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What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as
of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex
icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of
elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral
shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component
“invades” the regions with the highest elastic energy and stress imposed by the 12 topological defects on the
surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and
the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive
filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a
progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of
the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20
flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical
investigation of the first two stages of this invasion process and develop a model of morphological changes of
the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of
some structures predicted from our calculations, in particular for the shape of viral capsids.
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I. INTRODUCTION

Geometrically ideal closed three-dimensional surfaces,
starting from the Platonic solids [1], have inspired many
thinkers and scientists over centuries and millennia. The inher-
ent stability of such polyhedral shells constructed from jointed
triangular subunits has influenced some famous architects,
such as Buckminster Fuller with his visionary geodesic domes
[2,3]. The name “Buckminster fullerene” was coined for C60

“buckyballs” discovered by Kroto et al. [4,5] and composed of
nC = 60 carbon atoms connected into a shell with 60 vertices
and 32 faces (with 12 pentagonal and 20 hexagonal faces) [8].
Small fullerenes have a soccer-ball appearance, possessing
the symmetry group of truncated icosahedra [6], while large
fullerenes are polyhedrally faceted [7,8] (see Sec. IV C).

Polyhedral shells also describe the geometric shape of
many spherical viruses very well [9]. The energetics, thermo-
dynamics, and kinetics of quite elaborate physical-chemical
processes involved in the mechanisms of viral-capsid stability
and (self-) assembly have been the subject of intense research
over the last decades by different scientific communities (the
list of studies is too long to properly overview it here).

Our main objective is to advance the theoretical under-
standing of the energetics of icosahedral shells, including
those composed of two different crystalline materials having
a nonzero line tension between them. We start with a general
overview of topological defects and the energetics of shells,

including icosahedra (Sec. I A), continue with the physics of
buckling transitions (Sec. I B), and discuss the recent advances
for the two-component shells in Sec. I C. We note here that
experts may directly jump to Sec. II B, while standard readers
may find useful the general introduction provided below.

A. One-component shells: Icosahedra, topological defects,
and physical properties of viral capsids

The phenomenon of wrapping of a hexagonally sym-
metric crystalline planar sheet onto a spherical surface
is accompanied by creation of (at least) 12 innate topo-
logical defects [10–12,15]: these disclinations are singular
points with no sixfold symmetry [13,14,16–20]. It follows
from the topological invariance of the Euler character-
istics χE (the alternating sum of the number of ver-
tices nvert, edges or ridges nedge, and faces nface) that
for a closed polyhedral surface isomorphic to a sphere
is [8]

χE = nvert − nedge + nface = 2. (1)

Disclinations have typically a fivefold symmetry and ab-
sorb the stretching energy to be paid upon surface wrapping.
Elasticity-mediated repulsion between the defects on a hexag-
onal lattice [14], in analogy to the Thompson problem in
classical electrostatics [21–23], distributes the defects for a
hardly stretchable but easily bendable membranous material
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FIG. 1. Structure of a rigid crystalline icosahedral shell with
the vertices “invaded” by the soft material (the image courtesy
of Vliegenthart, unpublished). The triangulated lattice mesh of the
rigid and soft materials is shown in magenta red and green colors,
respectively.

at the vertices of the icosahedron (see Fig. 1). In this figure,
the triangulated lattice of the crystalline material in a closed
icosahedrally symmetric shell imposes mostly the bending-
energy penalty on the edges; it also experiences bending- and
stretching-energy-associated penalties at the 12 vertices.

Icosahedral shapes, abundant in physics and crystallogra-
phy [24], are known to minimize the elastic energy of the
ridges. One biological example are the surfaces of bacterio-
phage capsids [25,26] and spherical viruses [9,27–45]. As
predicted by Crick and Watson [34], the capsids are con-
structed from protein subunits of a small molecular weight
(often chemically identical or consisting of a few distinct
types). The viral capsids follow the principle of quasiequiv-
alence for the subunit-subunit interaction environments, as
established by Caspar and Klug [35] and yield energy-
optimized structures (see Sec. III B). The faces of icosahedral
capsids often have hexagonal symmetry of protein subunits,
while the vertices have pentagonal symmetry [9,37,38]. In
doing so, virus capsids reduce the penalties for the formation
of 12 defects at the icosahedron’s vertices (if formed from
the planar protein sheet having the lowest-energy state as a
equitriangulated, sixfold-symmetric lattice). We refer also to
Refs. [43,46–59] for the nanoindentation of virus capsids and
to Ref. [54] for a comparative analysis of elastic moduli and
their variability among viral families.

The shape, self-assembly, and energetic stability of the
generic icosahedra were rationalized in a large number of
theoretical [18,23,33,38,60–79], computer-simulations-based
[15,80–97], and experimental [25,98,100–113] studies [114].
From the perspective of viral-capsid self-assembly (see
Refs. [75,82,102–105] for oligomerization-based kinetic and
thermodynamic theories), a number of RNA-containing virus
families (see, e.g., Ref. [28] for an extensive review) form
their virions via a simultaneous packing of the genetic mate-
rial, surrounding and stabilizing it by capsid proteins [75,115–
117].

B. Buckling transitions: Mathematical approach
and summary of classical results

Mathematically, based on the elasticity theory of thin
sheets and Föppl–von Kármán (FvK) equations [121–123],
the energetics of the defect-driven buckling transition of crys-
talline shells was examined in Refs. [17,18,124,125]. The
scaling laws for energy focusing in the ridges of these struc-
tures were derived by Witten and coworkers [19,126–135]
(see also Refs. [136–141]). The FvK equations for thin elastic
shells were solved using a mesh discretization for model poly-
merized membranes [142]. Other examples of ridge formation
and buckling include crumpling of paper [143–147] and other
materials [148–150]. Wrinkles are also formed on thin elas-
tic membranes [19,151–155], on polymer films and surfaces
[156–159], in wrapped geometries [160], on soft spherical
vesicles [20,161,162], on pollen grains [163], and on graphene
sheets [164,165], to mention a few physical examples [166].

The elastic energy of a buckled (positive) disclination [17]
has been estimated by matching the two extreme cases: a flat
disk around it with only in-plane stresses (with the energy
growing with the area) and a stretch-free cone (with the bend-
ing energy growing logarithmically) (see the seminal studies
of Nelson and coworkers [17,18]). Specifically, the solution of
the biharmonic equation

∇4χ (r) = sKδ(r) (2)

for the Airy stress function χ (r) with the defect “charge”

s = 2π/6 (3)

for a flat disk was obtained in Ref. [17]. Here, K is the
two-dimensional Young’s modulus. The stretching energy of
a defect grows quadratically with the radius of the disk R,

Estr(R) = Ks2R2/(32π ), (4)

while the bending energy of a stress-free buckled cone grows
logarithmically [14,17,18,84],

Fbend(R) = sκ log (R/Rb), (5)

with κ being the bending modulus (measured in units of
thermal energy kBT ).

The buckling transition can be understood via a competi-
tion between the strain-favoring localization of the Gaussian
curvature [169] around the defects and the bending energy
that prefers to spread the mean curvature over the surface. The
dimensionless FvK number [17,18],

γ = KR2
shell/κ, (6)

describes the degree of shell “buckleness.” Here, Rshell is the
radius of a sphere with the same area as the icosahedron. This
is the so-called constant-surface constraint; we refer also to
the constant-volume calculations for the buckling transition of
icosahedra considered in Ref. [68]. Many convex icosahedral
viral capsids indeed pronouncedly buckle outwards as their
radius grows [9] and the respective FvK numbers exceed the
theoretically predicted critical value [17,18,84]

γ � γb ≈ 154. (7)

Hereafter, we reserve the subscript “b” for the buckling-
related quantities and observables. For larger shells and at

062104-2



BUCKLING TRANSITIONS AND SOFT-PHASE INVASION … PHYSICAL REVIEW E 102, 062104 (2020)

increasing FvK numbers the edges of the capsids additionally
sharpen, as obtained from the three-dimensional (3D) recon-
struction of cryoelectron-microscopy images of viral capsids
[9]. The virus-related FvK numbers are [18,71]

γ � 102 . . . 103, (8)

reaching a colossal value γ � 104 for the giant mimivirus
[40,170,171] (see Sec. IV B).

In curved spaces, generalized theories of defect formation
were developed [19] and applied, inter alia, to the exper-
imental data on formation of defects and grain-boundary
scars [20,23,24,85,92,112,172–176]. Also, the elastic energy
of ridges Eridge was found using scaling arguments [126,132]
and derived from the van Kármán equations [133,135]. The
scaling exponent was found independent of the boundary con-
ditions [135], with the ridge energy obeying the law

Eridge(γ ) ∼ γ 1/6. (9)

C. Multicomponent crystalline shells:
Optimal structures and physical systems

While one-component crystalline shells [177,178] are rel-
atively well understood [18,19], the structure, lowest-energy
states, and mechanical properties of two-component shells
[84,86,179,180] present often a nontrivial analytical problem,
even on a level of scaling relations [16]. For multicom-
ponent vesicles [181], for instance, the effects of varying
bending moduli and line tension between the components
onto possible shape morphologies were studied for two liq-
uid components [182], including some budding scenarios
[183,184]. For more complex crystalline shells, the energetics
of bilayer-formed polyhedral shapes was also studied [72,76].
The segregation of excess amphiphilic, intrinsically curved
molecules in the regions of “energy focusing” (i.e., in ridges
and vertices) as well as the formation of pores in the bilayer
vesicles were suggested as possible scenarios of reduction
of the total elastic energy of the shell. The elastic energy
of various polyhedra with regular faces was enumerated for
varying vesicle radii and fractions of a spontaneously curved
component. Note, however, that the icosahedral shape does
not always yield the absolute energy minimum [72,76] (see
also Refs. [38,63,185]).

For two-component crystalline shells, which differ in
several aspects from single-component ones, the ground-
energy-state morphologies were analyzed, e.g., numerically
by de la Cruz et al. [83,84,87]. The influence of a nonzero
line tension between the components inhibiting the mixing
of small domains and of the ratio of the bending moduli was
examined. In particular, for small surface fractions of the soft
phase (denoted by parameter f hereafter) and for low line
tensions λ the material with low bending rigidities or “soft”
material was shown to occupy the ridges of the icosahedron,
while the rigid component was found to fill its faces. The en-
ergetic benefit from such stripelike edge-filling configurations
was shown to diminish for smaller differences between the
magnitudes of the elastic moduli of the two phases [83,84,87],
as intuitively expected. This can trigger a phase separation
or segregation of the two components on the shell surface at
finite line tensions.

A rich phenomenology of various nonicosahedral shapes
was shown to emerge as well, with a trend that the increas-
ing line tension reduces the optimal number of soft domains
emerging on the surface [83,84], as expected. The findings
of our current model of soft-material “invasion” of a rigid
crystalline shell (see Sec. III A) lead to similar conclusions.
Importantly, the coarsening of rigid domains and subsequent
phase separation was shown [83,84] to take place at the same
critical λ� value, irrespective of the soft-phase fraction f . The
morphology of the equilibrium shapes of two-component fluid
vesicles was also investigated [182,186].

Our objective here is to gain more insights into the physics
and the energetics of the partitioning of a soft component on
the crystalline two-component shell. We classify the “soft-
ness” of shell materials based on their FvK numbers (6)
determined by the ratio of the respective stretching and bend-
ing moduli. Having in mind certain applications to icosahedral
viruses, we only consider the outer protein layer of the capsids
and model it as a thin shell. Indeed, the thickness of protein
shells for a majority of viral capsids is ∼2 . . . 5 nm [74], that
is much smaller than typical capsid dimensions. We neglect
all features of compaction of nucleic acids (DNA and RNA)
inside the capsid, as well as of possible interactions of nucleic
acids with the inner capsid surface (involving, particularly
for single-stranded RNA viruses, a significant electrostatically
attractive component [25,33,48,65,69,80,187–194]). Some
preliminary theoretical results for energetically optimal ma-
terial partitionings on icosahedral two-component shells for a
varying soft-component fraction f and interfacial line tension
λ were presented recently [195].

Multicomponent viral shells and lipid vesicles have been
examined from various viewpoints [83,84,95] and multiscale
separation of lipids on multicomponent lipid vesicles due to
lipid immiscibility or effective line tension between different
phases were studied [196]. As an example of inhomogeneous
shells, a spherical shell with a thinner and more elastic circular
cap was shown by simulations [95] to require smaller external
pressures to buckle and also yielding alternative postbuckling
shell morphologies. In Ref. [95], however, no analytic calcu-
lations were presented for icosahedrally symmetric shells.

Let us also mention the experimental study of formation
of hollow micron-sized icosahedral shells via segregation of
oppositely charged surfactants [197,198] that has also moti-
vated our research. The pores in the bilayer shell were shown
to be formed particularly at the vertices of the icosahedron,
reducing the elastic energy. The redistribution of the two
types of surfactants on the surface was shown to optimize
its total elastic and electrostatic energy. The excess molecules
accumulate on the edges and pores of the capsid [197,198],
avoiding the crystalline planar faces of the shell.

D. Plan of the paper and main concepts

The paper is organized as follows. In Sec. II A we start with
the consideration of one-component crystalline shells (includ-
ing icosahedral ones) and discussion of the basic model. We
introduce the concepts of domes and cones in Sec. II B. The
basic equations and their solutions for the strain energy are
presented in Sec. II B 1, while variable cones are described in
Sec. II C 1. We consider spherical domes rather than flat disks
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to describe the buckling transition around a topological defect
and compare the findings for the shell energetics with the
known results [17,18] overviewed in Sec. I B. The energetics
of the two-component shells, the main focus of this study, is
examined in Sec. III where we show how the soft material
progressively fills the spherical caps and invades the edges
of the rigid crystalline shell to minimize the total elastic and
line-tension energy. We start with the model description in
Sec. III A, describe the stages of soft-material invasion and re-
spective energy calculation in Sec. III B, and discuss the detail
of stalling of the invasion process in Sec. III C. We show how
the resulting level of invasion is stabilized against variations
of the soft-material fraction. Finally, we summarize the main
results in Sec. IV A and discuss some of their implications for
the structure and stability of viral capsids in Sec. IV B.

II. SINGLE-COMPONENT SHELLS: RESULTS ON
WRAPPING A CUTOUT DISK ONTO A DOME

We first discuss the approximations utilized in the model,
consider the wrapping of a crystalline material onto a spheri-
cal cap, calculate the energy of an icosahedral shell composed
of 12 domes, and compare the findings with the established
results for buckled icosahedra [18].

A. Model and approximations

We consider a two-dimensional closed surface, with the
area 4πR2

shell and the Euler characteristic χE = 2, consisting
of a crystalline material with underlying hexagonal symmetry.
With a description of the shapes and energetics on the basis
of planar-strain calculations and out-of-plane defect-buckling
results, our findings provide, inter alia, a quantitative analyti-
cal description of the simulation data of Ref. [18]. We denote
different energy contributions as E for the two-dimensional
stretching, F for the bending, S for the line tension (in the
case of two-component shells), and, finally, G for the total
energy. As in similar studies [83], our energy-based treatment
neglects fluctuations occurring at finite temperatures.

To compute the energetic cost of shell deformations,
we employ the isotropic-elasticity theory of thin elastic
sheets and the well known von Kármán equations (see
Refs. [16,19,143]). We start with triangulated-lattice sheets
which for biological systems mimic, e.g., densely packed
lipids in membranes and regularly assembled capsomers in
viral-capsid shells [9]. We improve the standard formulation
for the disclination cones [18] by assuming a more realistic
spherical segment for the cap, rather than a flat disk.

The “regularized” core of a conical disclination forms a
spherical segment called “dome.” This surface can (poten-
tially) assume other functional geometries for optimizing the
total elastic energy: one can determine the exact proportion
and the extent of these “optimized surfaces” on the shell
surface (e.g., as a function of the model parameters). For in-
stance, the cap surface one can envisage a rotation surface of a
catenary curve or of a parabolic arc. A functional optimization
for the actual shape of nonspherical caps and of noncircular
cylindrical segments can be a subject of future investigations.
For simplicity, for both single- and two-component shells,
we consider only perfectly spherical segments as domes (as

FIG. 2. Deformation map of a partial disk into a dome for the de-
fect of charge q = 1. This corresponds to a cut-out planar azimuthal
angle of 2π/6, as for icosahedral shells. Some model parameters are
denoted in the plot.

rotation surfaces of circular arcs) and the cylindrical segments
as the ridges connecting 12 spherical domes on an icosahe-
dron. Spherical dome segments and smooth noncircular cones
thus accommodate the disclination defects of a given charge,
generalizing the simplistic picture of stretched flat caps (each
containing a topological defect) and nonsmoothly connected
bent circular cones, as initially proposed in Ref. [17].

We evaluate the stretching and bending energies as a func-
tion of the size of spherical domes and FvK number. An
important feature is that the critical local FvK number stays
nearly constant at the boundary of the dome, thereby gov-
erning the cap-to-cone transition. Describing in-plane strain
and out-of-plane buckling near the defects yields qualitative
agreement with the simulation data [18]. The adjustment of
parameters needed to be performed in Ref. [18] in order to
make the agreement quantitative is attributed to the back-
ground curvature of the sphere. Note that continuum elastic
theory is valid for large curvature radii, much larger than the
shell thickness [16,19].

B. Modeling domes and cones

A disclination describes a rotational defect in the crystal
structure. When going around a defect with the “topological
charge” q on a triangulated lattice, the difference in directions
of the respective vectors on the lattice is

qπ/3. (10)

To get an idea of how the strain develops along the dome,
we set a mapping from a flat disk Dq with a qπ/3 large
wedge being cut out to a spherical dome of radius ρdome (see
Fig. 2) (compare also to the disclination cone [19,136,137]).
We compare configurations with

nq = 12/q (11)

defects for q = {1, 2, 3, 4} assumed to be equally separated on
the spherical surface (see Fig. 3) [199]. Each dome covers a
solid angle qπ/3 and its boundary is at the polar angle

θdome = arccos[q̄/6]. (12)
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FIG. 3. Symmetric arrangements of topological defects of a
given charge q on sphere that results in the energy minimum.

Here, the “dual” defect charge

q̄ = 6 − q (13)

is equal to the coordination number of a given vertex [11].
We employ two key approximations. First, similarly to

Ref. [18], we consider the wrapping to be rotationally sym-
metric around the vertical axis (see Fig. 2). This condition is
violated stronger for larger domes and higher charge values q.
When the radius of the dome gets small enough, the effects
of neighboring defects are largely “screened” [14]. Second,
the mapping does not change the area density. The exact
deformation tensor, obtainable as a series expansion in the
spherical harmonics (see, e.g., the approach of Ref. [18]),
would show this, as a consequence of the harmonic properties
of elastic forces. The deformation in a spherical dome does
not preserve area density, but we take this as an approximation
in order to obtain the relation between ρdome and rdisk (see
below). This can also be seen in computer simulations [200]
where the condition of constant area density holds over a
large range of FvK numbers (up to the discretization size of
the lattice). Locally this is not the case, but considering the
remaining cone strainless makes it a consistent assumption.
As a consequence, the relation between the radius of the disk
(rdisk ) and dome (ρdome) is given by

rdisk = ρdome

√
2q/q̄, (14)

where ρdome is the radius of a sphere yielding the spherical
dome as a segment [201].

1. Strain energy

The mapping onto the dome surface is given by spherical
angles (polar angle θ and azimuthal angle φ) as functions
φ(r, ψ ) and θ (r, ψ ) in the polar coordinates on the disk r and
ψ , that is,

φ(ψ ) = (6/q̄)ψ (15)

and

θ (r) = arccos

(
1 − q̄

12

r2

ρdome
2

)
. (16)

The deformation tensor γ̄ has the diagonal structure due to the
symmetry present. It is defined as half the difference between
the metric on the disk and dome, with the r and ψ components
being, respectively,

γ̄rr (u) = − 4q2 − q̄u2

48 − 2q̄u2
and γ̄ψψ (u) = q

2q̄
− u2

8
, (17)

where

u = r/ρdome (18)

is the dimensionless radial variable. Generally, ρdome � Rshell

and they are equal at γ � γb. Above buckling, the value of
ρdome is found by minimizing the total energy (namely, of the
strain in the dome and the bending energy in the cone).

The bending energy of the dome is a constant independent
of ρdome. In fact, changing the values of K or κ changes ρdome

such that the FvK number (6) is equal to its buckling value.
The strain energy in the dome surface for

u � udisk = rdisk/ρdome (19)

follows from the general elasticity theory in the limit of small
deformations [16,18,19,202]

Edome(u)

= Kρdome
2
∫ u

0 du′ ∫ q̄
3 π

0 dψ[Tr(γ̄ (u′)2) + 2σDet(γ̄ (u′))]
2(1 − σ 2)

,

(20)

where K is the two-dimensional Young modulus and σ is the
two-dimensional Poisson ratio of the material. Here Tr( . . . )
and Det( . . . ) are the trace and the determinant of a matrix,
respectively. Note that the factor q̄π/3 emerges from the sur-
face integral in Eq. (20). Then, via inserting expression (17)
into Eq. (20), fixing the Poisson ratio to

σ = 1/3 (21)

(the value for the regular triangular lattice that is also a re-
alistic number for many viral-capsid shells [39,43,46]), and
performing the integration, the elastic energy of the dome in
terms of u becomes

Edome(u) = πKρdome
2

128

[
2q̄3u2

24 − q̄u2
+ 10q̄u2 + (24 − q̄u2)2

q̄

− (24 − q̄u2)3

16q̄2
− 288(9 − 2q)

q̄2

+ 32q̄ log
(

1 − q̄

24
u2
)]

. (22)

This general expression improves the classical description of
the strain of a flat disk [Eq. (4)] [17]. The strain energy of a
dome increases sharply with the defect charge q (see Table I).
However, when the energy magnitude and the parameter u are
scaled with their respective maximal values, the strain energy
becomes approximately quadratic in variable

u/udome = r/rdisk, (23)

with

udome =
√

2q/q̄, (24)

so that we use the ansatz

Edome(u) � Edome

(√
2q

q̄

)
q̄

2q
u2

= K
qAq

12
ρdome

2
( u

udome

)2
, (25)
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TABLE I. Strain energies of the shell (in units KR2
shell) for varying defect charges q (see Fig. 3) computed from Eq. (26) and the Green’s

function calculations outlined in Sec. II B 2.

q = 1 q = 2 q = 3 q = 4 q = 6

Icosahedron Octahedron Tetrahedron Triangle Line
Aq 0.04819 0.2670 0.9702 3.685 Not defined

Eshell
KR2

shell
0.05273 0.2184 0.5147 1.0281 2.2310

where the coefficient Aq is

Aq = 3π
q̄

q

[
q

4q4 − 129q3 + 1536q2 − 7488q + 13824

64(12 − q)q̄3

+ log
(

1 − q

12

)]
. (26)

This expression for Aq is obtained from Eq. (22) after setting
u = udome.

The quadratic approximation (25) is equal to the full solu-
tion (22) at the end points (see Fig. 4). The magnitude of Aq,
obtained from the Green’s function calculations of Ref. [14]
(see Sec. II B 2), as listed in Table I, agree favorably with
the exact results [14] for q = 1. The agreement, however,
becomes less favorable as the defect charge increases. The
curves for the strain energy of the dome for all q values as
a function of r/rdisk collapse onto the universal curve (see
Fig. 4). The approximate quadratic dependence obtained from
Eqs. (22) and (25) is the dashed curve in Fig. 4. In virtue of
Eqs. (23) and (25), the strain energy of the dome is also a
quadratic function of the radius r of a flat disk, namely,

Edome(r) � K
qAq

12
ρdome

2 r2

r2
disk

. (27)

For a single defect, we find that for smaller sphere radii the
area over which the crystalline material relaxes its strain also
becomes smaller. This tendency of Gaussian-curvature focus-
ing is counterbalanced by the bending energy, for which the

FIG. 4. Scaled in-plane strain energies of the dome given by
Eq. (22) computed for q = {1, 2, 3, 4, 6} (almost fully superimposing
curves of different colors), collapse onto a single universal curve. The
values of Aq from Table I were used here. The quadratic law for the
bottom curve is Eq. (25), illustrating a rather close agreement with
the exact result (22).

sphere is energetically optimal. This competition regulates the
buckling propensity of surfaces and controls their minimal-
energy shapes.

Then, with Eq. (26), the strain energy of the entire sphere
covered with 12/q domes becomes

Eshell = KAqR2
shell. (28)

Although the general result (20) depends on the Poisson ratio,
when σ = 1

3 for a regular triangular lattice [58,83,84,94,203]
is used, they become quite close to those reported in Ref. [14].
Equations (22), (25), and (26) are the main results of this
section.

2. Green’s function approach

Following Ref. [14], for an arbitrary arrangement of n
defects on a closed surface we can write

Eshell = K

2

∮∮
S

dx2
∮∮

S
dy2[KG(x) − q(x)]�−2(x, y)

× [KG(y) − q(y)] + Ecore. (29)

We choose one defect positioned on the sphere’s “north
pole,” while the coordinates for other defects are computed in
Table II. Here, KG(x) is the Gaussian curvature at point x,
q(x) is the topological charge (that is effectively a sum of
delta functions), and the operator �−2 is the inverse of the
Laplacian square. Ecore is the short-distance core energy that
depends on the details of intermolecular interactions in the
shell material at the “microscopic” level [204] We tabulate
Eshell in Table I without including the results for Ecore.

3. Bending energy

The bending energy depends only on the solid angle each
dome covers on the shell. With the mean curvature of the
dome,

Hdome = 1/ρdome, (30)

the contribution to the elastic energy amounts to

Fdome = 2κH2
dome(qπ/3)ρdome

2 = κ2qπ/3. (31)

The details of the Gaussian-curvature contribution will be
omitted below, except for pursuing a comparison with com-
puter simulations [18], as the saddle-splay modulus is often
not known (because it depends on the molecular details of the
material). Next, we treat the cone that starts strainless at the
radius r = rdisk. The strainless cone has the radius

ρcone(r) = (6/q̄)r (32)
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TABLE II. Coordinates θ and φ of defect positions on symmetric solids, computed for integer defect charges.

Symmetry Defects cos θ φ

Icosahedron 12 × q = 1 1 Indefinite
1√
5

4π

5
2π

5 0 − 2π

5 − 4π

5

− 1√
5

π

5
3π

5 π − 3π

5 − π

5

−1 Indefinite

Octahedron 6 × q = 2 1 Indefinite
0 0 π

2 π 3π

2−1 Indefinite

Tetrahedron 4 × q = 3 1 Indefinite
−1/3 0 π

3
2π

3

Double triangle 3 × q = 4 1 Indefinite
− 1

3 0 π

3
2π

3

Cylinder 2 × q = 6 ±1 Indefinite

Plane 1 × q = 12 1 Indefinite

and height

zcone(r) = −
√

q(12 − q)r/6, (33)

as functions of distance r. The mean curvature of the dome
then becomes

Hdome =
√

q(12 − q)

2q̄r
. (34)

Note that the principal radius of curvature of the cone 1/kcone

at the value rdisk is, in fact, smaller than ρdome,

1

kcone
=
√

2q̄

12 − q
ρdome. (35)

The bending energy of the cone features a logarithmic depen-
dence on the shell radius [16,19]

Fcone(Rshell ) = κ
qBq

12
log

(
Rshell

ρdome

)
∝ log (Rshell ), (36)

with the coefficient

Bq = 2π (12 − q)/q̄. (37)

To check the accuracy of the dome-related part of the
energy of this model, we compare the icosahedral positioning
of q = 1 defects with the exact results [14] that yields for 12
defects the shell energy

Eshell ≈ 0.05273 × KR2
shell. (38)

Comparing this with the stretching energy of 12 domes given
by Eq. (28) having the same radius, we get A1 ≈ 0.04819 in
Eq. (26), that is <10% away from the exact result [14]. For
the symmetric arrangement of defects of higher charges, q =
{2, 3, 4, 6} as in Fig. 3, the calculations go along the lines of
Ref. [14] and their findings are presented in Table I. For higher
q values, the agreement of our model with the exact results
[14] is less satisfactory.

4. Cone buckling

In Ref. [18] a remarkably good agreement of the results
of computer simulations for the elastic energy of shells and
of findings of a simple theoretical model of elasticity was

obtained. A defect on spherical surface was treated as a defect
on a flat surface that buckles into a strainless cone (the results
were computed using some approaches for two-dimensional
crystals [17]). The adjustment of parameters in Ref. [18]
needed for this agreement was attributed to the background
curvature of the sphere. In our current approach, the elastic
energy of the cone is the same and, as we adjust the coefficient
in the elastic energy of the dome [see Eq. (25)], our results are
not expected to fit the data better than the original [18] flat-cap
shell-buckling approach.

Following Ref. [18], we minimize the total energy of the
domes and cones, given by Eqs. (25), (26), and (36), with
respect to the dome radius. This results in a critical FvK
number above which buckling takes place,

γb = Bq/(2Aq). (39)

The elastic energy of the entire shell with 12/q defects is then
given by [16,18]

Gshell,cone(γ )

κ
=
{

Aqγ + 8π/3, γ � γb

Bq[1 + log(γ /γb)]/2 + 8π/3, γ > γb.

(40)

In this expression, similarly to Ref. [18], we added the
constant energy term 8π/3 corresponding to the Gaussian-
curvature contribution for a harmonic triangular lattice, to
achieve a better comparison with the results of computer sim-
ulations [18]. As shown in Fig. 5, there is a notable mismatch
between the theoretical results and simulations. It also shows
a discrepancy between the results of simulations [18] and the
Green’ s function calculations of Ref. [14].

Therefore, we perform below the “adjustment” of the elas-
tic moduli to reach a better agreement with simulations of
Ref. [18]. We first adjust the value of K as K → 1.2K or,
equivalently,

γ → 1.2γ , (41)

in virtue of Eq. (6). This adjustment follows from the least-
square fit of the shell-energy data [18] for FvK numbers in
the range γ � 110. Physically, a finite mesh size used in
simulations [18] gives rise to the empirical factor 1.2, com-
pared to the respective moduli in the continuous elasticity
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FIG. 5. Normalized total elastic energy of a closed crystalline surface as a function of the FvK number γ before (a) and after (b) the
finite-mesh adjustment of parameters, given by Eqs. (42) and (44). Both the main plots and insets are in log-linear scale. The dotted dark blue
curves show the results of computer simulations performed in Ref. [18]. The bending and strain energy of the sphere is the dashed green curve
(see the legend). The energy of the cylindrical segments at βcyls → βT , when the faces of the shell are flat, is the dashed red curve, calculated
from Eq. (67) upon minimization with respect to xdome (it contains also the strain in the domes and all bending contributions). The results of the
approach of circular cones and spherical domes are shown as the dashed light blue curves. The insets show the crossing of the energy curves
occurring at moderate γ values.

theory. Following Ref. [18] and comparing theoretical results
versus computer-simulations data [18] in the region γ � 104

we adjust Bq value to

Badj
q = 1.2Bq, (42)

and the critical buckling number becomes

γb � 134, (43)

like in Ref. [18]. For the further analysis we use

Aadj
q = 1.2Aq. (44)

When we let buckling start with cylindrical segments and
flat faces, that corresponds to β = βT given by Eq. (45), the
buckling γ decreases to γb = 121 [see Eq. (74)]. The energy
deviations from the analytical cone-dome approach remain,
however, still substantial [Fig. 5(b)]. One viable reason is
geometric “frustrations” occurring upon inevitably nonsmooth
“gluing together” of 12/q defect-centered dome-plus-cone
parts into a full shell. The length of the cylindrical segments
in this model is set to minimize the combined strain of the
spherical segments with the bending energy of the cylindrical
segments, while the bending energy of the domes stays con-
stant. In Sec. II C, we geometrically describe the actual shape
of the domes just prior to buckling.

C. Cone morphing

Here, we present more accurate energy calculations of
the buckling transition in rigid-crystalline single-component
cones and domes, as compared to Ref. [18]. We first con-
sider the energetics of the edges connecting the 12 domes on
the shell surface, and then develop a variable-cone approach
that enables us to consider a secondary buckling transition,
with noncircular cone shapes optimizing the shell energy (see
Fig. 6). Below, we introduce a family of models interpolating
between the cone model and the model of cylindrical seg-
ments as edges. We envisage the formation of cones at the
buckling transition as the breaking up of the sphere into 12/q
domes. The natural way of doing so is to divide the sphere

into the spherical domes, shrink the domes, and then connect
them with strainless cylindrical segments and flat faces.

1. Variable-cone approach: Geometry

The motivation for this extension of the model of circu-
lar cones to noncircular cross sections is twofold. First, we
aim at a better understanding of possible noncircular cone
shapes for the conditions of increasing rigidity of the shell
material. Second, it is to examine the conditions favoring the
filling of ridges with the soft material in the model of two-
component shells (see Sec. III A below). From the perspective
of virus capsids, this modification of the shell-buckling theory
is motivated by a remarkable “stargate” formation of protein
subunits on the capsids of giant mimivirus [40] (see also
Sec. IV B). The arguments below are in some aspects similar
to those proposed for the secondary shell-buckling transition
in Ref. [140].

We still assume all strain to be concentrated in a “general-
ized dome” centered around the defect. We construct a family
of variable cones with the shapes ranging from edges with
flat faces in-between them to circular-cone shapes (see the
examples illustrated in Fig. 6). Since we treat each of 12/q
parts of the spherical dome separately, we name the tubular
parts of the edges as “cylindrical segments” and denote them
by the index “cyls” below. Due to the shell symmetry, such a
cylindrical segment has half the length of a respective edge.
The face area in-between the two neighboring cylindrical
segments and the cone base is called below the variable cone
denoted by the index “v cone.” One face of the icosahedron
consists of three faces of such v cones. The variable-cone
model “interpolates” between the models of circular cones
and of cylindrical segments as edges of the shell.

We treat the geometry for a defect charge q = 1, . . . , 4
and consider a configuration with q̄ = 6 − q cylindrical seg-
ments of radius ρcyls covering a tubular or central angle 2βcyls

which connect a given dome with its neighbors on the shell.
This angle describes the amount of cone curvature transferred
to the edges: the maximal value of βcyls is given by the
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FIG. 6. Variable cones of noncircular cross section: cylindrical segments with the cone surfaces visualized for q = {1, 2, 3, 4} defining the
cylindrical segment angle (see Sec. II C 1 for details). The first row are the standard or pure cones, the structures in the middle row contain
half-formed cylindrical segments , while the structures in the last row are partial cylindrical segments with flat faces between them. The length
of the boundary remains the same in all panels. The empty spaces left on top of the cones are to be filled in the model with the corresponding
domes.

geometry as

βT (q) = arccos

[
cos (π/q̄)

cos (π/6)

]
. (45)

At βcyls = βT (q) the remaining surface of the variable cones
is flat (see the dashed red curves in Fig. 5).

We use the notation Ri(φ) for rotation matrices with angle
φ around the unit vector �ei pointing in direction of the positive
i axes, where i ∈ {x, y, z}. A possible parametrization for the
nth cylindrical segment is

cylsn(y, β ) = Rz

(
2nπ − π

q̄

)
Rx(−α)Ry(β )

⎛
⎝ 0

y
ρcyls

⎞
⎠, (46)

where α is an angle (still to be determined) of the cylindrical
segment with the tangent plane to the dome top, as detailed
in Fig. 7. Here, the index n varies from 0 to (q̄ − 1) and
represents q̄ cylindrical segments (not to be confused with nq),

β ∈ {−βcyls, βcyls} (47)

is the cental angle, and y is the coordinate along the cylin-
drical segment (see Fig. 7). The dot in Eq. (46) and below
denotes matrix multiplication and cylsn stands for the cylin-
drical segment with angle β denoting a rotation angle around
the cylinder axis [205]. We assume that the strain in the
cylindrical segments and variable cones can be neglected. We
thus set

y = r + C, (48)

with r being the material distance to the defect [or the radial
coordinate in the (r, ψ ) plane] and C is a constant. The latter

is used to translate the cylindrical segment along its axis to
make its start fit with the spherical segment.

Let

�tn(β ) = Rz

(
2nπ − π

q̄

)
Rx(−α)Ry(β ) · �ex (49)

be the tangent to the nth cylindrical segment normal to its
axis. We construct the variable cone between cylsn and cylsn+1
by connecting the points cylsn(y,−βcyls ) and cylsn+1(y, βcyls )
with a circular arc that connects differentiably smoothly with
the cylindrical segment arcs at y(r) [206]. We parametrize the
constructed arc of the v cone with r-dependent radius ρface and
angle φ varying in the range

φ ∈ {−φface, φface}. (50)

FIG. 7. Construction of the n = 0 (blue) and n = 1 (red) cylin-
drical segments for q = 1 defect with the maximal tubular angle. The
slope angle α(q = 1) is given by arccos [sin (π/6)/sin (π/5)].
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FIG. 8. Two cylindrical segments forming the edges of a variable
cone. The blue inclined plane contains the bases of the arcs tilted by
an angle θface. The face angle θface is denoted as well [see Eq. (56) for
details].

We construct the variable cone between the n = 0 and 1 cylin-
drical segment in Fig. 8. The approach with a continuous first
derivative at this connection of a cylindrical segment and a
dome (meaning a continuous tangent plane) yields the condi-
tion

cos(φface) = �t0(−βcyls ) · �ex

= cos(π/q̄) cos(βcyls )

+ sin(π/q̄) sin(α) sin(βcyls ). (51)

The distance between the two boundary points gives the con-
straint

2ρface sin(φface) = |cyls0(y, βcyls ) − cyls1(y,−βcyls )|
= 2y sin(π/q̄) cos(α)

+ 2ρdome[sin(π/q̄) sin(α) cos(βcyls )

− cos(π/q̄) sin(βcyls )]. (52)

With no strain in the variable cones, the arc length is

2ρfaceφface = πr/3 − 2βcylsρcyls. (53)

Combining Eqs. (52) and (53) we obtain

sin(φface)

φface

π

6
r − sin(φface)

φface
βcylsρcyls

= (r + C) sin (π/q̄) cos(α)

+ ρcyls[sin (π/q̄) sin(α) cos(βcyls )

− cos(π/q̄) sin(βcyls )]. (54)

As r varies continuously, requiring a constant variable-cone
angle φface results in the relation

sin(φface)

φface

π

6
= sin (π/q̄) cos(α), (55)

that combined with Eq. (51) gives α and φface as well as after
using (53) also yields ρface.

The parametrization is completed with the angle θface, the
normal of the plane containing the variable-cone arc makes
with the z axis,

cos(θface) = �t0(−βcyls ) ∧ �ex

|�t0(−βcyls ) ∧ �ex|
. (56)

Here �ex ∧ �ey denotes a two-form, that is the cross-product of
two one-forms that are defined in the cotangent space of a
manifold (for a two-dimensional manifold this yields a vol-
ume form).

The area two-form and the mean curvature of the variable
cone are

ωface = πr − 6ρcylsβcyls

6φface
(dr ∧ dφ) (57)

and

Hface = π
√

(6φface/π )2 − 1

2(πr − 6ρcylsβcyls )
, (58)

respectively. In Eq. (56), �ex is a unit vector in the x direc-
tion and the wedge product is the normal cross-product of
the two vectors. In Eq. (57) the area (volume two-form) is
written as a wedge product between the one-forms: as their
two-dimensional surface is imbedded in three dimensions it
is effectively also a cross-product of vectors in the r and φ

directions.
The resulting surfaces for different defect charges are

depicted in Fig. 6. The variable cones and the cylindrical
segments are Gaussian flat. We set the radius rdisk to the sum
of the arc lengths of the maximal cylindrical segments,

rmax
disk = 6βT (q)ρcyls/π, (59)

that yields

ρcyls = π

6βT (q)

√
2q

q̄
ρdome. (60)

From Eq. (57) we find that r runs from ρdome to
√

2q/q̄Rshell,

independent on βcyls.

2. Variable-cone approach: Energy calculation

The bending energies of the variable cone and cylindrical
segment are, respectively,

Fv cone = 2κ

∫∫
face

ωfaceH2
face

= κ
π

6

[(
6φface

π

)2

− 1

]
log

[
1 − βrelxdome

(1 − βrel )xdome

]
, (61)

and

Fcyls = κ
6β2

T βrel

π

(
1

xdome
− 1

)
. (62)

Here, we denoted

xdome = ρdome/Rshell (63)

and the relative or normalized cylindrical segment angle (de-
noted by the index “rel” below)

βrel = βcyls/βT (q), (64)

takes values from zero to one. The relative dome radius xdome

for a given value of βrel is determined via energy minimiza-
tion.

Expression (61) can be simplified by noting that the square-
root factor from Eq. (58) is nearly linear in βrel, as we
demonstrate in Fig. 9. At this point, we cannot provide a
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FIG. 9. The square-root factor from the mean curvature for the
variable cone, Eq. (58), with a linear fit computed as function of
parameter βrel given in (64), shown for several values of the defect
charge q. The inset shows the standard deviation denoted as sd from
the linear fit.

simple physical meaning for this linearity. As for βrel = 0 we
have φface = π/q̄, the bending energy of the variable cone
takes a rather simple form

Fv cone = κ
qBadj

q (1 − βrel )2

12q̄
log

[
1 − βrelxdome

(1 − βrel )xdome

]
. (65)

We thus have, in fact, a simple interpolation between the
models of the cone and of the cylindrical segments with the
flat shell faces.

Adding all these ingredients together, the energy of the
entire shell composed of 12/q variable cones is (with the usual
8π/3 term being added)

Gshell,v cone

κ
= Aadj

q γ + 8π

3
, γ � γb,v cone (66)

and
Gshell,v cone

κ
= γ x2

domeAadj
q

+ (1 − βrel )
2Badj

q log

[
1 − βrelxdome

(1 − βrel )xdome

]

+ 72q̄β2
T

πq
βrel

(
1

xdome
− 1

)
+ 8π

3
,

γ > γb,v cone. (67)

The buckling takes place at the FvK number

γ = γb,v cone = (1 − βrel )
Badj

q

2Aadj
q

+ 36q̄β2
T (q)

πqAadj
q

βrel, (68)

as follows from Eq. (66). Buckling occurs when the value of
xdome ∈ [0, 1] that minimizes Gshell,v cone in Eq. (67) is equal to
unity. One can also show that for γ < γb,v cone the physically
impossible situation may emerge, for which xdome > 1, so
xdome keeps the maximal value of unity, and then Eq. (67) turns
into Eq. (66).

The resulting energy curves are presented in Fig. 10, eval-
uated for several βrel values. We find that for each range of
FvK numbers, up to a given γ value, there exists an optimal
angle of the cylindrical segments βrel that gives the clos-
est agreement for the Gshell,v cone/κ versus γ curve with the
results of computer simulations of Ref. [18] in this range.
Typically, the higher the FvK number is, the smaller is the

FIG. 10. Energy curves for variable cones computed for several
βrel values using Eq. (66) shown with the simulation data of Lidmar
et al. [18] (the blue dots).

optimal cylindrical segment angle predicted by this model.
This is an interesting fact contradicting the usual picture of
buckling [18] that implies that one starts with a cone and
ends up in the high-γ limit with cylindrical segments of a
vanishing radius which connect the nearly flat faces of the
shell. The current energy-optimized picture of v cones is quite
different. Namely, the cylindrical segments slowly evolve into
the variable cones with increasing γ values, until the cylindri-
cal segments disappear at larger FvK numbers, at the energy
plateau shown in Fig. 10.

At much higher FvK numbers, in the range γ � 106 (see
Ref. [18]), the Witten et al. regime [126,132] for the ridge
energy can have a dominant contribution, with the scaling
relation for progressively sharpening ridges (in the continuum
limit) being

Gshell,ridge(γ ) ∼ γ 1/6. (69)

Note, however, that the plateaulike energy behavior observed
in simulations [18] at large FvK numbers is a possible effect
of a finite mesh size [207].

The functional dependencies of βrel and xdome on γ are
shown in log-log scale in Fig. 11. Surprisingly, we observe
a power-law decrease of βrel(γ ) over a wide range of FvK
numbers, namely,

βrel(γ ) ∼ γ −0.5. (70)

The scatter of βrel(γ ) at small γ values in Fig. 11 is a con-
sequence of convergence of all curves when approaching γb:

FIG. 11. Scaling of the parameters βrel (a) and xdome (b) with the
FvK number. The red solid lines are the asymptotes (70) and (71),
while the data points are the results of Ref. [18].
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in this regime a small change in γ can lead to a large change
in βrel. The drop of βrel(γ ) observed after γ � 104 is the start
of the energy plateau, also visible at large FvK numbers in
Fig. 10. Within the model of v cones, the angle βcyls gets
smaller with increasing γ , but does not reach zero before
the energy “plateau.” For the xdome(γ ) dependence a similar
power-law decay is also observed, with a close value of the
exponent,

xdome(γ ) ∼ γ −0.45. (71)

The existence of scalings (70) and (71) is somewhat surprising
per se. One may speculate on precise physical reasons of a
small difference in the exponent values [208]. This difference
may reflect imperfections of the current model (this subject
deserves future investigation).

For the further analysis, we use the simplification

βrel = xdome =
√

γb,v cone(βrel = 1)

γ
, (72)

resulting in a critical FvK number for buckling,

γb,v cone = 36q̄β2
T (q)

πqAadj
q

, (73)

that for q = 1 yields

γb,v cone � 121. (74)

The buckling transition in the model of v-cones takes place
at smaller FvK numbers, as compared to that in the standard
model of circular cones with flat caps. The difference of
(74) from the FvK buckling number (7) is physically due to
different geometric structures accommodating the topological
defects and used to ensure the balance of strain-bending ener-
gies upon buckling [209].

The resulting energy of the variable cones then simplifies
to
Gshell,v cone

κ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Aadj
q γ + 8π

3 , γ � γb,v cone

Badj
q
(
1 −

√
γb,v cone

γ

)2
log

(√
γ

γb,v cone
+ 1

)
+ 72q̄β2

T
πq

(
3
2 −

√
γb,v cone

γ

)+ 8π
3 , γ > γb,v cone.

(75)

The comparison of Eq. (75), which is the main result of
this section, with the computer-simulations data of Lidmar
et al. [18] reveals a remarkable agreement in the regime of
low-to-moderate FvK numbers, at γ � 104, as illustrated in
Fig. 12, supporting our modified theoretical approach [210].

III. TWO-COMPONENT SHELLS: RESULTS ON
PROPAGATION AND STALLING OF THE SOFT MATERIAL

We describe below the two-component surfaces with dif-
ferent elastic moduli of their materials that require a more
detailed understanding of the building up of strain and cur-
vature. Following the physical concepts outlined in Sec. II C,
here we develop a theoretical framework to calculate the
energetics of realizable distributions of the soft-material

FIG. 12. Energy variation of the shell plotted using the simplified
variable-cone analytical expression (75) (the thin solid red curve).
The simulations data of Lidmar et al. [18] are the blue points.

component on the surface of a hard-material crystalline icosa-
hedral shell. We consider a number of features of capsid
“invasion” by the soft material leading to minimal-energy
shapes with domes and cones partly filled by the soft phase.
The soft phase is composed of a material with relatively small
FvK numbers, much smaller those that for the hard material,

γs � γr, (76)

i.e., with small ratios of the Young’s to the bending modulus
Ks/κs � Kr/κr .

A. Model, approximations, and geometry

We consider a hard-material shell with 12/q defects
geometrically arranged into a polyhedron, with the shell con-
taining a relatively small fraction f of the soft material.
The quantities for the soft and rigid components are de-
noted by the subscripts “s” and “r,” correspondingly. Note
that at large- f values some stripelike and barrel-like struc-
tures can emerge as the energy-minimum conformations (see
Refs. [178,180,182]). We suppose the shell surface is large
enough, so that both rigid- and soft-material FvK numbers
exceed the value for the respective buckling transition [211]),
so that

γ(r,s) > γb ≈ 131. (77)

We suppose that no grain boundaries [16,20,24] emerge
along the interface of these two commensurate materials.
The two phases can thus be connected together geometrically
smoothly, but with a line-tension penalty along their contact
boundary. The boundary features a line tension λ measured in
units kBT per length. For an area fraction f of the soft material
in the shell, we investigate its distributions minimizing the
total energy, depending on values of the elastic moduli and
line tension λ.

The elastic moduli of the soft and rigid phases define the
dimensionless radii of the respective buckling domes ρdome(r,s)
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[using Eqs. (6) and (39)] and

x(r,s) = ρdome(r,s)

Rshell
=
√√√√ Badj

q κ(r,s)

2Aadj
q K(r,s)R2

shell

=
√

γb

γ(r,s)
. (78)

All lengths are scaled with the shell radius Rshell. For the soft
material

xs > xr (79)

and it is assumed to be spread over n � 12/q domes.
The soft material first “invades” the rigid domes, the re-

gions with the largest density of both the bending energy and
strain. The “soft invasion” starts as a circular region around
the center of a given defect: such circular domains minimize
the line-tension penalty. Using Eq. (14) coupling rdisk and
ρdome we define the generalized radius of the dome. For the
soft material in the ith sector with the soft-phase fraction fi

this results in the scaled radius zi defined via

(qπ/3)(Rshellzi )
2 = fi4πR2

shell (80)

as

zi =
√

12 fi/q. (81)

The icosahedral symmetry of the underlying surface is as-
sumed in our model to be unaltered by the actual occupation
of each defect-containing region by the soft material as well
as by the overall distribution of the regions occupied by the
soft phase. Each of the defects is thus fully independent with
respect to its response to an increasing fraction of the soft ma-
terial on the shell surface. The energetic balance of filling each
defect-containing region by the soft phase is considered to be
the same, with the total elastic energy required to be minimal.
This approach allows for a tractable analytical solution for the
sequence and extent of filling of domes and cones by the soft
material in two-component shells.

From the biophysical perspective of viral-capsid formation,
an increase of the soft-component fraction f on the shell can
be mediated by several factors. The assembly process of two-
component capsids is often an equilibrium process; some of
its features can potentially be described in terms of a simple
adsorption isotherm

θ(r,s)

1 − θ(r,s)
= c(r,s)

cwater
exp

[
−U bind

(r,s)

kBT

]
exp

[
− Fads

kBT

]
. (82)

Here, the molar concentrations of units of the soft and rigid
components in the aqueous solution with cwater = 55 M (act-
ing as a reservoir of shell-building blocks) are, respectively,
cs and cr . The coverage of all available “adsorption sites”
(on the shell surface of a constant size) Nads by Ns soft-
and Nr rigid-component units are, respectively, θs = Ns/Nads

and θr = Nr/Nads. Here, Fads(θ(r,s) ) is the general adsorption-
free-energy term describing other possible and nonenergetic
contributions to the adsorption process of subunits onto the
shell. The increasing concentration of soft-component units in
the solution (higher cs values) as well as more profitable asso-
ciation energies of soft-component subunits on the shell (more
negative U bind

s values) will yield higher values of θs and, as
a consequence, higher overall soft-component fractions f . In
this picture, no interconversion of soft and rigid subunits is

necessary on the shell surface, but rather the proper adsorption
equilibrium is being established between the shell surface and
bulk solution of subunits of both types.

From the mechanical perspective, as intuitively expected,
smaller bending and stretching rigidities of the soft phase
as well as smaller line-tension penalties to incorporate the
soft phase into the shell surface will also give rise to larger
fractions of the soft component f . Upon increase of f the shell
surface itself is assumed not to change in the model and the
soft component occupies the most “dense” shell regions from
the viewpoint of elastic-energy density. We call this process
“shell invasion” by the soft phase. The term invasion means a
process of “replacement” of the rigid phase of the shell, which
becomes progressively energetically unprofitable, by the soft
phase in the course of, e.g., a process of equilibrium shell
self-assembly from elementary units in the solution [see, e.g.,
Eq. (82)].

B. Stages of invasion and energy calculations

We distinguish three stages of sector invasion by the soft
material, taking place for an increasing soft-phase surface
occupancy f . Stage I: The soft material invades and replaces
the rigid-material region in the dome, starting from the defect.
Stage II: The dome consisting of only soft material grows in
size until zi reaches xs, thereby replacing the rigid material
from the cone surface. Stage III: The soft material invades the
remaining cone until its maximal size (defined by the overall
shell size) is achieved. The resulting line-tension energetic
penalty depends only on zi, but not on the stage of invasion,
namely,

Sline(zi) = λ(π/3)
√

2qq̄Rshellzi. (83)

Subtracting the basal energy of a purely rigid sector, we evalu-
ate the change in the elastic energy, for each stage of invasion.
The results are summarized in Table III.

To simplify the analysis, we scale the total energy in the
units of qBadj

q κr/24 [chosen to simplify the general results for
E (ν) below] and change from the soft-fraction parameter zi in
Eq. (81) to the respective level of invasion of the ith sector,
denoted by

ν( fi ) = (zi( fi )/xr )2. (84)

The resulting dimensionless energy is defined as

E ( f ) = 24G( f )/
(
qBadj

q κr
)
, (85)

where G( f ) is the total energy of the shell with the soft-phase
fraction f (see the results in Table III). For these soft-material
fillings, we compute the energy difference relative to the en-
ergy of the rigid shell at f = 0 for the three different regions
of soft-material occupancy ν as follows

E (ν) = n
[
(�� − 1)ν + �

√
ν + 16π (� − 1)ν/Badj

q

]
, ν � 1,

(86)

E (ν) = n
[
(��ν − 1) + �

√
ν − log ν + 16π (� − 1)/Badj

q

]
,

1 � ν � 1/�, (87)
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TABLE III. Changes of the elastic energy upon addition of the soft material to the rigid-material shell, per each sector containing one defect.
The results were obtained using Eqs. (25), (31), and (36) for the energy contributions of the rigid (subscript “r”) and soft (“s”) components,
with zi defined in Eq. (81). The energy change depends on the stage of invasion by the soft phase (see text for details).

Stage of invasion Strain energy, dome Bending energy, dome Bending energy, cone

I
qAadj

q

12 [γsκs − γrκr]z2
i (κs − κr ) 2qπ

3
z2
i

x2
r

0

II
qAadj

q

12 [γsκsz2
i − γbκr] (κs − κr ) 2qπ

3
q
12 Badj

q κr log
[ xdome

zi

]
III

qAadj
q

12 γb[κs − κr] (κs − κr ) 2qπ

3
qBadj

q

12

(
κs log

[ zi
xs

]− κr log
[ zi

xr

])

and

E (ν) = n
[
(� − 1) + �

√
ν + � log �

+ (� − 1) log ν + 16π (� − 1)/Badj
q

]
,

ν � 1/�. (88)

The three dimensionless model and material parameters
used in these expressions are as follows: the ratio of the FvK
numbers of both materials

� = γs/γr, (89)

the ratio of their bending moduli [84]

� = κs/κr, (90)

and the renormalized line-tension parameter between the two
phases

� = 8π

Badj
q

√
2γbq̄

qKrκr
λ. (91)

Note that all these dimensionless parameters have no explicit
dependence on the shell size Rshell [the shell is large enough
for both materials to be in their buckling range, see Eq. (77)].
The energy relations (86)–(88) are the main results of this
section: they govern the energetics of invasion of the rigid-
crystalline icosahedral shell by the soft material.

Let us turn to the detailed analysis of invasion, with some
relevant and auxiliary results collected in Table IV. As we are
interested for the system’s configurations with the lowest total

energy, only such values of ν are allowed that yield negative
values of E . We find, in particular, that the line-tension energy
accompanying the inclusion of each soft-material domain into
the shell prevents the invasion in stage I at small fractions
f , as physically expected. The minimal f needed before the
invasion of the first sector starts is νstart (1) (see Table IV).
As we have ν � 1 in stage I, the line tension has an upper
limit �s12 above which a partial invasion of the rigid dome is
not possible and the invasion starts in stage II. The energy
curve has then only one minimum at νmin in either stage
II or III, depending on whether � is correspondingly larger
(the minimum is in stage II) or smaller (the minimum is in
stage III) than �m23 (see Figs. 13 and 14). The invasion of
the soft material can never go beyond this minimum. The
boundaries for � are partly overlapping being useful in certain
combinations: for example, to have an accessible minimum in
stage II the line-tension parameter � should be limited by

�m12 < � � �m23 (92)

and � < �2. At the onset of stalling, the gain from expanding
a soft dome at the expense of the added soft material is
smaller than the energy losses due to a higher line-tension
contribution. This explains the existence of certain energetic
barriers in Fig. 13(c) in the blue shaded regions.

C. Sector-by-sector invasion and stalling

One can show that the energy curve in stage I is con-
cave, while in stages II and III up to the point ν = νmin it is

TABLE IV. Physical meaning of some of the variables determining the soft-material invasion of the rigid shell.

Symbol Value/expression Physical meaning

�m23 2
√

�(1 − �) Boundary for � of νmin in stage II or III
�m12 2(1 − ��) Boundary for � of νstart in stage I or II
�1 1 − �� + (1 − �) 16π

Badj
q

Upper bound for ν = 1 to have E < 0

�2 2
√

��
(

1√
Wp(a)

−√
Wp(a)

)
, Upper bound for E[νmin(2)] < 0

where a = �� exp
[
1 − 16π

Badj
q

(1 − �)
]

and Wp(...) is the Lambert W function

�3 2(1 − �)�− �
2(1−�) exp

[
8π

Badj
q

− 1
2

]
Upper bound for E[νmin(3)] < 0

νstart (1) 16π

Badj
q

(1 − �) + 1 − �� Starting level of invasion for stage I

νmax

( �Badj
q

32π (1−�)+2Badj
q (1−��)

)2
Maximum level of invasion in stage I

νmin(2)
(√�2+16��−�

4��

)2
νmin for invasion in stage II

νmin(3)
( 2(1−�)

�

)2
νmin for invasion in stage III
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FIG. 13. (a) Filling configurations by the soft material in the {� − �} plane, with the different colors filling the regions of occupation in
stages I, II, and III, as denoted in the plot (see also Table IV for details). The two red dots in (a) designate the values of parameters used to
compute the results presented in (b) and (c), as indicated in the legend. The boundary curves �(�) between the stages I, II, and III of invasion
illustrated in (a) are explained in Table IV. (b), (c) The minimal energy curves E (n) as given by Eqs. (86)–(88) plotted versus the number
n = 1, 2, . . . , 12 of defect-centered segments filled by the soft material, plotted for the model parameters � in Eq. (89), � in Eq. (90), and �

in Eq. (91) as indicated in the legend. The fraction f in (b) and (c) increases as the soft material continuously fills the shell. In (c) this filling
happens in a cone up to a point when the filling stalls, while f increases up to a level when the next cone starts filling in the energy-minimum
state, etc. Different colors of the curves in (b) and (c) denote additional different sectors being invaded or filled by the soft material, while
the dotted lines in (c) denote the energy increase (not realizable in the ground state of the system). The dashed black horizontal lines in
(c) extending into the vertical gray-bluish strips are the stalling intervals of invasion.

convex. As an important consequence, in the ground state
there exists either one partially invaded stage-I sector and all
other invaded sectors are at the level of filling ν = 1, or the
invaded sectors are all at the same level of filling by the soft
material 1 < ν � νmin. Since the elastic-energy density is the
highest in the domes, these are the only energetic configura-
tions we need to consider. Suppose that n sectors of the shell
are invaded by the soft material up to a level ν � 1. A new
sector gets invaded when n sectors are filled so far that the
increase in energy is compensated by the decrease in energy
from the material invading a new sector.

1. Energetics of soft-material invasion

The jump levels at which the invasion of a new sector takes
place, denoted below as νjump(n), are defined via the energy
relations

nE (νjump(n)) = (n + 1)E (νstart (n + 1)) (93)

with E (νstart (n + 1)) = E ( n
n+1νjump(n)) if nνjump(n) � n + 1

and

nE (νjump(n)) = E (νstart (n + 1)) + nE (1) (94)

with E (νstart (n + 1)) = E (nνjump(n) − n) if nνjump(n) < n +
1. Again, there is a line-tension barrier to overcome, but since
the soft material for invading a new sector is taken from the
other already invaded sectors, the starting value is

νs(n + 1) � νs(n). (95)

In fact, we can show that

νjump(n + 1) � νjump(n) (96)

and

νstart (n + 1) � νstart (n). (97)

The equality sign for these two relations is only realized when
the minimum is at

νmin = 1 (98)

and the starting value is at νstart (n) = νstart (1) for all values
of n.

This situation is illustrated Figs. 13(b) and 13(c). The
length of the energy plateau in Fig. 13(c), the so-called stalling
length, remains constant for each new sector of the soft mate-
rial being added to the shell. In the extreme form of stalling,
when the invasion stalls before the beginning a new sector
until there is enough soft material to invade the new sector
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FIG. 14. The same quantities as in Fig. 13, with the same notations for the curves in the respective panels, but for the case when the bending
moduli of the two phases are close, at � = 0.9. Here, both energy plots in (b) and (c) stall for only very small sectors (see the thin shaded
regions): one of them is in stage II and the other one is in stage III. Note that when � < �m23 the minimum is in stage III and the energy is
always negative.

up to the starting level νstart (1). When the minimum is not at
the level (98), the stalling decreases since the level νstart (n)
increases with n. Depending on the model parameters, the
stalling might disappear before all the sectors are invaded
by the soft material and the values νstart (n + 1) and νjump(n)
approach each other.

For any finite line tension λ there exists a minimal fraction
of the soft material before the invasion of the first sector starts.
The energy profile is found to have one minimum that can
be situated in stages II or III (see Fig. 13). Further invasion
by the soft material will cost more energy as compared to
the case of no new material being added the rigid shell at
all. When the invasion of sectors reaches this minimum, the
only energetically viable option for the soft material is to start
invading a second sector (that is not always possible because
of a finite initial line-tension penalty). This stalling of invasion
decreases usually with the number of sectors already invaded.
If the line tension is low enough, that invasion of the nth
sector is in stage I, then this invasion happens with all (n − 1)
already invaded sectors at the boundary of stages I and II.
Otherwise, all n sectors are at the the same level in stage II
or III.

The energy minimum in stage III is, naturally, only possi-
ble when

κs < κr, (99)

but the line tension needs to be low enough for this to happen
[compare the invasion diagrams in panel (a) and the energy

curves in panels (b) and (c) of Figs. 13 and 14]. These two
figures illustrate the model predictions for two different values
of the ratio of the bending moduli �, namely, for � = 0.5 in
Fig. 13 and for � = 0.9 in Fig. 14. We observe that when the
invasion of the first sector reaches the energy minimum, the
only remaining option upon increase of fraction f is to start
the invasion of one more sector of the rigid shell. The start
of this process is, however, penalized by a finite line-tension
energy. The process of “stalling invasion” corresponding to
the increase of the total energy [see the gray shaded regions
in Fig. 13(c)] gets reduced with the number of sectors already
occupied by the soft phase. Note that at � = 1 the bending
moduli of the soft and rigid materials are the same and, thus,
no invasion of the cones is possible in the energy-minimum
state. This is because no gain in the bending energy would
come from replacing the rigid material by the soft phase in the
cones, while certain losses in the growing line-tension energy
are inevitable. Therefore, the cones stay rigid in stage III of
the invasion under the condition κr = κs.

Although the total energy of the system in the lowest-
energy state is a multivalued function revealing discontinuous
jumps as a function of the number of soft-phase-occupied
defect-containing regions n, we expect this system to reveal no
hysteretic behavior. Upon decrease of f the system will follow
the same “energetic” ground-state path, so that no hysteresis
occurs. However, if one could gradually change the fraction
ν in Eq. (84) while dynamically “updating” the optimal shell
structures, the question of possible hysteresis could become
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FIG. 15. Buckling of a spherical shell into the domes connected
by the cylindrical segments and flat triangular faces. This dome-
face-ridge simplified model for FvK numbers above buckling is
a “predecessor” of the variable-cone model (see Sec. III C 1 for
details).

relevant. Here, we have a fixed ν in the solution and check
the ground-state structures. The appearance of each additional
domain invaded by the soft material is penalized by a certain
line-tension energy creating the discontinuous jumps in the
dependence of the total energy versus the number of invaded
domains. Thus, the system will likely follow the same path as
the number of domains n is being reduced when the fraction
f drops and as n increases when f grows.

2. Edge invasion

The process of edge invasion is based on the model of vari-
able cones. We assume that the dome size and the radius of the
related cylindrical segment are set by the material occupying
the dome according to

ρdome = √
γb,v cone/γ × Rshell. (100)

We allow the cylindrical segment angle βrel to only have a
lower bound of ρdome/Rshell. The idea is that the invading
material has a lower bending modulus, not necessarily a lower
FvK number, driving a transfer of bending from the cones to
the edges (see an exemplary configuration in Fig. 15). This
gives us a qualitative picture of edge invasion.

IV. DISCUSSION AND CONCLUSIONS

A. Summary of the main results for single-
and two-component shells

The incompatibility of planar hexagonal packing with the
wrapping of a crystalline sheet of material into a closed
surface inevitably implies the formation of at least 12 topolog-
ical defects to optimize the bending-versus-stretching energy
contributions of the shell. In this study, we presented a num-
ber of analytical results regarding the buckling transition in
the spherical geometry, with applications to shape deforma-
tions and energetics of rigid liquid-crystalline icosahedral
shells.

FIG. 16. Viral capsid and asymmetric unit of Cowpea Mosaic
Virus (CPMV), as reproduced from Ref. [32] (where the detailed
explanation of the components is given). We acknowledge the per-
mission from Elsevier to reuse this figure without charges.

First, we improved the well-recognized analytical descrip-
tion of the energetics of buckling for rigid icosahedra [14,16–
19]. Our cone-and-dome-based modifications provided a good
agreement for the shell energetics with the data obtained from
computer simulations [18]. A faceting transition along flat
faces of variable cones connected by cylindrical segments was
also described.

Next, we examined the energetics of two-component shells
and quantified how the elastic energy of the topological de-
fects on an icosahedron gets reduced via introducing a soft
elastic component on the shell. We rationalized how the soft
material invades the regions with the highest elastic-energy
density, occupying the defects of icosahedra first. We quan-
tified how the radius of these spherical caps grows with the
amount of added soft material and how the elastic energy of
the entire shell decreases with the number of defects occupied
by the soft component. We examined the effects of varying
line tensions between the soft and rigid phases, shell dimen-
sions, and Young’s moduli of the two materials onto the shell
energetics.

We also computed the phase diagram of the system and
rationalized how the consecutive filling of domes on the buck-
led icosahedral structure takes place, for the situations with
and without a stalling of soft invasion. Physically, the above
mentioned stalling process means that for some region of the
system parameters, the total elastic energy of the shell stops
decreasing upon addition of the soft component to its surface,
staying rather constant before the next defect gets invaded
by the soft component at an increasing soft-phase occupancy
f . During stalling, it becomes energetically favorable not to
include more soft material, although its concentration in the
solution increases, with f being naturally connected to it via
an adsorption isotherm.

We explored the energetics of the buckling transition of
a cone via introducing the picture of the cylindrical seg-
ments connecting the domes on the surface of an icosahedron.
This variable-cone modification of the circular-cone picture
of the established shell-buckling models [17,18] enabled us to
achieve a better agreement with the results of computer sim-
ulations for the elastic energy of icosahedral shells versus the
FvK number, both prior to and after the buckling transition.

For a single-component shell, the geometric shape of vari-
able cones provides a self-consistent description of buckling.
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FIG. 17. Pentagonal “stargate” on one vertex of the mimivirus.
The image is reproduced from Ref. [40].

For a two-component capsid, the previously unexplored buck-
ling mechanism and its boundaries (stages of invasion) are
rationalized analytically. The respective phase diagrams in
terms of relative values of the bending stiffness and Young’s
modulus of the rigid and soft phases are computed. In the
future, we plan to use this variable-cone model to examine the
energetics of ridge filling on the capsids by the soft phase, to
improve the current two-component shell results of Sec. III A
where filling was limited to domes and growing cones.

Methodologically, the current investigation is reminiscent
of the numerical energy minimization of Refs. [83–85], where
two-component irregular polyhedral shells were studied. With
the first component (the rigid phase) favoring the icosahedral
geometry and the soft component preferring the sphere as the
ground state, a large variety of possible energy-minimal (often
irregular) phase distributions were computed [83–85]. The
preference for each of these structures changes with varying
fraction of occupancy of the shell by the soft component and
different bending and stretching moduli of both components.
The general trend is that the hardly bendable phase naturally
prefers to occupy the most flat facets of these irregular poly-
hedral shells, while a hardly stretchable but easily bendable
phase fills the ridges. Segregation of each component into

their bending-plus-stretching energy preferable domains is
penalized by possible line-tension energies that disfavor small
domains (setting a minimal domain size) and, thus, yield a
smaller number of domains [83–85].

B. Biological and biomedical relevance

From the biological perspective, the understanding of the
buckling transitions taking place in various viral capsid shells
(see Fig. 16) [9,18] is of great importance, e.g., for possi-
ble engineering of nanocontainers for material science, with
a number of biomedical and biotechnological applications.
Viral capsids are, for instance, the main players in trans-
porting the genetic material and other cargos into host cells
for viral-based gene-therapy applications [212–214]. Viral
vectors derived from certain modified retroviruses, adenoas-
sociated virus, herpes virus, and pox virus are the main virus
families employed in the clinical gene therapy of cancer
[215,216]. The release of encapsulated genetic material from
a rather stable capsid, often a problem for achieving high
transfection efficiencies of gene transfer, might be facilitated
via introducing a soft and less stable component onto the shell
surface, as we examined above.

Also note that the filling of domes and ridges by the
soft component for larger shells might provide a tempting
explanation of a fivefold stargate formation near the vertex
of the mimivirus [40,170,171] (see Fig. 17) [217]. The star-
gate structure is the most unstable region of the shell: the
virus consistently undergoes rupture upon heating only in this
region [40,218]. Following the stargate rupture and fusion
of the internal membrane with the phagosome membrane,
one plausible mechanism of DNA release is that the internal
protein core enclosing the viral DNA is released from the
capsid into the host cytoplasm along this membranous “in-
fection channel” [218]. In the process of DNA ejection, five
pentagonal faces of the mimivirus belonging to the unique,
single vertex (see Fig. 17), open up and release the DNA into
the amoebae cytoplasm via the stargate portal [40,171]. The
edges of the stargate contain a ridge different from other edges
of the capsid: the mimivirus capsid seems to be designed to
be breakable and openable along these structural elements.
The ease of opening of mimivirus capsids along the stargate
edges (see Fig. 17) can be physically interpreted as a more

FIG. 18. Fullerenes of increasing generation-number demonstrate the polyhedral faceting transition, with nfull = 2, 6, and 10 structures
shown in the plot (from left to right). The color scheme quantifies the displacements in atomic positions with respect to an ideally flat graphene
triangle (see Ref. [7] for more details). The image is reproduced from Ref. [7], with permission from the PCCP Owner Societies.
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elastically stretchable and breakable material occupying these
edges. This supports the biophysical and biological relevance
of our model of two-component shells, with the soft compo-
nent invading the edges (see Fig. 15).

Note that the stable assembly of icosahedral viral capsids
of different sizes (or, of different triangulation numbers T
[3,9,35,105]) from the same protein subunits may not always
be possible [219]. The concept of triangulation also limits the
geometrically allowed number of protein subunits on a capsid
to a discrete set of numbers

nsubunit = 60T (101)

(with some exceptions, see Ref. [9]), with the triangulation
numbers T = 1, 3, 4, 7, 9, . . . [220]. After an infection event
in vivo and upon self-assembly in vitro, for a majority of
spherical viruses the capsids are spontaneously formed into
infectious virions monodisperse in size [69]. Some exceptions
of polymorphic capsid-size assembly are however realizable,
as discussed in Refs. [80,93,100,101,108,109,113,214,221].
Moreover, in trying to build shells of larger dimensions
(or triangulation numbers T [9,35,100]) from the same
elements, the interaction energies of subunits in pro-
gressively sharpening edges of the shell might acquire
dihedral/hinge angles not commensurate with the (opti-
mal) adhesiveness of their contacts (see the discussion in
Refs. [29,30,69,80,81,100,101,105]). This fact renders the
resulting structure less stable (or turns them unstable). We
also emphasize that, as shown in Fig. 16, the elementary
subunits of many viral-capsid proteins can be asymmetric in
form, heterogeneous in protein composition, and nontrivial in
their mutual interactions [3,9,28,29,31,97]. These features per
se may severely impact the icosahedral appearance of some
capsids (with planar tilings [222,223], e.g., being impossible
to construct from these asymmetric structural elements).

C. Polyhedral faceting of giant fullerenes

Reiterating on fullerenes mentioned in the Introduction and
depicted in Fig. 18, the required mechanical properties of ex-
tremely limited in-plane stretchability and comparatively easy
bending are well satisfied for graphene monolayers [224].
The graphene sheets, single-walled carbon nanotubes, and
spherical fullerenes are among the stiffest materials known,
with the Young’s moduli of 0.5. . . 1 TPa [11,225,226]. With
the in-plane-inextensibility constraint applied to fullerenes,
the elastic energy of 12 conelike pentagonal disclinations
constructing the entire fullerene shell was shown to have a

logarithmic dependence on the shell size [7,227,228]. The
excess energy, per C atom,

�EC(nC) ∼ κC
11π

5

log [nC/60]

nC
, (102)

was shown to be in good agreement with the results of ab
initio calculations [7]. The polyhedral faceting predicted for
large and giant fullerenes [7,227,229–232] is thus similar to
the faceting transition known for icosahedral viral capsids [9].

The energetics of icosahedrally shaped fullerenes with
up to nC = 6000 atoms was investigated via ab initio
quantum-mechanical simulations [7]. The perfectly spherical
appearance of the smallest C60 fullerene changes dramatically
for larger fullerenes, which reveal a sharp-edge, gradually
aspherical polyhedralike shapes (see Fig. 5 in Ref. [7] and
Fig. 18). Moreover, the edges of the optimal-energy giant
fullerene icosahedra feature a slight longitudinal inward cur-
vature increasing with

nC = 60nfull, (103)

while the faces are almost flat, with a slight outward curvature
[7]. Here, nfull is the generation of fullerenes. Simultaneously,
the excess energy per atom in polyhedral fullerenes (as com-
pared that in a flat graphene sheet) decreases with the number
nC of carbon atoms according to Eq. (102) [7].

This is consistent, both qualitatively and quantitatively [7],
with the predictions of the continuum elasticity theory of
disclinations [17,18]. As a possible reason for a measurable
discrepancy of the best-fit results for graphene’s bending and
flexural elasticity κC, the authors of Ref. [7] proposed a ne-
glected fivefold symmetry around each disclination. This is
exactly the topic of our current study, with the concept of
variable cones introduced and developed to improve the ge-
ometrical representation and accuracy of the classical energy
calculations [17] based on cones with circular cross sections.
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