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Abstract.  We consider the correlations and the hydrodynamic description of 
persistent random walkers on a lattice. We derive a drift-diusion equation and 
identify a memory-dependent critical density. Above the critical density, the 
eective diusion coecient decreases with the particles’ propensity to move 
forward and below the critical density it increases with their propensity to move 
forward. If the correlations are neglected the critical density is exactly 1/2. We 
also derive a low-density approximation for the same time correlations between 
dierent sites. We perform simulations on a one-dimensional system with one-
step memory and find good agreement between our analytical derivation and 
the numerical results. We also consider the previously unexplored special case of 
totally anti-persistent particles. Generally, the correlation length converges to a 
finite value. However in the special case of totally anti-persistent particles and 
density 1/2, the correlation length diverges with time. Furthermore, connecting 
a system of totally anti-persistent particles to external particle reservoirs creates 
a discontinuity in the density between the bulk and the reservoir. We find a 
qualitative description of this phenomenon which agrees reasonably well with 
the numerics.
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1.  Introduction

The active and passive motion of biological cells and the motion of their components 
inside them is a complicated out of equilibrium process which occurs due to many fac-
tors, some of them still unknown [1]. The motions of individual cells or bacteria are 
modelled in various ways, which can be thought of as a random walk with a certain 
type of memory. One of the most common models, motivated by experimental obser-
vations [2], is a run and tumble motion [3–5], in which the walker moves in a straight 
line for some time, and then abruptly changes its direction. This model is captured by 
a memory term which leads to an increased probability of turning as more time passes 
since the last turn. A twitching motion [6] or motion with a self aligning director [7] 
is captured by a one-step memory term, i.e. the velocity at each step depends on the 
velocity in the previous step but not on longer back-reaching memory terms. Stochastic 
chiral motion [8] may also be modelled as a random walk with memory, with an 
increased probability to move in a certain direction perpendicular to the previous step. 
Other biological processes are also described as random walks with memory [9–11].

In random walks with memory, each step the walker makes depends not only on its 
location in the previous step but on its history. It might depend on its entire history, 
or a finite part of it. For example, in one of the first random walk models that included 
memory [12], a single walker moves on a one-dimensional (1D) lattice. At each step, the 
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walker either moves in the same direction as it did in the previous step with probability 
1
2
+ δ, or in the opposite direction with probability 1

2
− δ. This rule can be thought of 

as inertia, and does not introduce any global bias in any specific direction. The basic 
random walk model is retrieved for δ = 0. Such walkers with one-step memory are also 
called persistent walkers. Since the introduction of this model, it was expanded in vari-
ous forms to explain dierent phenomena in a range of fields, such as polymer chains 
[13], animal movement [14], scattering in disordered media [15], motion of bacteria [16, 
17], artificial microswimmers [18, 19], and motion in ordered media [20].

A dierent class of random walk models emulates the interactions in many-body 
systems, be they hydrodynamic [21], mutually aligning as in the Viscek model [22, 23], 
energetic [4, 6, 23–25], or steric [7, 26–29]. In the simple symmetric exclusion process 
(SSEP) [30] the interaction is purely steric. Each site on a lattice is either vacant or 
occupied by at most one walker, and each walker has an internal clock, independent 
of the other walkers, which governs the timing of its attempted moves. If a walker 
attempts to move to an already occupied site, it remains in place. In the asymmet-
ric simple exclusion process (ASEP) [30], the walkers are biased to move in a certain 
direction, and it has been used to describe transport phenomena in biology [26, 31]. A 
special consideration is given to 1D systems [32], which emulate transport along a nar-
row channel, such as transport of water [33] or drugs [34] through channel proteins or 
nanotubes, or of molecular motors in cellular protrusions [26] and along microtubules 
[31, 35]. The single file diusion in 1D systems is known to be anomalous, even without 
memory [36, 37]. The basic SSEP and ASEP models have been expanded to include 
energetic interactions [38], a single biased particle surrounded by unbiased particles 
[39], birth and death of particles [40], higher site occupancy [41], spatial inhomogene-
ities [42] and kinetic constraints [43].

There are several studies that combine these two variations of the basic random 
walk, and they investigate three characteristics of this type of models. First, this model 
may be considered as a coarse-grained version of active Brownian particles (ABP) [18], 
and it was shown that it indeed shows motility induced phase separation [44, 45], one of 
the hallmarks of ABP. Second, some studies derived an eective hydrodynamic descrip-
tion in either 1D [46, 47] or higher-dimensional [48, 49] systems, including anomalous 
walkers [50]. The third group of studies investigates the mean squared displacement 
(MSD) of crowded walkers with memory, in particular the short time approximation 
of the MSD [51], the MSD of interacting subdiusive random walkers in a 1D system 
[37], the MSD in the very high density limit in one dimension [52], and the eective 
diusion coecient of a cross-shaped persistent walker in a bath of memory-less cross-
shaped walkers [53].

In this paper we generalise our previous study [54] and consider the correlations and 
the hydrodynamic description of random walkers with a memory moving on lattice. If 
the velocity autocorrelations are positive, we call the walkers persistent, while if they 
are negative we call them anti-persistent. We derive a drift-diusion equation which 
takes the non-negligible correlations between the particles into account. We identify a 
memory-dependent critical density which governs the dierence between the density-
dependent bulk diusion coecient D from the memory-less one, D0. For persistent 
walkers, below the critical density D  >  D0 while above it D  <  D0. For anti-persistent 
walkers, the situation is reversed: below the critical density D  <  D0 while above it 
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D  >  D0. If the correlations are neglected the critical density is exactly 1/2. We also 
derive a low-density approximation for the same time correlations between dierent 
sites. We perform extensive simulations in a 1D system with one-step memory and 
find excellent agreement between our analytical derivation and the numerical results. 
The analytical derivations include results for general memory terms in a d-dimensional 
hypercubic lattice.

Finally, we also consider the previously unexplored special case of totally anti-
persistent particles. Generally, the correlations converge to their steady state values 
after a finite time and have a finite correlation length. However in the special case of 
totally anti-persistent particles and density 1/2, the correlations do not converge and 
the correlation length diverges with time. Furthermore, connecting a system of totally 
anti-persistent particles to external particle reservoirs creates a discontinuity in the 
density between the bulk and the reservoir, similar to boundary layers observed in 
driven lattice gases [55]. We note that in the totally anti-persistent system the density 
at the edge of the system is always higher than in the reservoir.

The details of the model we investigate are described in section  2. Section  3 is 
devoted to the derivation of an eective diusion equation for the coarsed-grained den-
sity. In section 4 we look at the correlations between the states of two dierent parti-
cles. Section 5 contains a comparison between our analytical results and the numerical 
simulations. The special case of total anti-persistence is covered in section 6. Finally, 
section 7 summarises the paper.

2. Description of the model

We consider a lattice gas on a d-dimensional hypercubic lattice. Each site on the lattice 
can be either vacant or occupied by at most one particle. Each particle has an indepen-
dent exponential clock with mean time τ . When the clock rings, the particle attempts 
to move to one of its 2d nearest neighbours. If the target site is vacant, the particle 
moves. Otherwise, it remains in place. In both cases, its clock resets.

The target direction, however, is not chosen from a uniform distribution but it 
rather depends on the history of the particle. As a simple example, consider particles 
with one-step memory moving on a 1D lattice, as illustrated in figure 1. The prob-
ability that a particle attempts to move in the same direction as in its previous state 

is 1
2
+ δ with −1

2
� δ � 1

2
, and the probability it reverses its direction is 1

2
− δ. We call 

the parameter δ the persistence parameter, since it encodes the tendency of the particle 
to persist in its motion. Note that since the probability distribution for choosing the 
direction of motion is relative to the current direction of motion, there is no global bias 
in the system unless it is imposed from the boundaries.

More generally, we may consider particles with m-step memory, i.e. that the prob-
ability distribution of the attempted direction of motion depends on the directions in 
which the particle attempted to move in its previous m steps. Each particle may there-
fore be in one of (2d)m states which encodes its memory, and the transition probabili-
ties between the states is given by the entries of the matrix M. Even more generally, 
we may consider particles with infinite memory, and the transition matrix M is more 
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accurately called an operator. Any type of previously investigated non-biased lattice-
based model may be presented using this formulation, for example the elephant walk 
model [50, 56, 57] or a run and tumble motion [3, 4].

Although a priori it may not appear so, this model is in fact Markovian in the fol-
lowing sense [58]. We may expand the phase space such that each state is defined by 
Ld variables, representing the sites of the lattice, each having one of 1  +  (2d)m values: 
vacant or occupied with a specific memory. The 2d factor accounts for the 2d directions 
in which the particle could have moved in each of the previous m steps. The trans
ition rates between those states do not depend on the memory of the process in this 
expanded phase space. This also holds for models with infinite memory [59].

Note that although the net current is zero, this model is out of equilibrium because 
it does not obey detailed balance. Consider for example a particle moving to the vacant 
site to its right, and that in its previous step it also moved to the right. Such a move 
occurs with some finite probability depending on the exact form of the memory term. 
The opposite transition, however, has a zero probability of occurring, since if the par-
ticle moves to the now vacant adjacent site to its left its last move was to the left, 
and it is thus in a dierent state than the one it started from. Note however, that 
systems with a single particle do not break extended detailed balance, while multi-
particle systems do [60]. We will call the situation at which there is no external force 
a ‘pseudo-equilibrium’.

Our analytical results consider mostly models with a general finite memory term, 
but they are also relevant for models with infinite memory terms with correlations that 
decay fast enough. In the numerical results that follow, and also in some of the analyti-
cal derivations, for simplicity we consider one-step memory models in one dimension.

3. Eective diusion equation

We consider walkers with a finite general isotropic memory term. We denote by 
η = (η1, η2, ...) the memory of the particle. ηn denotes the direction to which the walker 
attempted to move in its nth previous step, such that η1 is the last step. The probabil-
ity that a particle with memory η′ attempts to move such that its new memory is η is 
given by the matrix element Mη,η′. The probability that site r is occupied by a particle 
with history η, P (r, η) is governed by the evolution equation

1 21 2

Figure 1.  An illustration of the one-step 1D model. The last direction in which 
the particle moved is denoted by the red arrow inside the circle. At each step the 
particle turns in one of the directions with probabilities shown near the green 
arrows, and moves in that direction if the target site is vacant.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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τ
∂P (r, η)

∂t
= −P (r, η) +

∑
η′

P (r, η′; r+ η1)Mη,η′

+
∑
η′

Mη,η′ [P (r− η1, η
′)− P (r− η1, η

′; r)] ,
� (1)

where P (r, η; r′) is the probability that site r is occupied by a particle with memory η 
and site r′ is occupied. The first term on the right hand side of (A.1) comes from the 
exponential clock of the particle, and corresponds to the probability that it attempts to 
move. The other three terms on the right hand side of (1) correspond to the following 
processes: the particle in site r previously had memory η′, attempted to move in direc-
tion η1 but site r+ η1 is occupied; the particle in site r− η1 previously had memory 
η′, and it attempted to move to site r; and the particle in site r− η1 previously had 
memory η′, and it attempted to move to site r but failed because site r is occupied.

In the long time limit, we may assume that |r| � 1 and that the probability P (r) is 
smooth. We therefore take the hydrodynamic limit, i.e. expand P (r± η1) in a Taylor 
series to second order. We find that the total occupancy probability P (r), defined by

P (r) =
∑
η

P (r, η) ,
� (2)

satisfies the drift-diusion equation

∂P

∂t
=

∑
d,d′

∂

∂d

[
Dd,d′ (P )

∂P

∂d′ + vd(P )P

]
,� (3)

with

Dd,d′(P ) = D0

[
δd,d′ + 4c (1− P )

(
1− 2P − ∂C1

∂P

)]
,

vd(P ) =
2a

τ

C2

P
,

� (4)

where d denotes the d directions (x̂, ŷ, ...), D0 is the diusion coecient in a memory-
less system, c is a constant which depends on the properties of the matrix M, and C1 
and C2 are correlations between the histories of particles in adjacent sites. See appendix 
A for more details and the full derivation. The constant c is positive if the velocity 
autocorrelations are positive (i.e. the particles are persistent) and is negative if the 
velocity autocorrelations are negative (i.e. the particles are antipersistent). This cor-
rection to the base diusion coecient is qualitatively similar to the combined eect 
of persistence and finite density on the MSD, which increases with density for highly 
anti-persistent walkers [54]. Note that as this is not a gradient model, using the density 
dependence of the correlation functions at pseudo-equilibrium is only an approximation 
[61]. From symmetry, we find that at pseudo-equilibrium C2  =  0.

In the simplest case of particles with one-step memory moving on a one-dimensional 
lattice we find that

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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c =
δ

1− 2δ
,

C1 = C0 + 2δ (C+− − C−+) ,

C2 = C++ − C−−,

�

(5)

where C0 is the correlation between the occupancy of two adjacent sites

C0 = P (r, r + 1)− P (r)P (r + 1),� (6)
and Cσ,σ′ is the correlation between the occupancy of two adjacent sites whose last step 
was in the σ and σ′ directions

Cσ,σ′ = P (r, σ; r + 1, σ′)− P (r, σ)P (r + 1, σ) .� (7)
The derivation is the same even for an infinite memory under one condition. In an 

infinite memory we assume that the transition between the (infinite) states is defined 
by an irreducible stochastic operator M. This operator has a single eigenvalue equal to 
1 and the other eigenvalues are strictly smaller than 1 in absolute value. If

sup
n �=1

�λn < 1,
� (8)

then the above derivation follows the same steps. However, if the inequality in (8) is not 
satisfied, i.e. that the supremum is equal to 1, then a more subtle approach is needed.

A short note regarding the totally persistent case is in order. In this case, the model 
may be thought of as a 2d-species totally antisymmetric exclusion process (TASEP) 
[30], with equal populations of particles moving in each direction. In this model, all 
motion stops after a short, density-dependent relaxation time, since a particle stops 
moving as soon as it encounters a block containing at least one other particle of the 
opposite species. Therefore, in the long time limit the current is zero, and the hydrody-
namic approximation breaks down.

4. Correlations

In this section we investigate the correlations between the states of two sites in an 
infinite system at the steady state. Due to translation invariance, the correlations 
depend only on the distance between the two sites. We now present a sketch of the der-
ivation of the low-density approximation of the correlations for a general d-dimensional 
model, with the full details given in appendix B.

Similarly to the way in which the evolution equation  for the one-point function 
P (r, η) depends on two-point correlations, see equation (1), the evolution equation for 
n-point correlation functions depends on (n+ 1)-point correlation functions. Therefore, 
in order to have a finite and closed set of equations for the two-point correlations, we 
approximate correlations including three particles, P (r, η; r′, η′; r′′), by a sum of cor-
relations including two particles, where r, r′, and r′′ are the locations of three dierent 
particles, and η and η′ are the histories of the particles. This approximation is valid in 
both the low and the high density limit where the correlations between particles are 
small. Explicitly, we use

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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P (r, η; r′, η′; r′′) ≈ 1

3
(1− δr,r′) (1− δr,r′′) (1− δr′,r′′)

[P (r, η; r′, η′)P (r′′) + P (r, η; r′′)P (r′, η′) + P (r′, η′; r′′)P (r, η)] ,
�

(9)

where the extra Kronecker delta functions are needed to keep the approximation equal 
to zero if two of the sites are the same. Under this approximation, we find two methods 
to derive the correlations. The first method is more cumbersome, but is applicable to 
all dimensions, while the second one applies only to 1D systems. In both methods, we 
define the vector P2 (r) whose elements are the correlations between two sites separated 
by r occupied by particles with histories η and η′.

In the first method we find that the correlation functions for general r depend on 
the correlations for adjacent sites by

P2 (r) =
∑
σ′d′

Qr,σ′d′P2 (σ
′d′) ,

� (10)

where Qr,σ′d′ is a matrix which itself depends on the memory matrix. Setting r = σd 
we have a closed set of linear equations between the 2d vectors P2 (σd), which may 
be written as P2 = NP2. Hence, P2 (σd) is found by identifying the unit eigenvalue of 
the matrix N . Since the eigenvector is found up to a multiplicative constant, we use 
another boundary condition that at |r| → ∞ the two sites are uncorrelated and thus 
the elements of P2(∞) are given by Pss(η)Pss(η

′) where Pss(η) is the probability that a 
particle with history η is in the steady state.

In the second method, which is applicable only in 1D systems, we find that P2(r) 
satisfies

(
P2(r + 1)

P2(r)

)
= Qr−1Q0

(
P2(1)

0

)
,� (11)

where the matrices Q and Q0 are much simpler than in the first method. Again, the nor-
malisation is taken from the requirement that at r → ∞ the correlations decay to zero 
and the vector P2(∞) is equal to the steady state distribution of two uncorrelated sites.

Taking for example the simplest case, a 1D system with one-step memory, we find 
after straightforward but cumbersome calculations that

P2(r) =
ρ2

4




1

1

1

1


+ xr

1X1 + xr
2X2,� (12)

where X1 and X2 are vectors whose exact dependence on ρ and δ is too cumbersome 
to write explicitly, and x1 and x2 are

x1 =
6− 2δρ−

√
3 (1− 2δ) (9 + 6δ − 4δρ)

3 + 6δ − 2δρ
,

x2 =
9 + 18δ − 24δρ+ 4δρ2 −

√
3 (3 + 6δ − 4δρ) (9 + 18δ − 36δρ+ 8δρ2)

4δρ (3− ρ)
.

� (13)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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This form of the two-point correlations is similar to the two-point correlations derived 
for a related model [62]. The exact details are somewhat dierent due to the dierences 
in the models, but the overall form of a sum of two exponential decays in the same. 
For small densities, we expand P2(r) to second order in ρ and find that the two-point 
correlations are

C+,+(r) =C−,−(r) =
1

2
[C+,−(r) + C−,+(r)] =

ρ2

4

1− 8δ − 4δ2 + (1 + 2δ)2 x0

(1− 2δ) (1− 4δ − 4δ2)
xr
0,

1

2
[C+,−(r)− C−,+(r)] =

ρ2

2

−1 + x0

1− 4δ − 4δ2
xr
0,

� (14)
with

x0 =
2−

√
4− (1 + 2δ)2

1 + 2δ
.� (15)

5. Comparison to numerical results

In this section we compare our analytical derivations to the numerical simulations in a 
1D system with one-step memory. We start from the correlations, since the analysis of 
the eective diusion equation depends on them.

5.1. Correlations

We simulated a 1D system with one-step memory in a periodic lattice. We set at t  =  0 
the system to be uncorrelated, and let it evolve. After a relatively short transient time 
the correlations converge to their steady state values. We consider two site correlations 
of the form

Cσ,σ′(r, r′) = P (r, σ; r′, σ′)− ρ2

4
.� (16)

Equation (16) is the same as equation (7), where we note that in the steady state in a 
periodic lattice all sites have the same probability of being occupied, ρ, and the two 
types of memory (σ = ±) have the same probability, 1/2. Due to translation invari-
ance, the correlations only depend on the distance between the sites, and we write 
Cσ,σ′(r) ≡ Cσ,σ′(r + r′, r′). Due to inversion symmetry, we may assume that r  >  0, and 
further note that C+,+(r) = C−,−(r) since both types of correlations consider two par-
ticles moving in the same direction.

First, we compare our analytical approximation to the numerical results, and gen-
erally find that it is valid for low densities and high anti-persistence δ < 0, but breaks 
down at high persistence δ > 0 and high densities. Specifically, we see from figure 2 
that the approximation is better for the correlations between particles moving towards 
each other, but less so for particles moving away from each other or in the same direc-
tion. For particles moving in the same direction, the approximation might not even be 
qualitatively correct and get the opposite sign of the correlations for high δ. One of the 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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main conclusions from the disagreement between the numerical results and the analyti-
cal approximation, is that multi-particle correlations are important.

Figure 3 shows the four typical behaviours of the correlations. In the first type, 
shown in figure 3(a), the three correlations decay to zero. In the second type, shown in 
figure 3(b), the correlations between particles moving in opposite directions C+,− and 
C−,+ decay, while the correlation between particles moving in the same direction C+,+ 
have a minimum at some distance. The reason for this depletion zone, which occurs at 
high densities also for memory-less walkers, is that clusters are held together by par-
ticles moving towards each other, while aligned walkers do not contribute.. In the third 
behaviour, the correlations between particles moving in opposite directions C+,− and 
C−,+ decay exponentially, while the correlation between particles moving in the same 
direction C+,+ have a maximum at some distance. In the fourth behaviour, shown in 
figure 3(d), all three correlations oscillate. Figure 4 shows the phase diagram in the 
δ − ρ plane.

We are especially interested in the correlations between nearest neighbours, Cσ,σ′(1). 
We first observe their dependence on δ, as shown in figure 5. The correlations of par-
ticles moving in the same direction C+,+ (1) and moving away from each other C+,−(1) 
are always increasing functions of δ, except for a singularity of C+,−(1) at δ = 1

2
. The 

correlation C−,+ between particles moving towards each other is an increasing func-
tion of δ for ρ � 1/2, while for ρ > 1/2 it is non-monotonic with a single minimum. 

The minimum in C−,+ can be explained as follows. For δ ≈ 1
2
 the correlation is always 

increasing with δ since adjacent particles are more likely to remain so. For δ ≈ −1
2
 and 

ρ > 1
2
, consider two particles at the edge of a cluster which in the last step tried to move 

toward each other. Assuming the particle at the edge moves away, then the closer δ 

is to −1
2
, the more likely it is to return to the edge of the cluster at the next step, and 

thus the correlation C−,+ is higher. Therefore, C−,+ decreases with δ at δ ≈ −1
2
.

We now investigate the dependence of Cσ,σ′(1) on the density shown in figure 6. 
Note that all correlations should vanish at ρ = 0 and ρ = 1. We find that the correla-
tion between particles moving towards each other C−,+ has a maximum, while the 
correlation between particles moving away from each other C+,− has a minimum. The 
behaviour of the correlation between particles moving in the same direction depends on 
whether δ is positive or negative. For δ > 0, we find that C+,+ has a maximum, while 
for δ < 0 it has a minimum.

Figure 2.  Correlations between neighbouring sites from simulations (symbols) and 
the low density approximation equation  (12) (continuous lines) for ρ = 0.1 (a), 
δ = −0.4 (b) and δ = 0.4 (c). Each symbol represents the correlations between 
particles moving towards each other (green circles), away from each other (blue 
triangles) or in the same direction (red squares).
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Figure 3.  Representative plots of the correlations C as a function of the distance r 
for various δ and ρ. Each symbol represents correlations between particles moving 
towards each other (green circles), away from each other (blue triangles) or in 
the same direction (red squares). The full symbols connected by continuous lines 
are simulation results and the empty symbols connected by dotted lines are the 
analytical approximation, equation (12). The lines are a guide to the eye.

Figure 4.  Phase diagram of the correlations in the δ − ρ plane. Each symbol 
represents one of the four general behaviours: exponential decay (green triangle), 
a minimum in C+,+ (red circle), a maximum in C+,+ (blue square), and oscillating 
behaviour (purple stars).
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Next, we consider the correlations between the occupancy of dierent sites C0(r) 
regardless of their history

C0(r) = 2C+,+(r) + C+,−(r) + C−,+(r).� (17)
We find that this correlation decays exponentially with r. It is positive for δ > 0 and 
negative for δ < 0. The dependence of C0(1) on δ and ρ is shown in figure 7. We find 
numerically that the dependence on the density ρ is symmetric around ρ = 1/2 and 
captured by

C0(r = 1, ρ, δ) = C0

(
r = 1, ρ =

1

2
, δ

)
[4ρ (1− ρ)]α ,� (18)

with the dependence of the exponent α on the persistence δ shown in figure 8. Fitting 

the correlations at ρ = 1
2
 to a cubic polynomial that vanishes at δ = 0 yields

C0

(
r = 1, ρ =

1

2
, δ

)
≈ 0.15δ + 0.089δ2 + 0.38δ3.� (19)

Another interesting correlation is C−(r) = C−,+(r)− C+,−(r) which encodes the 
asymmetry between the histories. This correlation decays exponentially and is almost 
always positive, except for the case of strong antipersistence, where it decays and 

Figure 5.  Correlations between adjacent sites as a function of the persistence 
δ for ρ = 0.3 and ρ = 0.6. The last panel is a zoom in on the second panel. The 
continuous lines are the analytical approximation, and each symbol represents 
correlations between particles moving towards each other (green circles), away 
from each other (blue triangles) or in the same direction (red squares).

Figure 6.  Correlations between adjacent sites as function of the density ρ for 
δ = 0.3 and δ = −0.3. The continuous lines are the analytical approximation 
equation (12), and each symbol represents correlations between particles moving 
towards each other (green circles), away from each other (blue triangles) or in the 
same direction (red squares).
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oscillates. Figure 9 shows the dependence of C−(1) on δ and ρ. We find that it is well 
described by

C− (r = 1, ρ, δ) = C−

(
r = 1, ρ =

2

3
, δ

)[
27

4
ρ2 (1− ρ)

]β
,� (20)

with the dependence of the exponent β on the persistence δ shown in figure 10. Fitting 
the correlations at ρ = 2/3 to a cubic polynomial yields

C−

(
r = 1, ρ =

2

3
, δ

)
≈ 0.11− 0.025δ − 0.034δ2 − 0.14δ3.� (21)

5.2. Transport

To obtain insight into the transport behaviour of our system, we perform simulations 
on a 1D interval of length L connected to particle reservoirs at sites r  =  0 and r  =  L  +  1 
with densities ρ0 and ρL respectively. The initial condition inside the system is such 
that for sites 1 to L the probability to be occupied at time 0 is a linear interpolation 
between ρ0 and ρL. After a relatively short transient time the mean density converges 
to a steady state.

Figure 7.  Dependence of the correlation C0(1) on δ for ρ = 0.5 (a) and on ρ for 
δ = 0.4 (b). It is qualitatively similar for all other parameters. The continuous 
purple line is the analytical approximation equation (12), and the dashed blue line 
in panel (a) is a fit to a cubic polynomial equation (19). The dotted line in panel 
(a) shows that the correlation vanishes at δ = 0.

Figure 8.  Dependence of the exponent α on the persistence δ. The continuous 
lines are fits, see equation (18) for the definition.
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For a known diusion coecient, the steady state profile is given by [61]

x

L
=

∫ ρ(x)

ρ0
D(P ) dP∫ ρL

ρ0
D(P ) dP

.� (22)

For any given D(P ), by evaluating the integral and inverting the equation, we can find 
an analytical expression for the steady state. Figure 11(a) shows the steady state profile 
for the one-step memory model with reservoir densities ρ0 = 0 and ρ0 = 1. We see a 
very good agreement between the numerical simulations, and the semi-analytical result 
based on equation (22) when the correlations are taken from the pseudo-equilibrium 
simulations, i.e. the simulations done on a periodic lattice without external reservoirs. 
In figure 11(b) we show the total mass in the steady state, given by [61]

M =
1

L

∫ L

0

ρ(x)dx =

∫ ρL
0

ρD(P )dP∫ ρL
ρ0

D(P )dP
,� (23)

and again we find good agreement between the numerical simulations and the semi-
analytical expression when the correlations are taken into account. When the cor-
relations are neglected, we find that the estimated mass is always lower than in the 
simulations. Note that at δ = 0 the relevant correlations are indeed equal to zero, and 
therefore for small values of δ, neglecting the correlations is justified.

Figure 9.  Dependence of the correlation Cm(1) on δ for ρ = 0.67 (a) and on ρ 
for δ = −0.2. The continuous purple lines are the analytical approximation 
equation (12), and the dashed blue line in panel (a) is a fit to a cubic polynomial 
equation (21).

Figure 10.  Dependence of the exponent β on the persistence δ. The continuous 
line is a fit to a cubic polynomial, see equation (20) for the definition.
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The diusion coecient can be extracted from the steady state profile obtained in 
the simulations, ρ(x), by [61]

D (ρ) =
dρ(0)
dx

dρ(x)
dx

.� (24)

We compare this numerically extracted value of the diusion coecient, after proper 
smoothing, with the analytical expression equations  (22) and (23), as shown in 
figure 12(a). We find excellent agreement between the numerical results and the ana-
lytical expression when the correlations are taken from the numerical results of sec-
tion 4. The qualitative behaviour of the diusion coecient when the correlations are 
neglected is similar to that derived when they are taken into account. In all cases we 
find that D(ρ) converges to the memory-less value of 1 in the limit ρ → 1. For low 
densities, neglecting the correlations underestimates the diusion coecients, while 
at high densities it is overestimated. For persistent particles (δ > 0), the diusion 
coecient has a minimum point with a value lower than 1 at ρm(δ), while for antiper-
sistent particles (δ < 0), it has a maximum point with a value higher than 1 at ρm(δ). 
Neglecting the correlations, we find that ρm = 3/4 for all δ, while its value when the 
correlations are taken into account has a maximum value of ≈ 0.763 at δ ≈ −0.265, 
while at the extreme values ρm (δ = −1/2) ≈ 0.758 and ρm (δ = 1/2) ≈ 0.65, as shown 
in figure 12(b).

6. Full anti-persistence

In the extreme limit of full anti-persistence the system exhibits several unique proper-
ties. We consider a 1D lattice with totally anti-persistent particles, such that at each 
step the particles always switch direction and attempt to move in the opposite direction 
than before. In a closed system with density ρ < 1/2, the absorbing states of the system 
are such that each particle jiggles between two sites, and thus at the steady state the 
system relaxes to them. If the density is higher than 1/2 or the system is open, the 

Figure 11.  Steady state profile (a) and the total mass in the system (b) at the 
steady state for dierent values of the persistence δ. The continuous lines are 
the analytical results, equations  (22) and (23), with correlations taken from the 
numerical fits, not the analytical approximation.
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situation is dierent. A special case is ρ = 1/2 in a closed system. To our knowledge, 
this ‘pathological’ case has not been explored before. The two sites between which the 
particle hops change only if another particle enters one of the two sites, such that the 
first walker pushes itself on its new neighbour. Physically, this limit may represent two 
dierent scenarios. First, it may represent a series of very deep and narrow traps, such 
that a lone particle cannot escape (qualitatively similar to the way a single particle 
hops between two sites), but if another particle enters the same trap, one of them must 
leave. Secondly, it may represent the movement of motors in a highly viscous medium 
where inertia is negligible and motion is dependent upon pushing other objects.

First we consider the correlations in a closed system. If ρ �= 1/2 the correlations 
converge to a steady state value after some time τss as shown in figure 13. We note 
that τss diverges at ρ = 1/2. In the steady state, the correlations oscillate with an 
exponentially decaying envelope, e−r/rσ,σ′, with rσ,σ′ shown in figure  14(a). We note 
that the three correlation lengths r+,+, r+,− and r−,+ are approximately the same. For 
low (ρ < 0.3) and high (ρ > 0.6) densities the correlation length is very small (�2). 
However it diverges at ρ = 1/2. Note that in the low density regime (ρ < 1

2
) the correla-

tion length is much higher than in the high density regime (ρ > 1
2
). In the special case 

ρ = 1/2 the correlations do not converge to a steady state and the correlation length 

increases with time as shown in figure 14(b). We find that rσ,σ′ � t0.38.
Although the correlation length diverges at ρ = 1/2, for any finite distance the cor-

relations do converge after a finite time. The reason is that locally, the particles arrange 
themselves into a lattice where each particle has its own two sites between which it 
hops. Let us concentrate on the correlations between adjacent sites, setting r  =  1. The 
correlations as a function of the density are shown in figure 15. All the various correla-
tions behave similarly to the regular, finite δ case, with the same general trend quali-
tatively captured by the analytical approximation.

Figure 12.  (a) The diusion coecient D versus the density ρ for memory-less 
systems (δ = 0, continuous black line), persistent systems (δ = 0.2, dashed lines) 
and antipersistent systems (δ = −0.2, dotted lines), both when the correlations 
are neglected (red lines) and when they are taken into account (blue lines). The 
symbols are taken from the numerical results. (b) The density ρm at which the 
diusion coecient reaches a minimum (for persistent particles) or maximum (for 
antipersistent particles).
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Secondly, we now consider the transport in a system connected to reservoirs. Here, 
the totally-antipersistent model behaves critically dierent from the finite δ case. We 
find numerically that the density profile always appears to be linear, as shown in 
figure  16(a). Contrast this behaviour with the highly non-linear profile for general 
δ shown in figure 11. As we see, the mean density at the edge of the system ρbulk is 
dierent from the density of the neighbouring reservoir ρres. The behaviour is the same 
at both the right and the left reservoir. We find that ρbulk � ρres, and as shown in 
figure 16(b) it is well approximated by

ρbulk =
1 + ρ1.8res

2
.� (25)

In order to understand this phenomena consider an initially empty system con-
nected to a reservoir with density 0 and a reservoir with density ρ0. Initially, at each 
time step there is a probability ρ0/2 that the particle in the reservoir jumps to site 1. 
This particle will go back to the reservoir with probability 1− ρ0, but will remain in 
place and change its heading with probability ρ0. Hence, after time 2ρ−2

0  on average, 
there will be a particle that moves back and forth between sites 1 and 2, and thus the 

mean density on these sites will be 1
2
. This process continues, and the front eventually 

Figure 13.  Relaxation time τss for the system to reach the steady state versus the 
density in log scale (a) and log–log scale (b). It diverges at ρ = 1/2. In panel (b) 
blue squares are the data for ρ < 1/2 and red circles are the data for ρ > 1/2. The 

straight line is |1
2
− ρ|−4.

Figure 14.  The three possible correlation lengths versus the density for ρ �= 1/2 (a) 
and as a function of time for ρ = 1/2. The continuous line in panel (b) is 0.73t0.38. 
Each symbol represents correlations between particles moving towards each other 
(green circles), away from each other (blue triangles) or aligned (red squares).
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reaches the second reservoir. Therefore, the probability that site 1 is occupied may 
be approximated as a sum of the probability that the particle moving back and forth 

between sites 1 and 2 occupies it, 1
2
, and the probability that it is occupied by a newly 

arrived particle from the reservoir 
ρ20
2
, i.e. ρbulk ≈ 1+ρ20

2
. As we see this simple argument 

is very close to the fitted scaling exponent.
This discontinuity in the density at the edge of the system has been observed 

before in driven lattice gases [55]. However, we are unaware of such boundary layers 
observed in undriven systems, and stress that this boundary layer appears only for 
the totally-antipersistent model. The reason is that the totally-antipersistent model 
behaves eectively as a driven lattice gas since the particles in the front can only move 
forward on a coarse-grained scale, as the incoming particles eectively push them.

Figure 15.  Correlations between adjacent sites as function of the density. In (a) 
each symbol represents correlations between particles moving towards each other 
(green circles), away from each other (blue triangles), or in the same direction (red 
squares). Panel (b) shows the correlations C− and C0. The continuous lines are the 
analytical approximation equation (12).

Figure 16.  (a) Steady state mean density profile for particle reservoirs ρ0 = 0.2 
and ρL = 0.7. (b) Mean density at the system’s edge versus the reservoir density. 
Each symbol represents a system with dierent reservoir densities. The density 
at the system’s edge depends only on the density of the reservoir near it. The 
continuous line represents equation (25).
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7. Summary

We investigated a d-dimensional lattice gas of walkers with finite memory, in which 
each site is occupied by at most one particle, and the direction each particle attempts 
to move to depends on a specified part of its history. Specifically, we considered the 
two-site same-time correlations and the hydrodynamic description of the general model. 
Although our analytical results are relevant for particles with general memory moving 
on a d-dimensional lattice, our numerical results focussed on particles with one-step 
memory moving on a 1D system for simplicity.

We derived a non-linear drift-diusion equation which takes into account the cor-
relations between the particles, and identified a memory-dependent critical density 
which governs the dierence between the density-dependent bulk diusion coecient D 
from the memory-less one D0. For persistent walkers, below the critical density D  >  D0 
while above it D  <  D0. For anti-persistent walkers, the situation is reversed: below the 
critical density D  <  D0 while above it D  >  D0. If the correlations are neglected the criti-
cal density is exactly 1/2, and moreover, the diusion coecient has the exact same 
density dependence except for a single memory-dependent factor. We also derived a 
low-density approximation for the same time correlations between dierent sites, again 
for a general finite memory in d-dimensional hypercubic lattice.

We performed simulations on a 1D system with one-step memory and found good 
agreement between our semi-analytical derivation and the numerical results. Specifically, 
we considered the steady state mean density profile of a system connected to particle 
reservoirs at both edges. By using the correlations from the non-biased simulations 
performed on a periodic lattice, we found that our analytical derivation describes the 
density profile very well. However, if the correlations are neglected, then the total mass 
in the bulk is under-estimated.

We specifically considered the previously unexplored special case of totally anti-
persistent particles. Generally, the correlations converge to their steady state values 
after a finite time and have a finite correlation length. However in the special case of 
totally anti-persistent particles and density 1/2, the correlations do not converge and 
the correlation length diverges as a power law with time.

We also studied the transport properties of an open system. To this end we connect 
an ensemble of totally anti-persistent particles to external particle reservoirs. We find 
a discontinuity in the density between the edge of the system and the reservoir, similar 
to that found in driven lattice gases, and the density at the edge is always higher than 
in the reservoir. The explanation is that in a semi-infinite system, connected to only 
one reservoir, once a particle reaches the second site from the edge it will never return 
to the reservoir, and thus the local rate of injection from the reservoir is higher than 
the local rate of depletion to the reservoir. Eectively this pathological case behaves 
similarly to a driven lattice gas model. We found a simple approximation for the den-
sity at the edge of the system, which agrees reasonably well with the numerical results. 
A physical system which may be described by this limit is a series of very deep and 
narrow traps, such that each particle tends to stay in its trap, unless another particle 
comes and pushes it out.

Although all our derivations concern particles with finite memory, they are also 
valid for particles with infinite memory, as long as the velocity autocorrelations decay 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Correlations and transport in exclusion processes with general finite memory

20https://doi.org/10.1088/1742-5468/ab47fb

J. S
tat. M

ech. (2019) 103211

fast enough. If the autocorrelations decay slowly, our derivation breaks down. It would 
be interesting to see how our results expand to such slowly decaying correlations, even 
for specific realisations of the memory term. We speculate whether the resulting hydro-
dynamic description would be a fractional diusion equation, embodying long-ranged 
memory structures [63].

In the model we investigated here, the direction chosen at each step is completely 
uncorrelated to the success of failure of the moves and thus to the other particles. 
Another interesting expansion involves correlating the chosen direction with the den-
sity, such that the history of each particle contains also information about the success 
or failure of previous moves. We conjecture that persistent walkers that tend to turn 
around when they are blocked would exhibit a transition from a behaviour similar to 
positive persistence at low densities to a behaviour similar to anti-persistence at high 
densities.
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Appendix A. Derivation of the diusion equation

In this section we consider the hydrodynamic description of the models and derive 
an eective diusion equation. For simplicity, we first perform the derivation for the 
simplest case, a one-step memory in one dimension, and after that consider a general 
finite memory in d dimensions. For brevity, we neglect the explicit time dependence in 
our notation.

A.1. One-step memory in one dimension

We define P (r, σ) as the probability that site r is occupied by a particle whose last step 
was in the σ = ±1 direction, and P (r, σ; r′) as the probability that site r is occupied by 
a particle whose last step was in the σ direction and site r′ is occupied by a particle 
with any memory. The probabilities P (r, σ) evolve in time according to

τ
∂P (r, σ)

∂t
= − P (r, σ) +

(
1

2
+ δ

)
P (r, σ; r + σ) +

(
1

2
− δ

)
P (r,−σ; r + σ)

+

(
1

2
+ δ

)
[P (r − σ, σ)− P (r − σ, σ; r)]

+

(
1

2
− δ

)
[P (r − σ,−σ)− P (r − σ,−σ; r)] .

�

(A.1)

The first term on the right hand side of (A.1) comes from the exponential clock of the 
particle, and correspond to the probability that it attempts to move. The other four 
terms on the right hand side of (A.1) correspond to the following processes: the particle 
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in site r previously moved in direction σ, attempted to continue in the same direc-
tion but site r + σ is occupied; the particle in site r previously moved in direction −σ, 
attempted to move backwards but site r + σ is occupied; the particle previously moved 
in direction σ, was in site r − σ, continued to move in the same direction, and site r was 
vacant; and the particle previously moved in direction −σ, was in site r − σ, moved in 
the opposite direction, and site r was vacant. We now define

P (r) = P (r, 1) + P (r,−1),

P (r, r′) = P (r, 1; r′) + P (r,−1; r′),

V (r) = P (r, 1)− P (r,−1),

V (r, r′) = P (r, 1; r′)− P (r,−1; r′),

�

(A.2)

where P (r) and P (r, r′) are respectively the probability that site r or sites r and r′ are 
occupied, while V (r) and V (r, r′) correspond to the ‘velocity’ at site r. We then find 
that (A.1) becomes

τ
∂P (r)

∂t
=− P (r) +

1

2
[P (r − 1) + P (r + 1)] + δ [V (r − 1)− V (r + 1)]

+
1

2
[P (r, r + 1) + P (r, r − 1)− P (r − 1, r)− P (r + 1, r)]

+ δ [V (r, r + 1)− V (r, r − 1)− V (r − 1, r) + V (r + 1, r)] ,

τ
∂V (r)

∂t
=− V (r) +

1

2
[P (r − 1)− P (r + 1)] + δ [V (r − 1) + V (r + 1)]

+
1

2
[P (r, r + 1)− P (r, r − 1)− P (r − 1, r) + P (r + 1, r)]

+ δ [V (r, r + 1) + V (r, r − 1)− V (r − 1, r)− V (r + 1, r)] .

�

(A.3)

Note that P (r, r′) = P (r′, r) and (A.3) are simplified to

τ
∂P (r)

∂t
=− P (r) +

1

2
[P (r − 1) + P (r + 1)] + δ [V (r − 1)− V (r + 1)]

+ δ [V (r, r + 1)− V (r, r − 1)− V (r − 1, r) + V (r + 1, r)] ,

τ
∂V (r)

∂t
=− V (r) +

1

2
[P (r − 1)− P (r + 1)] + δ [V (r − 1) + V (r + 1)]

+ [P (r, r + 1)− P (r, r − 1)]

+ δ [V (r, r + 1) + V (r, r − 1)− V (r − 1, r)− V (r + 1, r)] .

�

(A.4)
We now introduce the three correlation functions C0(r),C±(r)

C+(r) = V (r, r + 1) + V (r + 1, r)− [V (r)P (r + 1) + V (r + 1)P (r)]

= 2 [P (r, +; r + 1;+)− P (r,−; r + 1,−)]− [V (r)P (r + 1) + V (r + 1)P (r)] ,

C0(r) = P (r, r + 1)− P (r)P (r + 1),

C−(r) = V (r, r + 1)− V (r + 1, r)− [V (r)P (r + 1)− V (r + 1)P (r)]

= 2 [P (r, +; r + 1;−)− P (r,−; r + 1,+)]− [V (r)P (r + 1)− V (r + 1)P (r)] ,
� (A.5)
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where P (r, σ; r′, σ′) is the probability that site r is occupied with a particle that last 
moved in direction σ and site r′ is occupied with a particle that last moved in direction 
σ′. The evolution equations now read

τ
∂P (r)

∂t
=− P (r) +

1

2
[P (r − 1) + P (r + 1)] + δ [V (r − 1)− V (r + 1)] [1− P (r)]

+ δV (r) [P (r + 1)− P (r − 1)] + δ [C+(r)− C+(r − 1)] ,

τ
∂V (r)

∂t
=− {1− δ [P (r + 1) + P (r − 1)]}V (r) +

[
1

2
− P (r)

]
[P (r − 1)− P (r + 1)]

+ δ [1− P (r)] [V (r − 1) + V (r + 1)] + C0(r)− C0(r − 1) + δ [C−(r)− C−(r − 1)] .

�

(A.6)
Note that physically, the correlation C0 is just the correlation between the occupancy of 
the two sites, C+ is related to the two particle moving in the same direction, and C− is 
related to the two particles moving in opposite directions.

We now take the hydrodynamic limit, by assuming that the distance between two 
adjacent sites, a, is very small, and that the mean time between steps, τ , scales as a2. 
Expanding (A.6) to second order in a yields

τ
∂P

∂t
=

∂

∂x

[
a2

2

∂P

∂x
− 2aδV (1− P ) + aδC+

]
,

τ
∂V

∂t
= − (1− 2δ)V − a

[
(1− 2P )

∂P

∂x
− ∂

∂x
(C0 + δC−)

]

+ a2
[
∂2P

∂x2
V + (1− P )

∂2V

∂x2

]
.

�

(A.7)

Since we do not yet consider the extreme case of total persistence in which δ = 1
2
, and 

since P is finite, we find that V  and C+ must scale at most as a, and thus

V =
a

1− 2δ

[
(1− 2P )

∂P

∂x
− ∂

∂x
(C0 + δC−)

]
.� (A.8)

Hence, P satisfies the diusion equation

∂P

∂t
=

∂

∂x

[
D (ρ)

∂P

∂x
+ v (ρ)P

]
,� (A.9)

where the diusion coecient D (ρ) and the drift term v (ρ) are

D (ρ) =
a2

2τ

{
1 +

4δ

1− 2δ
(1− P )

[
1− 2P − ∂

∂ρ
(C0 + δC−)

]}
,

v (ρ) =
2aδ

τ

C+

P
.

�
(A.10)

Note that as this is not a gradient model, using the density dependence of the corre-
lation functions at pseudo-equilibrium is only an approximation [61]. From symmetry, 
we find that at pseudo-equilibrium C+   =  0.
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A.2. General memory in d dimensions

We now consider walkers with a finite general isotropic memory term. We denote by 
η the memory of the particle, and by ηn the n’th previous step, such that η1 is the last 
step made. The probability that a particle with memory η′ attempts to move such that 
its new memory is η is given by the matrix element Mη,η′. The probability that site r 
is occupied by a particle with history η, P (r, η) is governed by the evolution equation

τ
∂P (r, η)

∂t
=− P (r, η) +

∑
η′

P (r, η′; r+ η1)Mη,η′

+
∑
η′

Mη,η′ [P (r− η1, η
′)− P (r− η1, η

′; r)] .
�

(A.11)

We now define the state vectors P(r) and P(r, r′) whose components are P (r, η) and 
P (r, η; r′), respectively, such that equation (A.11) may be written in matrix form as

τ
∂P(r)

∂t
=−P(r) +

∑
d

MdP(r, r+ d) +
∑
d

M−dP(r, r− d)

+
∑
d

Md [P(r− d)−P(r− d; r)] +
∑
d

M−d [P(r+ d)−P(r+ d; r)] ,
�

(A.12)
where d is a unit vector in the d direction, and where M±d is the 2m × 2m matrix whose 
elements are

M±d
η,η′ = Mη,η′δη1,±d.� (A.13)

We now write P(r) and P(r, r′) as a linear combination of the eigenvectors of M

P(r) =
∑
n

An(r)Vn,

P(r, r′) =
∑
n

An(r, r
′)Vn,

� (A.14)

which satisfy

MVn = λnVn.� (A.15)
Multiplying (A.12) from the left by the left eigenvectors of M, UT

n , which satisfy 
UT

nVm = δm,n, yields

τ
∂An(r)

∂t
= −An(r) +

∑
d

λn

2d

∑
σ=±1

[An(r+ σd) + An(r, r+ σd)− An(r+ σd, r)]

−
∑
d

∑
m �=n

∑
σ=±1

σµn,m [Am(r+ σd)− Am(r, r+ σd)− Am(r+ σd; r)] ,

� (A.16)
where we defined for brevity

µn,m = UT
nMdVm,� (A.17)
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which does not depend on d due to isotropy, and used the relations

UT
nM−dVm = UT

n

(
1

d
M−Md

)
Vm =

λn

d
δm,n − µn,m,

µn,n =
λn

2d
.

�

(A.18)

We now introduce the correlation functions

C±
n,d(r) = An(r, r+ d)± An(r+ d, r)− [An(r)P (r+ d)± An(r+ d)P (r)] ,

� (A.19)
such that (A.16) becomes

τ
∂An(r)

∂t
= −An(r) +

λn

2d

∑
d

∑
σ=±1

[An(r+ σd) + An(r)P (r+ σd)− An(r+ σd)P (r)]

−
∑
d

∑
m �=n

∑
σ=±1

σµn,m [Am(r+ σd)− Am(r)P (r+ σd)− Am(r+ σd)P (r)]

+
λn

d

∑
d

[
C−

n,d(r)− C−
n,d(r− d)

]
+

∑
m �=n

∑
d

µn,m

[
C+

m,d(r)− C+
m,d(r− d)

]
.

�

(A.20)

So far we made no approximations, just transformed the evolution equation into a 
nicer form. We now take the hydrodynamic limit such that (A.20) transforms into

τ
∂An

∂t
=(1− λn)An + λn

a2

2d

∑
d

[
(1− P )

∂2An

∂d2
+ An

∂2P

∂d2

]

− 2a
∑
d

∑
m �=n

µn,m
∂

∂d
[(1− P )Am] + λn

2a

d

∑
d

∂C−
n,d

∂d
+ 2a

∑
m �=n

∑
d

µn,m

∂C+
m,d

∂d
.

�
(A.21)

Now note that M is a reducible stochastic matrix, and thus one of its eigenvalue is 
unity, λ1 = 1, while the real part of the others is strictly smaller than 1. Furthermore, 
after a suciently long time, the distribution of the states reaches the steady state, 
which is given by the eigenvector V1, and thus A1  =  P. Therefore, we find that for 
n  >  1, An scales as a, and is thus given by

An>1 =
2aµn,1

1− λn

∑
d

∂

∂d

[
(1− P )P − C+

1,d − λn

dµn,1

C−
n,d

]
,� (A.22)

such that P is governed by the drift-diusion equation

∂P

∂t
=

∑
d,d′

∂

∂d

[
Dd,d′ (P )

∂P

∂d′ + vd(P )P

]
,� (A.23)

with

Dd,d′(P ) =
a2

2dτ

[
δd,d′ − 4

∑
m>1

µ1,mµm,1

1− λm

(1− P )

(
1− 2P −

∂C+
1,d′

∂P
− λn

dµm,1

∂C−
m,d′

∂P

)]
,

vd(P ) =
2a

τP

∑
m>1

C+
m,d.

�

(A.24)
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Regarding the correlations, note that by (A.19), C+
1,d is

C+
1,d(i) = 2 [P (i, i+ d)− P (i)P (i+ d)] ,� (A.25)

i.e. it is the correlation between the occupancy of dierent sites. The more complicated 
term, C−

n,d may also be written as

C−
n,d(i)

=
∑
m �=n

An,m(i, i+ d)− An,m(i+ d, i)− [An(i)Am(i+ d)− An(i+ d)Am(i)] ,

�

(A.26)

which encodes the asymmetry between two adjacent sites having dierent histories.

Appendix B. Correlations

In this section we derive the low-density approximation of the two-point correlations 
for a general d-dimensional model. We start by considering the evolution equation of 
P (r, η; r′, η′), which is the probability that site r is occupied by a particle with memory 
η and site r′ �= r is occupied by a particle with memory η′. This probability evolves 
according to

τ
∂P (r, η; r′, η′)

∂t
= −2P (r, η; r′, η′)

+
∑
η′′

Mη,η′′ [δr′,r+η1P (r, η′′; r′, η′) + (1− δr′,r+η1)P (r, η′′; r′, η′; r+ η1)]

+
∑
η′′

Mη′,η′′
[
δr,r′+η′1

P (r, η; r′, η′′) +
(
1− δr,r′+η′1

)
P (r, η; r′, η′′; r′ + η′1)

]

+
∑
η′′

Mη,η′′ (1− δr′,r−η1) [P (r− η1, η
′′; r′, η′)− P (r− η1, η

′′; r′, η′; r)]

+
∑
η′′

Mη′,η′′
(
1− δr,r′−η′1

)
[P (r, η; r′ − η′1, η

′′)− P (r, η; r′ − η′1, η
′′; r′)] ,

�

(B.1)

where η1 is the last step in the memory η, and P (r, η; r′, η′; r′′) is the probability that 
site r is occupied by a particle with memory η, site r′ is occupied by a particle with 
memory η′, and site r′′ is occupied by a particle with any memory. We assume implic-
itly that all three sites are dierent. The first term in (B.1) accounts for the case when 
both particles do not move, the second (third) term describes the attempt by the 
particle in site r (r′) to move to an already occupied site, and the fourth (fifth) term 
describes a successful move to site r (r′).

In order to have a close set of equations, we consider the following approximation 
for the three-point correlations

P (r, η; r′, η; r′′) ≈ (1− δr,r′) (1− δr,r′′) (1− δr′,r′′)

× 1

3
[P (r, η; r′, η′)P (r′′) + P (r, η; r′′)P (r′, η′) + P (r′, η′; r′′)P (r, η)] ,

�
(B.2)
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where the extra Kronecker delta functions are needed to keep the approximation equal 
to zero if two of the sites are the same. In the steady state the one-point functions are 
known

P (r) = ρ,

P (r, η) = ρPss (η) ,�
(B.3)

where Pss (η) is the steady state probability of a particle to be with memory η. 
Furthermore, due to translational invariance, the two-point functions depend only on 
the distance between the two sites. We therefore define

P2 (r, η, η
′) ≡ P (r+∆r, η;∆r, η′)� (B.4)

for any ∆r. The subscript 2 reminds us that this is a two-point function. In the steady 
state we set the temporal derivative to zero, and find that equation  (B.1) may be 
approximated by

0 = − 2P2 (r, η, η
′) +

ρ

3
[Mη,η′′P2 (r, η

′′, η′) +Mη′,η′′P2 (r, η, η
′′)]

− ρ

3

∑
η′′,η′′′

Pss (η
′′) [Mη,η′′P2 (r, η

′′′, η′) +Mη′,η′′P2 (r, η, η
′′′)]

+
(
1− ρ

3

)∑
η′′

[Mη,η′′P2 (r− η1, η
′′, η′) +Mη′,η′′P2 (r+ η′1, η, η

′′)]

+
ρ

3

∑
η′′,η′′′

Pss (η
′′) [Mη,η′′P2 (r+ η1, η

′′′, η′) +Mη′,η′′P2 (r− η′1, η, η
′′′)]

+
(
1− ρ

3

)∑
η′′

[
δr,−η1Mη,η′′P2 (−η1, η

′′, η′) + δr,η′1Mη′,η′′P2 (η
′
1, η, η

′′)
]

+
ρ

3

∑
η′′,η′′′

Pss (η
′′)
[
δr,η1Mη,η′′P2 (−η1, η

′, η′′′) + δr,−η′1
Mη′,η′′P2 (−η′1, η, η

′′′)
]

+
ρ

3
Pss (η

′) (δr,η1 − δr,−η1)
∑
η′′,η′′′

Mη,η′′P2 (−η1, η
′′, η′′′)

+
ρ

3
Pss (η)

(
δr,−η′1

− δr,η′1
) ∑
η′′,η′′′

Mη′,η′′P2 (−η′1, η
′′, η′′′) ,

� (B.5)
where we used

P2 (r, η, η
′) = P2 (−r, η′, η) .� (B.6)

Also, by the definition of the steady state we have∑
η′

Mη,η′Pss(η
′) = Pss(η),� (B.7)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Correlations and transport in exclusion processes with general finite memory

27https://doi.org/10.1088/1742-5468/ab47fb

J. S
tat. M

ech. (2019) 103211

and thus

0 = −2P2 (r, η, η
′) +

ρ

3
[Mη,η′′P2 (r, η

′′, η′) +Mη′,η′′P2 (r, η, η
′′)]

− ρ

3

∑
η′′

[Pss (η)P2 (r, η
′′, η′) + Pss (η

′)P2 (r, η, η
′′)]

+
(
1− ρ

3

)∑
η′′

[Mη,η′′P2 (r− η1, η
′′, η′) +Mη′,η′′P2 (r+ η′1, η, η

′′)]

+
ρ

3

∑
η′′

[Pss (η)P2 (r+ η1, η
′′, η′) + Pss (η

′)P2 (r− η′1, η, η
′′)]

+
(
1− ρ

3

)∑
η′′

[
δr,−η1Mη,η′′P2 (−η1, η

′′, η′) + δr,η′1Mη′,η′′P2 (η
′
1, η, η

′′)
]

+
ρ

3

∑
η′′

[
Pss (η) δr,η1P2 (η1, η

′′, η′) + Pss (η
′) δr,−η′1

P2 (−η′1, η, η
′′)
]

+
ρ

3
Pss (η

′) (δr,η1 − δr,−η1)
∑
η′′,η′′′

Mη,η′′P2 (−η1, η
′′, η′′′)

+
ρ

3
Pss (η)

(
δr,−η′1

− δr,η′1
) ∑
η′′,η′′′

Mη′,η′′P2 (η
′
1, η

′′′, η′′) .

�

(B.8)

In matrix form this may be written as

0 = Q1P2 (r) +
∑
σd

Qσd
2 P2 (r− σd) +

∑
σd

Qσd
3 δr,−σdP2 (r) ,� (B.9)

with

Q1 = −2I +
ρ

3
(M1 +M2 − S1 − S2) ,

Qσd
2 =

(
1− ρ

3

) (
Mσd

1 +M−σd
2

)
+

ρ

3

(
S−σd
1 + Sσd

2

)
,

Qσd
3 = Qσd

2 − ρ

3

[
S2

(
Mσd

1 −M−σd
1

)
+ S1

(
M−σd

2 −Mσd
2

)]
.

�

(B.10)

The subscript 1 and 2 on the matrices M and S denotes whether they act on particle 
1 or 2, the matrices Sσd are defined by

[
S±d

]
η,η′

= Pss (η) δη1,±d,� (B.11)

and the matrix S is

S =
∑
σd

Sσd.
� (B.12)

In order to solve the recursion equation we define the generating function G (θ)

G (θ) =
∑
r

eir·θP2 (r) .� (B.13)

Multiplying the recursion equation by eir·θ and summing over r yields an equation on 
G (θ)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Correlations and transport in exclusion processes with general finite memory

28https://doi.org/10.1088/1742-5468/ab47fb

J. S
tat. M

ech. (2019) 103211

0 =Q1G (θ) +
∑
σd

Qσd
2 eiσd·θG (θ)

+
∑
σd

Qσd
3 e−iσd·θP2 (−σd)−

∑
σd

Qσd
2 P2 (−σd) ,

�
(B.14)

where the last term comes from summing over also the non-existent equation for r = 0 
which needs to be removed. Rearranging the equation we get

(
Q1 +

∑
σd

Qσd
2 eiσd·θ

)
G (θ) =

∑
σd

(
Qσd

2 P2 −Qσd
3 e−iσd·θ)P2 (−σd) .� (B.15)

Inverting the Fourier transform yields

P2 (r) =
1

(2π)d

∫

θ∈[0,2π]d
e−ir·θG (θ)

=
1

(2π)d

∫

θ∈[0,2π]d
e−ir·θ

(
Q1 +

∑
σd

Qσd
2 eiσd·θ

)−1 ∑
σd

(
Qσd

2 −Qσd
3 e−iσd·θ)P2 (−σd) .

�
(B.16)

Setting r = σ′d′ yields

P2 (σ
′d′) =

1

(2π)d

∫

θ∈[0,2π]d
e−iσ′d′·θ

(
Q1 +

∑
σd

Qσd
2 eiσd·θ

)−1

×
∑
σd

(
Qσd

2 −Qσd
3 e−iσd·θ)P2 (−σd) .

�

(B.17)

This is a set of linear equations between the 2d vectors P2 (σd), which may be written 
as P2 = NP2. Hence, P2 (σd) is obtained by finding the unit eigenvalue of the matrix 
N . Since the eigenvector is found up to a multiplicative constant, we use another 
boundary condition that at |r| → ∞ the two sites are uncorrelated and thus the ele-
ments of P2(∞) are given by Pss(η)Pss(η

′) where Pss(η) is the probability that a particle 
with history η is in the steady state.

For 1D systems, there is another, simpler way to derive the correlations. Consider 
the recursion equation reduced to one dimension

0 = Q1P2(r) +
∑
σ

Qσ
2P2(r − σ) +

∑
σ

Qσ
3δr,−σP2(r).� (B.18)

Since P2(0) = 0 by definition, the recursion equation for r  >  0 is independent of the 
P2(r) for r  <  0. Hence, without loss of generality we consider only r  >  0. The recursion 
equation reads

P2(r + 1) = −
[(
Q−

2

)−1 Q1 + δr,1
(
Q−

2

)−1 Q−
3

]
P2(r)−

(
Q−

2

)−1 Q+
2 P2(r − 1).

� (B.19)
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This may also be written as
(
P2(r + 1)

P2(r)

)
= −

((
Q−

2

)−1 Q1 + δr,1
(
Q−

2

)−1 Q−
3

(
Q−

2

)−1 Q+
2

−I 0

)(
P2(r)

P2(r − 1)

)
.

�
(B.20)

The solution is

(
P2(r + 1)

P2(r)

)
= (−1)r

((
Q−

2

)−1 Q1

(
Q−

2

)−1 Q+
2

−I 0

)r−1

((
Q−

2

)−1 Q1 +
(
Q−

2

)−1 Q−
3

(
Q−

2

)−1 Q+
2

−I 0

)(
P2(1)

0

)
.

�

(B.21)

The normalisation is taken from the requirement that at r → ∞ the correlations decay 
to zero and the vector P2(∞) is equal to the steady state distribution of two uncor-
related sites.

Taking for example the simplest case, a 1D system with one-step memory, we find 
after straightforward but cumbersome calculations that

P2(r) =
ρ2

4




1

1

1

1


+ xr

1X1 + xr
2X2,� (B.22)

where X1 and X2 are vectors whose exact dependence on ρ and δ is too cumbersome 
to write explicitly, and x1 and x2 are

x1 =
6− 2δρ−

√
3 (1− 2δ) (9 + 6δ − 4δρ)

3 + 6δ − 2δρ
,

x2 =
9 + 18δ − 24δρ+ 4δρ2 −

√
3 (3 + 6δ − 4δρ) (9 + 18δ − 36δρ+ 8δρ2)

4δρ (3− ρ)
.

�

(B.23)

For small densities, we expand P2(r) to second order in ρ and find that the two-point 
correlations are

C+,+(r) = C−,−(r) =
1

2
[C+,−(r) + C−,+(r)] =

ρ2

4

1− 8δ − 4δ2 + (1 + 2δ)2 x0

(1− 2δ) (1− 4δ − 4δ2)
xr
0,

1

2
[C+,−(r)− C−,+(r)] =

ρ2

2

−1 + x0

1− 4δ − 4δ2
xr
0,

�

(B.24)

with

x0 =
2−

√
4− (1 + 2δ)2

1 + 2δ
.� (B.25)
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