

0

dt ′

(t − t ′)1−β̄

∂2

∂x2
PFDE(x, t )

]
,

(A5)

the long tails of the PDF obeys the stretched-Gaussian form
(e.g., see Eq. (45) in Ref. [4]). The PDF (A5) with the
characteristic cusp at the origin also leads to the
Gaussian (A4) in terms of the variable yβ and the redefined
exponent

β̄ → (2 − β ). (A6)

APPENDIX B: AUXILIARY FIGURES

Below, we present some additional figures supporting our
claims in the main text.
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FIG. 5. Variation of the prefactor Cp versus H for the HDP-FBM
process as computed from fitting the MSD magnitude in simulations
(symbols) and predicted from Eq. (19) theoretically (black dashed
lines). The values of the HDP exponent p are provided in the legend.
Other parameters are the same as in Fig. 2.
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FIG. 6. Insensitivity of the MSD and TAMSD variations to
the time-step magnitude used in simulations. Parameters: H = 0.8,
α = 1 [like in Fig. 2(b)], x0 = 1, δt = 10−1 (dashed curves), 10−2

(crosses), and 10−3 (circles).
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FIG. 7. Variation of initial TAMSD values, 〈δ2
HDP-FBM(�1)〉, com-

puted for the parameters of Figs. 2(a), 2(b), and 3(c) and plotted here
for varying trajectory length, T . The solid black lines are the exact
theoretical predictions (24), while the dashed lines are amplitude-
shifted scaling predictions (shown for clarity).
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FIG. 8. PDF of particle displacements for the HDP-FBM model
(the parameters and trajectory lengths are given in the legend). The
inset presents the same data as well as the analytical form (42) in
terms of y2. Other parameters are the same as in Fig. 3 and x0 = 10−2.
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FIG. 9. Magnitude of PHDP-FBM(x = 0, t ) evaluated for different
values of the exponents of the parent HDPs and FBM processes and
plotted for varying simulation time t . Scaling relation (43) is shown
as the solid asymptotes.

FIG. 10. Simulation data for PHDP-FBM(y) renormalized by the
PDF form (44), yielding C(p, H ) as the plateau value at small y. The
HDP and FBM exponents are the same as in Fig. 3 (see the legend);
the same color scheme is also used for the data at different diffusion
times t (or total trajectory lengths, T ). The plateau region at small
y is also observed for other model parameters of Fig. 9 (results not
shown).
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FIG. 11. Regions of small and large arguments z0 shown for
varying values of x and T (plotted for H , α, and x0 values of Fig. 4).
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FIG. 12. Tails of PHDP-FBM(y|y0 ) (the simulated data shown for
the positive half-space) after rescaling the leading functional depen-
dence (51) plotted versus the shifted space-time variable (y − y0 )2.
The model parameters and the color scheme are the same as in Fig. 8,
except x0 = 102.
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FIG. 13. PDF PHDP-FBM(x, t |x0) for the off-center initial position,
x0 = 1, and subdiffusive parent HDPs. The trajectory lengths T = t
are indicated in the legend by the respective color. Other parameters:
H = 0.8 and α = −2 [as in Fig. 2(c)].
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FIG. 14. Scaling of the PDF value at x = 0 versus the diffusion
time t for different initial positions x0, as indicated in the legend.
The dashed line denotes the scaling relation (43). Other parameters
are the same as in Fig. 13. The missing points for shorter trajectory
lengths correspond to the extremely low PDF values at x = 0, outside
of the relevant range shown in the plot.
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FIG. 15. PDFs for the starting position x0 = 103 in the HDP-
FBM model, for superdiffusive FBM with the exponent H = 0.8 and
for superdiffusive HDPs with the exponent α = 1 [as in Fig. 2(b)].
The dashed curves indicate the respective PDF variations at x < 0
mirrored into the region x > 0, shown in the corresponding color for
different trajectory lengths T (see the legend).

100 101 102 103 104
10-6

10-4

10-2

100

FIG. 16. The same as in Fig. 14, but for the parameters of Fig. 15
(namely H = 0.8 and α = 1). The dashed line is the asymptote (43).
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