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ABSTRACT
We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of
living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statis-
tics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents,
the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation
function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the
internal dynamics of cellular structures in these infectious pathogens.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086269

I. INTRODUCTION

Free-living protozoa Acanthamoeba castellanii (abbreviated
AC below) form a family of pathogens causing life-threatening infec-
tions in humans (including blinding keratitis, fatal encephalitis, and
meningoencephalitis).1–4 These amoeboid parasites are abundant
in water-, air-, and soil-containing environments, including lakes,
swimming pools, beaches, and are also present in tap and bottled
water.1,4 AC cells also use air-conditioning and dental-treatment
units as their habitats. They are a threat at hospitals, also affecting
the eyes of users of contact lenses and attacking lung tissues.3 AC
trophozoite cells range ≈12–30 µm in diameter, adapting ellipsoidal
shapes.3,5,6 These amoebae feature ∼µm-long spiky flat acanthopo-
dia structures on their surfaces.5,7 AC cells feed on microorganisms
via phagocytosis (invagination by membrane vesicles).

The cytoplasm of AC cells is a supercrowded viscoelastic envi-
ronment8 with crowders varying in nature and size (large biopoly-
mers, granules, and vacuoles). This fact poses serious challenges
for the motion and function of cell organelles and active trans-
port inside these amoebae. A better understanding of the basic
physico-chemical mechanisms of motion of various cellular com-
ponents and organelles in the AC cytoplasm is crucial to unravel

the functional principles and virulent properties of these amoeboid
pathogens.

Internal vacuoles are highly abundant in the AC cytoplasm,
and they range from submicrons to several µm in radius (Fig. 1).
The vacuoles play crucial roles in the AC life-cycle and metabolism.5
Some vacuoles are employed to internalize and incapacitate poten-
tially threatening foreign particles and as reservoirs for materials,
while others are used for food storage and digestion. A water-
expulsion vesicle (or contractile vacuole9) regulates the osmotic
conditions inside these protozoan cells.7,10 We refer to Refs. 1
and 3–5 for further details on the life cycle as well as on feed-
ing, survival, reproduction, and host-infection pathways of AC
cells.

Similar to other self-propelled, crawling amoebae (such as Dic-
tyostelium discoideum11,12), the locomotion of AC cells is due to
formation of actin-based protrusions13–16 on their leading edge. The
motion of amoeboid cells can be studied by a number of single-
particle tracking (SPT) techniques.17 Physically, crawling cells often
employ actin treadmilling in the front and myosin-induced con-
traction on the back of the cell to maintain propulsion.16 The
protrusions are often established by actin treadmilling, supporting
the growth of a lamellipodium forming the leading edge in the
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FIG. 1. Experimental image of vacuoles inside an AC cell on a solid substrate.
Several vacuole trajectories after tracking for 1290 s are shown.

direction of motion. Certain values of cell–substrate adhesion16,18–20

and traction strengths14,15,21 as well as of the interfacial membrane
tensions are required for this locomotion. A minimal model of cell
motility based on a droplet of active actomyosin fluid was developed
in Ref. 16.

The diffusive properties of endogenous intracellular parti-
cles of varying sizes in the cytoplasm of AC cells were examined
recently;8 see also Ref. 22. The cytoskeletal elements (microtubuli
and actin) serve as tracks for intrinsically processive motor pro-
teins (kinesin/dynein and myosin, respectively); see Refs. 6, 8, 9,
and 23–29. These motors actively carry intracellular particles as car-
gos and ensure precise transport and swift exchange of materials
inside cells of multiple types. Therefore, potentially active transport
of AC vacuoles can lead to superdiffusion, as detected (at least tran-
siently).8,22 In AC cells, the microtubuli often radiate from their
one-end focus located near the Golgi complex; see, e.g., Refs. 5
and 6.

The superdiffusive motion of vacuoles may involve motor
proteins attached to them. For instance, dynein and kinesin
proteins walk on microtubuli toward the cell center and its periph-
ery25,31–33 (performing, respectively, minus-end- and plus-end-
directed motions along microtubuli). This ensures a
directional transport of cargos—various organelles, membrane-
bound vesicles,33 and other reactants (protein complexes, mRNA,
etc.)—through the cytoplasm. Nevertheless, after treatment of AC
cells with nocodazole and latrunculin A—specific drugs inhibit-
ing the polymerization process of actin and microtubuli, respec-
tively,16,30 and thereby hampering AC propulsion—the vacuoles
can still move superdiffusively.8 By contrast, when the activity
of myosin-II motors is inhibited by blebbistatin, the vacuoles are
almost stalled for a prolonged period of time.8,119 In addition,
amoeba locomotion per se may contribute to superdiffusion of its
internal vacuoles (in the center-of-area frame of each cell).8

Despite recent scientific progress for a number of other
locomotive cell systems—in particular, from advanced SPT-
measurements and data-analysis tools—the exact physical mecha-
nisms of both driven and passive diffusion of intracellular organelles

and artificial tracers inside moving AC cells are still not fully under-
stood. Therefore, the statistical quantification of vacuole motion—
as well as of vacuole granules involved in the pathogenicity of
these amoebae—is the main focus of the current study. The new
sights found here for the detailed transport behavior will be
an important ingredient for establishing a more complete phys-
ical and biochemical picture of AC motility and its underlying
mechanisms.

The paper is organized as follows. We start with the descrip-
tion of the data-acquisition protocol in Sec. II. In Sec. III, we define
all observables and diffusion measures for the main text. The results
of the data analysis are presented in Sec. IV. Specifically, we con-
sider the distributions of vacuole sizes and trajectory lengths in
Sec. IV A, the spread of their time-averaged mean-squared displace-
ments (TAMSDs) in Sec. IV B, the correlation of diffusion coeffi-
cients and scaling exponents for each trajectory in Sec. IV C, the
ergodicity breaking (EB) parameter in Sec. IV D, and the distribu-
tion of vacuole displacements in Sec. IV E. The displacement auto-
correlation function is described in Sec. IV F, and the distribution
of instantaneous speeds and positions of vacuoles is presented in
Sec. IV G. In Sec. V A, we summarize the main results. Finally, in
Sec. V C, we overview some related systems and discuss possible
mathematical models applicable to the examined data. In Sec. V C,
we finish with mentioning future research directions. Additional
figures are presented in the Appendix.

II. EXPERIMENTAL CONDITIONS AND DATA
ACQUISITION STRATEGY

AC cells were cultured at room temperature following the pro-
tocol of Ref. 8. For imaging purposes, amoeboid cells at low con-
centration were seeded on a glass well (ibidi 60 µ-dish, 35-mm
high, glass bottom). The imaging procedure was conducted using
a Hamamatsu ORCA ER 2 camera on an Olympus IX 71 micro-
scope using 60× magnification (Olympus UPLANSAPO 60×/1.35
NA oil-immersion objective) in the phase-contrast mode. The AC
cells adhere to the substrate, but their 3D shape is different from
that of mammalian adhesive cells. Whereas in differential interfer-
ence contrast microscopy the dome-like shape of mammalian cells,
such as fibroblasts, is clearly visible (see, e.g., Ref. 34), Acanthamoeba
trophozoites often have an ellipsoidal shape and do not strongly flat-
ten in height toward the edges.35 In the surface-adhered state, our
AC cells are rather “Lebkuchen”-like in shape.

The images were recorded with the Image Acquisition Tool-
box in Matlab (Mathworks, Inc.) with recording frequency ≈8.95
fps (step time dt ≈ 0.11 s). Every two seconds, the images were
segmented using an edge-detection algorithm (Matlab) and the
centers-of-area of AC cells were evaluated. To ensure long-time
SPT recordings, the center of the image was adjusted to the center-
of-area of a given cell via automatically moving along a scanning
stage (Märzhäuser, SCAN IM 112 × 74). While post-processing
the acquired videos, the center-of-area of each amoeba was evalu-
ated and static-motion videos were produced. Static-motion videos
were used for the edge-detection algorithm, and the Hough trans-
formation was used to define the geometric circles of vacuoles
and respective positions of their centers. The location of intracel-
lular vacuoles at each step was enumerated in the center-of-area

J. Chem. Phys. 150, 144901 (2019); doi: 10.1063/1.5086269 150, 144901-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

frame of the cell using the new in-house segmentation algorithm
(Matlab).

The video files reveal bright circles surrounding the vacuoles.
First, the edge-detection algorithm was used to find the edges of
frames of the static-motion videos. To detect the positions of vac-
uole “circles,” in the binary-image file, a Hough transformation was
implemented. To refine the obtained position, a region of pixels
around a possible center position was set. To compute the radius of
the bright circle (vacuole), the mean intensity of pixels at each radial
distance from each pixel in the preselected area was calculated; see
the scheme in Fig. 11 in the Appendix. This procedure was repeated
for all possible radii, from a minimal to a maximal one. The refined
position of the vacuole center was then chosen as the pixel in the
image which yields the highest intensity value. The respective radius
was set as the vacuole radius; at each time step, the center positions
and radii of all the vacuoles were stored in the data set; see Fig. 12
in the Appendix. Manual confirmation of the detected vacuoles was
obtained by saving the data into an xml-file readable in Matlab with
the help of MaMut and ImageJ plug-ins.

Experimental SPT tracks of vacuoles were analyzed using the
@msdanalyzer procedure (Matlab); see Refs. 22, 36, and 37. Vac-
uole trajectories shorter than Tmin ≈ 60 frames were discarded from
the analysis, and the maximal trace length was Tmax ≈ 27 700 frames.
Automatically determined trajectories were controlled manually for
consistency and continuity. Adjusting the center positions of vac-
uoles, we define their time-local radii (at a point of highest inten-
sity).120 The video files of tracked vacuoles—speed up 100× as well
as in real time—can be found in the supplementary material [each
video has a counter in the corner (h:min:s)]. They show the forma-
tion of protrusions on the leading edge of the AC cells. For amoebae
cells #1, 2, 3, and 4, we record N1 = 144, N2 = 18, N3 = 14, and N4
= 205 vacuole trajectories, respectively. The center of the view-field
and the center-of-area of amoebae superimpose in the image and in
video files.

The uncertainty in determining the amoeba and vacuole posi-
tions is a couple of pixels of the microscopy image, with 1 pixel ≈
0.106 µm. The tracked AC cells are often ellipsoids but display large
shape variations. In moving AC cells, the vacuoles are observed in
the SPT experiments in almost one horizontal plane. Therefore, the
SPT experiments of vacuole motion effectively take place in two
dimensions.8 The center of a vacuole is assigned to the center of a
pixel, and vacuole motion is recorded in multiples of the pixel width.
We observe that some (especially small) vacuoles disappear from the
view-field in the focal plane (i.e., because of vacuole overlap). The
diffusive properties of vacuoles are examined in the center-of-area
frame of respective AC cells.121

III. DIFFUSIVE CHARACTERISTICS
AND PHYSICAL OBSERVABLES

For standard Brownian motion, the ensemble-averaged mean-
squared displacement (MSD) of diffusing particles grows linearly
with time, also called Fickian diffusion. For stochastic processes fea-
turing anomalous diffusion, the MSD grows nonlinearly with time.
Namely, in two dimensions (relevant for the current SPT scenario),
one has38–45

⟨[x(t) − x(0)]2 + [y(t) − y(0)]2⟩ = 4Kαtα ≃ tα. (1)

Here, α is the anomalous scaling exponent, Kα is the general-
ized diffusion coefficient, and the angular brackets denote ensemble
averaging. For subdiffusive processes the exponent is in the range
0<α< 1, while for superdiffusion one has α > 1. Anomalous dif-
fusion is ubiquitous in cell-related contexts (both sub-40,42,44–54 and
superdiffusion8,12,29,55–57) and artificially crowded media.

The standard SPT observable is the TAMSD, defined for the ith
vacuole (in the continuous representation) as38,39,43,44

δ2
i (∆) =

1
T − ∆ ∫

T−∆

0
{[xi(t + ∆) − xi(t)]2

+ [yi(t + ∆) − yi(t)]2}dt. (2)

The analog of Eq. (2) for time series at discrete times is straightfor-
ward. The mean over N independent trajectories each with length Ti
is computed as

⟨δ2(∆)⟩ = N−1
N
∑
i=1

δ2
i (∆), (3)

where 0 ≤ ∆ ≤ Ti is the lag time involved in averaging of the recorded
time series {xi(t), yi(t)}. For SPT trajectories of different lengths, at
different lag times the respective number N(∆) in Eq. (3) changes
as well. At short lag times, we fit the individual TAMSDs by two-
parameter power-laws

δ2
i (∆) ≈ 4 × (Kβ)i × ∆βi . (4)

Here, (Kβ)i is the trajectory-specific generalized diffusion coeffi-
cient for the TAMSD δ2

i (∆). A fairly small number of experimen-
tal SPT frames are used below for this fit: nfit is from 5 to 25
points along the trajectories (independent of their total length). One
point is equivalent to one frame in the SPT experiment. Statisti-
cally, the TAMSD delivers the most reliable results for short lag
times, when ∆/T ≪ 1.37,43 We refer here to Refs. 58 and 59 for the
analysis of some effects of nfit and of uncertainties of the particle-
localization procedure on the values of βi and (Kβ)i (see also Refs. 12
and 37).

To quantify the spread of δ2
i (∆) for an ensemble of vac-

uoles, after a given lag time ∆ we compute the ergodicity breaking
parameter as the ensemble average38–40,43,60

EB(∆) = ⟨(δ2(∆))
2
⟩/⟨δ2(∆)⟩

2
− 1 . (5)

For Brownian motion, the EB parameter scales in the region
∆/T ≪ 1 as43,60–63

EBBM(∆) ≈ 4∆/(3T), (6)
while other functional forms of EB(∆) are known, especially finite
EB values even at long measurement times.38,43,64

We also compute the displacement autocorrelation func-
tion Cδt(t) from the two-dimensional radius-vector of vacuoles,
ri(t), as

Cδt(t) = (δt)−2 × ⟨[ri(t + δt) − ri(t)] ⋅ [ ri(δt) − ri(0)]⟩. (7)

This function quantifies displacement correlations along the trajec-
tories after a finite time shift δt; see Refs. 39, 43, 44, and 65. Instanta-
neous speeds of vacuoles and their radial distributions in the course
of intracellular diffusion are also evaluated.
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IV. MAIN RESULTS
A. Distribution of vacuole sizes and trajectory lengths

The radii of the tracked vacuoles are rather broadly distributed,
from ≈1 to ≈4.5 µm, as shown in Fig. 2. The SPT data for a total
of N = 357 vacuole trajectories are analyzed (for most of the results
below). The statistical and fitting analysis is performed in Matlab
and Wolfram Mathematica. Certain vacuoles are quite dynamic
entities, capable of changing their (visible and real) dimensions on
time scales from several seconds to dozens of minutes.10 For the cur-
rent data set, the largest vacuole is often observed to grow in size and
then abruptly shrink (see the supplementary video files). This cycle
repeats as the amoeba moves, see the radius evolution in Fig. 13(a) in
the Appendix, indicating that this vacuole is the contractile vacuole
expelling water for osmotic regulation.5,66

For small and medium-sized vacuoles, the radius variations
in the SPT data files are considerably smaller [Fig. 13(b) in the
Appendix]. Moreover, as the vacuoles move across the focal plane,
their effective radii can change along the recorded time series. This is
particularly pronounced for small vacuoles, for which insignificant
displacements perpendicular to the focal plane can give rise to large
relative variations of their visible size. Therefore, in Fig. 2 we com-
pute and analyze the maximal radii along the recorded time series,
which reflects the physical vacuole sizes quite closely. However, the
analysis using the mean vacuole radius illustrated in Fig. 13(b) in the
Appendix—for instance, to study the distribution of vacuoles in cells
as quantified in Fig. 21 in the Appendix—can also be a legitimate
procedure.

B. TAMSD: Magnitudes, spread of trajectories,
and anomalous scaling exponents

The distribution of trajectory lengths of small, medium, and
large vacuoles is shown in Fig. 14 in the Appendix. We find that

FIG. 2. Distribution of radii of vacuoles diffusing in the AC cytoplasm. The subpop-
ulations were chosen to quantify the ≈13% smallest, ≈70% medium-sized, and
≈17% largest vacuoles.

the subpopulation of the smallest vacuoles in the set features the
shortest trajectories, medium-sized particles have intermediate-to-
long traces, while the largest vacuoles yield longest time series.
This observation is consistent with the physical mechanism that
smaller vacuoles are quicker to leave the focal plane of the micro-
scope via diffusion.122 As mentioned in Ref. 8, the centers-of-
area of AC cells perform nearly ballistic motion, with the scaling
exponent

⟨βAC ⟩ = 1.86 ± 0.02 (8)

of the mean TAMSD ⟨δ2(∆)⟩; see Fig. 15 in the Appendix. From
these data, the average “speed” of AC cells for the current conditions
(temperature, surface adhesion, etc.) can be estimated as ⟨vAC ⟩ ≈
0.49 µm/s.

Dividing up the vacuoles by their sizes, as color-coded in
Fig. 2, Fig. 3 presents the individual TAMSDs of the tracked parti-
cles for the respective subpopulations. We find that small, medium,
and large vacuoles yield mean TAMSDs of similar magnitude and
functional dependence; see the thick solid curves in Fig. 3.

We find that the TAMSDs are slightly subdiffusive at very
short lag times,69 progressively turning superdiffusive at interme-
diate ∆ and, finally, exhibiting subdiffusion again at even longer
times. Different AC cells reveal a close match of the MSD and mean
TAMSD evolution at short-to-intermediate times; see Fig. 16 in the
Appendix. From the data of Fig. 3 for lag times up to 20 s, the average
diffusion coefficient of vacuoles is Dvac ≈ 0.09 µm2/s. For compari-
son, the Stokes-Einstein diffusivity of a spherical particle with radius
3 µm in water is ≈0.1 µm2/s. As an alternative to the average diffu-
sivity, Dvac, the frame-based70 and time-local71 diffusion coefficients
can also be used in the analysis.

The time-local anomalous scaling exponent for the mean
TAMSD of vacuoles is defined as39,41–43

⟨β(∆)⟩ = ∂ log(⟨δ2(∆)⟩)/∂ log∆. (9)

FIG. 3. Spread of individual TAMSDs (2) of vacuoles. Different colors denote dif-
ferent subpopulations of vacuoles (see Fig. 2). The mean TAMSDs (3) for each
subpopulation are represented by the thick solid lines. For longer lag times the
statistics becomes poorer, as expected.
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Its variation with the lag time is illustrated in Fig. 4. The transition
from short-lag-time subdiffusion to intermediate-time superdiffu-
sion and back to subdiffusion is particularly visible for a smaller
number of points (nfit) used in the fit analysis of Eqs. (4) and (9).
The most superdiffusive behavior with

⟨βvac⟩ ≈ 1.2–1.4 (10)

is observed at lag times ∆ ≈ 1–5 s; see Fig. 4 and also the analysis of
Ref. 22. Large variations in ⟨β(∆)⟩ at∆≫ 5–10 s are caused by insuf-
ficient statistics in the averaging procedure (2). Note that for varying
nfit values the ⟨βvac(∆)⟩ curves are plotted in Fig. 4 starting from
the lag time δ∆ × nfit/2 (the middle of the respective fitting interval).
As physically expected, as the number of fitting points increases, the
variations of the resulting scaling exponent with lag time decrease
because the fit is done over larger intervals of the TAMSDs. For the
effects of nfit on the value of short-time diffusivity, including a choice
of an optimal nfit value, we refer to Refs. 58, 59, 65, and 72.

C. Kβ–β correlations and p(Kβ) distribution
Our analysis reveals positive correlations between the values

of the generalized diffusion coefficient and the anomalous scal-
ing exponent of the TAMSDs computed for individual vacuoles at
short lag times. Figure 5 shows these results for the minimal lag-
time value, ∆ = 0.1 s. We fit these correlations with an exponential
function

Kβ(βvac) ∼ exp[c1βvac + c2], (11)

where c1,2 are fit coefficients. The correlations are somewhat stronger
for smallest numbers of fitting points in Eq. (4); see Fig. 5. This trend
is similar to that observed for free Brownian motion as well as for
confined diffusion obeying the Ornstein-Uhlenbeck process, as we
checked by computer simulations; see Fig. 18 in the Appendix. These
positive correlations at short lag times indicate that the motion of
vacuoles in AC cells with larger exponents features larger diffusion
coefficients.

FIG. 4. Time-local anomalous diffusion exponent of the mean TAMSD of vacuoles
(computed for vacuoles of all sizes in Fig. 2), plotted versus the lag time for varying
number of points (nfit) in the fit of Eq. (4).

FIG. 5. Correlations of anomalous scaling exponents and generalized diffusion
coefficients as obtained from the fit of individual TAMSDs (4) for vacuole motion.
The initial lag time is ∆start = 0.1 s. The dashed lines are the best linear fits to the
data [in log-linear scale, see Eq. (11)]. The slope values in the legend here and
below are linked to Eq. (11) as c1 = slope × loge 10.

The same analysis performed at later parts of the vacuole
trajectories—starting, for instance, at ∆start = 1 s as shown in
Fig. 17(a) in the Appendix—reveals almost no remaining Kβ–β cor-
relations in the data. We refer here also to the analysis of negative
Kβ–β correlations for another amoeboid system12 as well as to the
recent study of spreading of nanoparticles and quantum dots in
live mammalian cells. For the latter system, various nontrivial Kβ–β
dependencies were observed.56 For even longer lag times—at ∆start
= 10 s as in Fig. 17(b) in the Appendix—the correlations turn pro-
nouncedly negative, with c1 < 0 in Eq. (11). Physically, in this case
a larger diffusivity for a given vacuole trajectory Kβ gives rise to
statistically favorable smaller values of the anomalous exponent βi
attributable to it, and visa versa. This transition from positive to
negative Kβ versus β correlations is—at least partly—due to a more
confined motion of vacuoles at later lag times (see also Sec. V A).

We also quantify the distribution p(Kβ) of the observed gen-
eralized diffusion coefficients; see Fig. 19 in the Appendix. We find
that p(Kβ) is a fast decaying distribution, for varying numbers nfit
used in the scaling analysis. We mention here that the distribution
p(Kβ) was examined for some recent experimental STP-data56,73 as
well as for certain anomalous diffusion processes (see the analysis of
in silico trajectories performed in Refs. 74 and 75).

D. Ergodicity breaking parameter
The evolution of the EB parameter computed via (5) for the

data on vacuole diffusion is presented in Fig. 6. We find that almost
in the entire range of lag times the EB values are considerably larger
than those for Brownian motion [Eq. (6)]. For longer lag times—
similar to the behavior of the TAMSDs in Fig. 3—the ergodic-
ity breaking parameter reveals large fluctuations due to worsening
statistics (outside of the range used in Fig. 6). Note also that in Fig. 6
we show the EB variation in the same domain of lag times as in
Fig. 4.123

In the inset of Fig. 6, we show the behavior of the EB param-
eter at short lag times versus the trajectory length, T. The decay
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FIG. 6. Ergodicity breaking parameter (5) computed for all vacuole trajectories of
Fig. 3 (with no separation in subpopulations). The inset shows the dependence of
EB computed at ∆ = 0.1 s versus the trajectory length T for partial time series. The
Brownian asymptote (6) is the dashed line.

appears to be slower than the inverse proportionality 1/T, which
is characteristic for a number of normal and anomalous diffu-
sion processes.39,43 The large magnitude of the standard error
bars in Fig. 6 indicates, however, that the current sample is likely
too small to make a solid statement regarding the EB(T) decay.
As the standard deviation σ for a set of xj values, defined as
σ(x) =

√
N−1∑N

i=1(x − ⟨x⟩)2, decreases for a larger sample-size N,
smaller error bars and more confident EB evaluation are expected
when more SPT trajectories are available for the analysis (indepen-
dent and taken at identical conditions).

E. Vacuole displacement distribution
The fine structure of the displacement distribution function

P(dr, dt) of vacuoles moving inside AC cells is visualized in Fig. 7.
The radial displacement of vacuoles is computed as dr =

√
dx2 + dy2.

We find that, particularly at short time shifts, dt = 1, the function
P(dr, dt) reveals three extremely pronounced peaks. They stem from
discrete increments of vacuole positions in the data set which are
often multiples of the pixel size, namely, {dx, dy} ≈ n × 0.106 µm.
Inherently, the observed behavior on the initial stages of vacuole dif-
fusion is therefore far from a Gaussian; see Fig. 7(a). For longer time
shifts, the distributions P(dr, dt) also exhibit dramatic discreteness
effects. For instance, again noting,69 after ten steps, multiple peaks
are clearly visible at dx ≈ n × 0.1 µm in Fig. 7(b) [which can be
smoothened if wider bins are used, as in the inset of Fig. 7(b)].

F. Autocorrelation function of displacements
The results for the displacement autocorrelation function com-

puted for vacuole diffusion are shown in Fig. 8. Averaging is per-
formed here over all particles, without division into subpopulations.
We find that for short time shifts—for instance, at δt = 1 in
Eq. (7)—the autocorrelation function drops below zero. Its nega-
tive values are consistent with subdiffusive motion observed for the
TAMSDs at very short lag times; see Fig. 4. Remembering possi-
ble limitations of the experimental setup,69 this antipersistence of

FIG. 7. Histograms of displacement distributions for all vacuoles in the data set,
computed after 1 and 10 time steps ∆t for panels (a) and (b), respectively. The bin
width in the main plots is set the same; in the inset of panel (b) a larger bin width
is used.

vacuole motion at short times may also stem from the viscoelas-
ticity of the amoeba cytoplasm. We also note pronounced zigzag-
like variations of Cδt(t) with the period of one time step, visible at
δt/∆t = 1 in Fig. 8. This, once again, relates to the discreteness of
recorded vacuole increments visible for the behavior of P(dx, dt)

FIG. 8. Displacement autocorrelation function (7) after averaging over all vacuole
trajectories. The employed time shifts are listed in the legend.
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in Fig. 7. At longer times, the function Cδt=1(t) reveals fluctua-
tions around zero (possibly, statistically insignificant). A similar
behavior of Cδt(t) at short time-increments δt was detected pre-
viously for this system8 without amoeba locomotion. Note that at
short times the negative peak in the velocity autocorrelation func-
tion may also emerge due to particle-localization errors and external
confinement.52

At intermediate and long time shifts δt—when averaging
in Eq. (7) is performed largely over a superdiffusive portion
of vacuole trajectories—Cδt(t) attains positive values. Physically,
this is an expected behavior for a superdiffusive stochastic pro-
cess.12,39,43,44 Namely, the displacements of the tracer at consec-
utive time steps are positively correlated so that a faster-than-
Brownian motion emerges as a result of averaging over many
steps. For these larger δt values, the autocorrelation function
also reveals a small region of negative values at the respective
time values when t = δt; see Fig. 8. For the regime of sub-
stantial time shifts δt and very long times t, the displacement
autocorrelation function slowly approaches a small positive value
≈0.1–0.2. This is qualitatively consistent with a weak superdiffu-
sion of vacuoles with α ≈ 1.2–1.3 observed in this regime; see
Fig. 4.124

G. Vacuole speeds and locations inside cells
The instantaneous vacuole speeds—defined as elementary vac-

uole displacements divided over the elementary increment of time
in the time series—are distributed, as shown in Fig. 9. The speeds
are computed as the modulus of elementary vacuole increments
divided by the elementary time step dt/∆t = 1. In Fig. 9, the speed
distributions are shown in terms of fractions of vacuoles in each
subpopulation with a given |v| value. The distributions are over-
all similar for small, medium, and large vacuoles. They all reveal
a distinct peak at |vvac| ≈ 0, additional peaks at |vvac,1| ≈ 1 µm/s,

FIG. 9. Instantaneous speeds of vacuoles in terms of percentages of particles with
a given |v| value. We emphasize a pronounced peak at |v| = 0 corresponding to
the displacement distribution peak at P(dx = 0, dt = 1).

and small peaks at |vvac| ≈ 0.5, 1, and 2 µm/s. These peaks comple-
ment the peaks in the displacement distribution function after one
time step [Fig. 7(a)]. Namely, the zero-speed entries in Fig. 9 cor-
respond to the central peak of P(dr, dt) in Fig. 7(a), while ∣vvac, 1∣
∼ 0.1µm

0.1s (from one elementary displacement per unit time step
∆t). The mean speed—computed via averaging over all increments
and all vacuoles—is ⟨∣vvac∣⟩ ≈ 0.5 µm/s, for all subpopulations of
vacuoles.125

As mentioned in the Introduction, different motor proteins are
abundant on the leading edge of AC cells and in their cytoplasm.
Myosin, dynein, and kinesin control the properties of microtubule-
based motility of various cell organelles (mitochondria, small parti-
cles, granules, lysosomes, vesicles, etc.) over a length-scale of sev-
eral microns. For mitochondria, for instance, speeds in a range
≈0.5–4 µm/s were recorded.6 The resolution limits for the tracer’s
displacements and speeds recorded in flattened, pancake-like AC
cells in Ref. 6 were ∼0.5 µm and ∼0.5 µm/s, correspondingly.
As demonstrated in the in vitro motility assay, internal AC
organelles (mitochondria, small particles, etc.) move at ≈0.4 µm/s
toward the plus end and at ≈1.1 µm/s toward the minus end
of the microtubule filaments. For the kinesin- and dynein-based
modes of transport of (membranous) organelles32 inside AC cells,
the averaged speeds of ≈3.3 and ≈2–3 µm/s were reported in
Ref. 6.

The mode of organelle motility in AC cells based on abun-
dant myosin-I motors9,23—bound to and ”running” along F-actin
filaments—can make an additional, sizable contribution.24 The
speed for this mode of transport was reported to be slower, on aver-
age ≈0.24 µm/s24 (see also Ref. 32). The reported transport speeds
clearly depend on the detailed experimental conditions and cell-
preparation protocols. Therefore, the average instantaneous speeds
of (rather large) vacuoles in the range ≈0.5 µm/s we report here are of
the same order as the microtubuli-directed traffic speeds for smaller
cargos being pulled by different motors, as reported previously.6,24

We also examine in Fig. 10 the histogram of vacuole radial dis-
tances with respect to the center-of-area of the respective AC cell.
Specifically, we compute the distribution p(r =

√
x2 + y2) over the

entire time-tracks of all relative positions of vacuoles {x, y}. We find

FIG. 10. Radial distribution of vacuoles with respect to the centers of their hosting
amoebae (see Fig. 2 for color coding). Fractions with respective radial distances
are shown for each subpopulation of vacuoles.
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that smaller vacuoles prefer to move closer to the outside/periphery
of the cells, as compared to medium and large particles. The latter
have the peaks of their position distribution function shifted toward
the cell center by ∼5 µm. Note that in Fig. 10 the positions of vacuole
centers are examined and plotted. This means that larger particles
get also effectively “displaced” from the outer cell membrane purely
by excluded-volume interactions.126

V. DISCUSSION AND CONCLUSIONS
A. Overview and discussion of our main results

In the current study, we quantified the motion of vacuoles
inside motile AC cells, see Fig. 1, examining the data sets obtained
from SPT experiments using a number of standard38,39,43–45 sta-
tistical quantifiers. Let us summarize our main findings and their
interpretation point-by-point below.

(i) We computed and characterized the magnitude and spread
of individual TAMSD trajectories for the subpopulations of small,
medium, and large vacuoles; see Fig. 2. We revealed that the behav-
ior of the anomalous scaling exponent of the mean TAMSD turns
from slightly subdiffusive at (very) short lag times to superdiffusive
at intermediate lag times. For the later region, a prolonged regime
with anomalous diffusion exponent ⟨βvac⟩ ≈ 1.1–1.3 was detected
(Figs. 3 and 4). This motion of vacuoles is superimposed onto a
nearly ballistic propulsion of amoebae as such, with MSD expo-
nent ⟨βAC⟩ = 1.86 ± 0.02 and average speed |vAC| ≈ 0.49 µm/s;
see Fig. 15 in the Appendix. Note that varying the number of fit-
ting points of the TAMSD tracks as well as the size of the data set
and its experimental conditions will quantitatively affect the val-
ues of ⟨βAC⟩ and ⟨βvac⟩. The reported spread of δ2

i (∆) trajectories
is also going to be affected; see Refs. 12, 56, 58, 59, and 77 for the
discussion.

We emphasize here that apparent weak subdiffusion52,72,78–81

observed at very short lag times can be induced by the localiza-
tion error of vacuoles in these SPT experiments; see also note.69

A subdiffusive behavior—instead of Brownian diffusion for δ2
i (∆)

displacements—would then emerge at short lag times solely due to
particle-localization uncertainties, as predicted and quantified the-
oretically in Ref. 78. Specifically, the “flattening” of the TAMSDs
is pronounced at short times, with the predicted TAMSD expres-
sion being (for normal basal diffusion) ⟨δ2(∆)⟩ ∼ 2σ2 + 2D∆;
see Refs. 52, 78, and 79. Here, σ ≈ 1–2 pixels is the static local-
ization error of the particle in SPT experiments; see also Sec. II.
Indeed, the vacuole displacements at short lag times—namely, ⟨δ2

vac⟩
∼ (0.1 µm)2 as seen from Fig. 3—are comparable to the resolu-
tion of the current SPT setup. Additionally, a finite camera-exposure
time gives rise to motion blurring of the tracers and associated
dynamic localization error; see the discussion in Refs. 58, 72, 79,
and 82.

Similar features of the short-time behavior of δ2
i (∆) reported

in Ref. 8 can have similar localization-error-related origin. Note,
however, that in Ref. 8 the experimental settings and the analy-
sis algorithm were different (with regard to center-of-area tracking,
methods of vacuole tracking, etc.).

(ii) We observed that at the start of the vacuole trajectories
the values of the trace-specific diffusion coefficient and scaling

exponent are positively correlated; see Fig. 5. This reflects the phys-
ical picture of vacuoles with small (large) exponents featuring small
(large) diffusion coefficients at the initial stage of diffusion. At later
stages, these correlations virtually disappear and, finally, turn neg-
ative. Below, we discuss some physical reasons for this surprising
behavior of Kβ–β correlations.

First, large variability of cell sizes, dynamic changes of shapes of
cells and vacuoles, as well as polydispersity of vacuole dimensions,
together with heterogeneous crowding of the cytoplasm, make the
current system quite complicated to study, both in terms of the SPT
experiments and the statistical analysis. Mutual correlations of diffu-
sivities and exponents as well as peculiar features of the distribution
of diffusivities, p(Kβ), may stem from multiple complicated mecha-
nisms controlling the vacuole motion. Their deeper understanding
will deliver new insights regarding underlying stochastic processes as
well as physical effects of the medium onto vacuole diffusion (con-
finement/caging, binding-unbinding dynamics, medium viscoelas-
ticity, etc.,). Note also that certain issues of heterogeneous crowding
and anomalous space-dependent diffusion can also be at play here,
as investigated recently for cell-mimicking bounded domains, both
theoretically and by computer simulations.74,84,85

Recently, for more size-restricted and controlled diffusion of
calibrated nanoparticles in the cytoplasm of live mammalian cells,
pronounced variations and different inter-relations between Kβ and
β were reported.56 Variable nanoparticle sizes (from 25 to 75 nm)
and their nonspecific interactions83 with the medium were exam-
ined.56 These and other experimental features were shown to affect56

the observed Kβ–β correlations, often turning out to be positive,
similar to our Fig. 5.

The vacuoles inside amoebae are highly confined due to the cell
envelope. To mimic this, we simulated harmonically confined pas-
sive particles, the so-called Ornstein-Uhlenbeck process.63,86 For this
process, we unveiled similar Kβ–β correlations: pronouncedly posi-
tive at short times, turning strongly negative at later times; see Fig. 18
in the Appendix. The confined motion is realized at times much
longer than the internal correlation time of this diffusion process,
1/λ.63 Thus, a confined motion is consistent with a transition from
positive to negative correlations observed at later stages of vacuole
motion in AC cells; see Fig. 17 in the Appendix.

(iii) From the behavior of the TAMSDs of vacuoles, we observe
that their diffusion is strongly non-Brownian.39,43 The ergodicity
breaking parameter was computed after averaging over vacuoles of
all sizes in the data set (Fig. 6). The evolution of EB(∆) demonstrates
that vacuole motion is nonergodic. Despite rather high and non-
vanishing EB values at short lag times, the magnitudes of the MSD
and mean TAMSDs for the vacuole trajectories are close; see Fig. 16
in the Appendix. Note that similar features were observed in the sim-
ulations of Ref. 71. Moreover, the decay of the EB parameter at short
lag times with the length of trajectories was shown to be slower than
EB(T) ∝ 1/T; see the inset of Fig. 6. (Note that similar sublinear EB
behaviors with 1/T were reported recently for the models of diffu-
sion in heterogeneous media87 and in computer simulations of lipid
diffusion in membranes with dynamic interactions.71 Both these sys-
tems involve the concept of “diffusing diffusivity;” see Refs. 71, 76,
77, and 88–94 for an overview.)

As we mentioned previously,43,65 the requirements on the size
of the data set for computing the higher-order moments of par-
ticle displacements, such as the EB parameter, are much stricter
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compared to those for the second moments, such as δ2. Many more
SPT trajectories—recorded (at best) at identical experimental con-
ditions and minimal polydispersity of cell and vacuole sizes—are
needed to make a confident conclusion regarding the EB scaling
behavior for vacuole inter-cellular motion as a function of lag time
∆ and trajectory length T (work in progress).

Note also that additional issues—varying sample size, min-
imal trajectory length, uniform versus non-uniform distribution
of track lengths used in the analysis, and varying vacuole sizes
and amoeba speeds—can all affect the final results of the analy-
sis; see Refs. 65, 68, and 95 for the discussion. How strong the
effects of the diffusion environment is onto the observed proper-
ties of the TAMSD and the EB parameter of vacuole motion and
how much is due to sample-acquisition limitations, experimental
restrictions, and sample-set properties is to be examined in the
future.96

(iv) We computed the distributions of vacuole displacements
with respect to the center-of-area of respective amoebae, at vary-
ing time shifts from the start of the measurement; see Fig. 7(a).
We observed strongly non-Gaussian pixel-size-dependent vacuole
displacement-distributions, for individual Cartesian x-y coordinates
as well as the radial displacements, p(r =

√
x2 + y2). For instance,

after a single step of diffusion (dt = 1), we detected a peak of vacuole
displacements at dx = dy = 0 supplemented by two smaller peaks
at the increments of dx = dy = ±1 pixel size. These discreteness
effects persist also at later stages of vacuole diffusion; see Fig. 7(b)
and note.69

(v) We computed the displacement autocorrelation function
Cδt(t) along individual trajectories of vacuoles [Eq. (7)]. The results
we presented in Fig. 8 indicate the presence of pixel-size effects,
particularly at minimal time shift δt = 1, as expected. Also, as the
data set was rather limited, we observed pronounced fluctuations
in the behavior of Cδt=1(t) at later times t. For longer time shifts
δt, the pixel-size effects were smoothened and the reported Cδt(t)
function revealed a monotonic decay from unity toward a small pos-
itive value. This is consistent with a slightly superdiffusive nature
of vacuole motion in this time domain. The pixel-size effects man-
ifest themselves also in the distribution of instantaneous speeds of
vacuoles, as seen from Fig. 9.127,128

The novelty of the current study from the experimental point
of view is in successful recording of much longer trajectories via
constructing an automated tracking system on the microscope. Pre-
viously,8 the AC cells leaving the image resulted in terminated
SPT-tracks, which also caused certain bias in the data. Namely,
longer vacuole trajectories remained in the set mainly stemmed
from slower amoebae staying in the image longer. From the data-
analysis viewpoint—as compared to Refs. 8—the novel elements are,
in particular, the study of cross correlations Kβ–β and the distri-
bution of generalized diffusion coefficients p(Kβ), the behavior of
the EB parameter, and the spatial distribution of vacuoles inside
AC cells. Some of these examinations as well as the TAMSD cal-
culations were performed separately for subpopulations of small,
medium, and large vacuoles. Thus, the current analysis delivers new
insight into the mechanisms of diffusion of polydisperse vacuoles
inside motile amoebae. Our results may help unveil certain features
of the amoeba functions and its pathogenetic activity connected with
vacuole motion, as outlined in Sec. I.

B. Possible models and mechanisms
of vacuole diffusion

Some recent studies employed similar statistical quantifiers
aiming at predicting the most-probable model of diffusion using
the time series from various SPT-experiments as input sig-
nals.12,37,50,51,54,56,65,77,97 The “best” model of diffusion has to accom-
modate various features of tracer motion often observed in SPT-
experiments, such as anomalous, non-ergodic, non-Gaussian, and
(possibly) aging features of diffusion. Physically, such a model
should reflect the underlying transport features and particle-
trapping mechanisms imposed by the medium. The models of
continuous-time random walks, fractional Brownian motion, gen-
eralized Langevin equation motion, multi-state diffusion, and
diffusing-diffusivity have been proposed (among others) as—
sometimes conflicting—candidates for rationalizing experimen-
tal SPT observations.12,39–41,43,45,50,51,54,65,71,90,95,98–101 In addition to
ensemble-averaged properties, some single-trajectory-based quan-
tifiers were also proposed recently for confident selection, valida-
tion, and discrimination of different anomalous diffusion models
(see Ref. 101 for the sample characteristic function, mixing, and
ergodicity estimators). We also emphasize here the recent power-
spectral-density approach of Ref. 22 that was successfully applied to
the experimental data of vacuole diffusion inside AC cells.

For instance, our recent Bayesian analysis65,77 demonstrated
that SPT trajectories of tracer particles in polymeric mucin gels
may be well mimicked by Brownian or fractional Brownian type of
motion. The spread of individual δ2

i (∆) trajectories observed for an
ensemble of tracers should then be accounted for in the analysis via
additional inter-relations between certain diffusive characteristics.
These can be, e.g., the distribution of and the correlations between
the values of the diffusion coefficient and scaling exponent, such as
those observed in Fig. 19 in the Appendix and Fig. 5. These depen-
dencies reflect the impact of physical interactions and processes at
play for a given system.

Generally, mathematical models of different degrees of com-
plexity may be proposed to describe experimental SPT observa-
tions. Ideally, the principles of Bayesian statistics and Occam’s
razor should be employed77,102–104 to rank plausible theoretical mod-
els. Specifically, models with excessive numbers of parameters or
parameter-distribution embeddings should be penalized (despite
better data fits they might produce). As another extreme, choosing
a physically simplistic model often results in neglecting important
biological details of the system so that vital dependencies on tunable
experimental parameters cannot be captured, for instance.

Statistical diffusion models of hierarchical nature—such as
superstatistics90,93,105,106—can also be proposed, in which the
dynamics of model parameters on multiple scales in space and
time gets superposed or convoluted with the original propaga-
tor of a given model of diffusion. The mathematically powerful
concepts of superstatistics—although offering fits to the observed
behaviors of, e.g., P(x, t) and the TAMSDs—may, however, still
lack a clear physical rationale for the observed behavior; see the
examples in Ref. 102. Similar caution is required when providing
physical interpretations of SPT observations using the concepts
of ensemble-distributed, time-local, and time-random or diffus-
ing model parameters, such as diffusing diffusivity.54,71,88,90,107

Heterogeneous diffusion74,87,99,102,108,109—as a superposition of
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simple ergodic diffusion with distributed model parameters—can be
also of relevance for the current data. Such a hierarchical embedding
of distributions of parameters into a standard diffusion model can
give rise, e.g., to a multitude of non-Gaussian density-distribution
functions.90,93,102

The vacuoles—during a finite diffusion time in our
experiments—do not manage to sample the entire cell uniformly.
Due to size variations, certain processes of active and passive
nature can differ from vacuole to vacuole. Additionally, the vac-
uoles experience different intercellular conditions during highly
motile AC motion and due to heterogeneity of its cytoplasm.
Therefore, some distributions of model parameters can be involved
into the models—in the superstatistical sense—on multiple lev-
els. These may mimic, e.g., an ensemble of non-identical par-
ticles or varying environments for vacuole subpopulations (see
Ref. 65).

A motor-driven component of vacuole transport can be present
in the current data. It is, however, currently not clear to what extent
the network of “cytoskeletal-based highways” stays intact in the
course of AC locomotion. This affects how viable the cytoskele-
tal elements are as the transducers of amoeba motion in terms
of creating cytoplasmic flows and streams;20 see also the supple-
mentary material video files in real time. At the moment it is not
clear whether the vacuoles are evolving with the cell membrane
which is rolling-over upon amoeba motion (the “rotating wheel”
analogy). Also, how strongly the vacuoles of different sizes are
involved in microtubuli- and actin-based transport is currently not
clear.

Yet, a two-state active and passive diffusion model may be
realistic for vacuole motion. The passive diffusivity of vacuoles can
depend, i.e., on their radial distance in the AC cell, vacuole size, and
cell-locomotion speed in a model with ab initio Gaussian displace-
ments, Dpas = Dpas(r, Rvac, |vAC|). Likewise, for the active (motor-
driven) mode of vacuole motion, one sets Dact = Dact(r, Rvac, |vAC|).
Additionally, the distributions of diffusion times that vacuoles spend
in each of these modes should be parameterized. [Such a system
with two diffusivities (see Ref. 110 and also later studies101,111,112)
is reminiscent of “hopping-and-sliding” diffusion of DNA-binding
proteins searching for targets on DNA.113–115] To unveil the prop-
erties of vacuole binding-unbinding kinetics and active-to-passive
switchings from individual time series, more delicate methods may
be needed; see, e.g., Refs. 101 and 112. Different states for multi-
state diffusion processes71,112 as well as certain separation of parti-
cles into subpopulations may be required to quantify these features.
Moreover, time-local diffusivity of vacuoles along their tracks can be
analyzed to detect two-state diffusion (see the method of Ref. 71).

C. Discussion of directions of future research
Clearly, a number of additional quantifiers—both for the

ensemble-averaged and single-trajectory-based properties of
recorded time series—can be employed in a more extended analy-
sis; see, e.g., Refs. 12, 22, 65, 101, and 116. For instance, one addi-
tional property we unveiled for one of the four AC cells is positive
correlations in the directions of motion of vacuoles and amoebae
hosting them (Fig. 20 in the Appendix). We find that the discrete-
ness of vacuole displacement (as seen in Fig. 7, see also Ref. 69)
also gets reflected in certain preferred/discretized directions of

vacuole azimuthal motion, as examined from the increments after
one time step, dt/∆t = 1. Although some amoebae do reveal corre-
lations in motion with their internalized vacuoles, see Fig. 20 in the
Appendix, larger sample sizes are crucial to understand this in depth.
Such directional correlations render slightly superdiffusive motion
of vacuoles inside highly motile amoebae—as we observe in a certain
window of lag times in Fig. 3—plausible also without active mech-
anisms of cytoplasmic transport. The mechanism of superdiffusive
transport of vacuoles is thus—at least partly—due to persistence of
motion of AC cells themselves (a model of diffusion with a constant
drift).

In addition to a possible “wheel effect,” locomotive amoebae
can create internal membrane-originating19 flows involving cyto-
plasmic components, including vacuoles. These flows are known to
be pronounced for other locomotive cells (see also the video files
in the supplementary material). For instance, the flow velocities
of up to 40% of the cell velocity in the direction of the leading-
edge were detected for rapidly moving fish epithelial keratocyte
cells in Ref. 13. The flows of cytoplasmatic fluid were quanti-
fied13 for the probes of various sizes diffusing in thin lamel-
lipodia of these highly persistent keratocytes13 (average speed of
≈0.3 µm/s). Surprisingly, however, only slightly subdiffusive spread-
ing of small quantum dots was detected in the lamellipodia in the
reference frame of the cell.13 Namely, the exponent was found to
be α≈ 0.89, with the tracer dynamics featuring large variations (in
terms of trajectory-specific diffusivities).13 Interestingly, the flow-
induced concentration of larger probes near the leading edge in these
cells was larger than that of small probes (30-nm quantum dots).13

Blebbistatin-treated cells did not change severely the behavior of
the leading edge but rather affected the intercellular fluid flows and
hydrostatic-pressure gradients from the front to the rear end of the
cell.

Anomalous, heterogeneous, and non-Gaussian diffusion—with
a certain degree of cell-to-cell variability and cell-size-dependent
particle diffusivity—was recently reported for the spreading dynam-
ics of intrinsically polymerizing H-NS proteins in live Escherichia
coli; see Ref. 73. Projecting to our data set, a differentiation of
AC cells based on their size can shed light on certain diffusive
properties of internal vacuoles. A much larger sample of trajecto-
ries from different and well controlled cells is, however, required
to draw statistically meaningful conclusions here. For instance,
one can ask whether larger cells host, on average, faster vacuoles
(Fig. 16 in the Appendix).

Note that different degrees of compression of amoebae toward
the surface can also affect the magnitude and exponent of the
TAMSD trajectories of vacuoles. In these lines, for instance, a dra-
matic reduction in the TAMSD (at a constant exponent) was recently
reported97 for diffusion of DNA chromosomal loci in compressed
Escherichia coli cells. Additional dynamic fluctuations of shapes and
sizes of vacuoles also impact their diffusive properties (see also the
discussion in Ref. 71).

Finally, and quite naturally, the physical mechanisms of two-
dimensional motion of AC cells on adhesive supports may dif-
fer16,117 from those for many natural three-dimensional media.
The tracking process in three dimensions may, however, be very
challenging; see Ref. 118 for the recent SPT advances. More
sophisticated tracking methods67,104,118 may help unveil new details
of functioning of this pathogenic system. Such methods should
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have a better localization precision of vacuoles, higher recording
frequencies, smaller effects of cell-to-cell variability, advanced
vacuole-size control, as well as better control over possible noise
sources (vibrations of the setup table, fluctuations of the light inten-
sity, etc.). These questions point the directions for future research.

SUPPLEMENTARY MATERIAL

See supplementary material for videos.
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APPENDIX: SUPPLEMENTARY FIGURES
In this appendix we present Figs. 11–21 supporting the claims

in the main text of the paper.

FIG. 11. Intermediate steps and methodology for determining the radii and respective center positions of AC vacuoles.
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FIG. 12. Determined radii and center positions of AC vacuoles, see also Fig. 11.

FIG. 13. (a) abrupt changes of the radius of one of the largest vacuole (see amoeba
#1 video in the supplementary material) and (b) variations of radii recorded along
the vacuole trajectories, ordered in the plot from the smallest to the largest maximal
radius for each vacuole. Maximal, minimal, and mean radii are shown in the graph
(see the legend).

FIG. 14. Distributions of trajectory lengths T = Npoints × ∆t for subpopulations
of vacuoles (one time step is ∆t ≈ 1/9 s). The legend shows the separation of
vacuoles by sizes (with the color scheme used in Fig. 2). The inset shows the
entire trace-length distribution (without division into subpopulations of vacuoles)
on a linear scale.
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FIG. 15. Nearly ballistic motion of the center-of-area of four AC cells, with the mean
exponent computed to be ⟨βAC ⟩ = 1.86 ± 0.02.

FIG. 16. MSDs (1) and mean TAMSDs (3) computed separately for vacuole
diffusion inside each of four amoebae.

FIG. 17. The same as in Fig. 5 but at ∆start = 1 s [panel (a)] and ∆start = 10 s [panel (b)].

J. Chem. Phys. 150, 144901 (2019); doi: 10.1063/1.5086269 150, 144901-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 18. The same as in Fig. 5 but for
the in-silico-generated trajectories of the
Ornstein-Uhlenbeck process at lag times
∆start = 100, 101, 102, 103. Parameters:
the relaxation time is 1/λ = 1, the num-
ber of trajectories is N = 500, and the
trace length is T = 105 steps. The initial
positions of particles, x0, were chosen at
equilibrium p(x0) = e−x2

0/2/√2π, see
Ref. 63 for details.

FIG. 19. Distribution of generalized diffusion coefficients measured at short lag
times for vacuole motion. The results are presented as stacked histograms (the
bins do not overlap).

FIG. 20. Correlations in directions of motion for amoeba #1 and all its internalized
vacuoles. The trajectories of the amoeba and of the vacuoles were smoothened
here over the number of time steps k, as listed in the legend. The angles of motion
for amoeboid cells and their internal vacuoles are defined clockwise, starting from
the direction to the right that is assigned as zero-angle motion in the SPT videos.
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FIG. 21. The same as in Fig. 10 but with mean (and not maximum) vacuole radii
used in the analysis [see Fig. 13(b)].
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This would then make the peaks in the speed distribution of Fig. 9 originating
from the discreteness effects less pronounced. The elementary time scale involved
in the computation of the average vacuole speed should then also be adjusted
correspondingly (instead of setting it to one elementary time step, as in Fig. 9);
see Ref. 52. Physically, only those tracer displacements exceeding the position-
localization uncertainty52,58,78 should be used in the analysis of physical observ-
ables. The effects of varying localization error in these SPT experiments on the
behavior of the fundamental quantities such as the TAMSD, the EB parameter,

and the autocorrelation function would be interesting to study in the future96 once
precision-controlled data are acquired for this motile system.
128Possible long-distance correlations in direction and motion speed of diffusing
vacuoles—as a function of their separation inside a given amoeba—are an inter-
esting subject to study. They could quantify the “reach” of hydrodynamic and
other correlation-inducing interactions being transmitted through the cell cyto-
plasm. In the current data, however, the mutual distances between vacuoles were
not recorded and this question cannot be addressed in principle.
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