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Abstract
We study a lattice gas of persistent walkers, in which each site is occupied 
by at most one particle and the direction each particle attempts to move to 
depends on its last step. We analyse the mean squared displacement (MSD) 
of the particles as a function of the particle density and their persistence (the 
tendency to continue moving in the same direction). For positive persistence 
the MSD behaves as expected: it increases with the persistence and decreases 
with the density. However, for strong anti-persistence we find two different 
regimes, in which the dependence of the MSD on the density is non-monotonic. 
For very strong anti-persistence there is an optimal density at which the MSD 
reaches a maximum. In an intermediate regime, the MSD as a function of the 
density exhibits both a minimum and a maximum, a phenomenon which has 
not been observed before. We derive a mean-field theory which qualitatively 
explains this behaviour.

Keywords: exclusion process, persistence, lattice gas

(Some figures may appear in colour only in the online journal)

1. Introduction

The active and passive motion of biological cells and the motion of their internal components 
(molecular motors, enzymes, etc) is a complicated out-of-equilibrium process which occurs 
due to many factors, some of them still unknown [1]. This motion has been investigated at the 
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single-body level [2–4], many-body level [5–15], or continuum level [16]. At the many-body 
level the focus is mostly on the interactions between cells or bacteria, be they hydrodynamic 
[5], mutually aligning as in the Vicsek model [7, 8], energetic [8–11], or steric [12–15, 17].

The motions of individual cells or bacteria are modelled in various ways, which can be 
thought of as a random walk with a certain type of memory. One of the most common models, 
motivated by experimental observations [18], is a run-and-tumble motion [3, 10], in which the 
walker moves in a straight line for some time, and then abruptly changes its direction. This 
model is captured by a memory term which gives a higher probability of turning as more time 
passes from the last turn. A twitching motion [11] or motion with a self aligning director [13] 
is captured by a one-step memory term, i.e. the velocity at each step depends on the veloc-
ity in the previous step but not on longer memory terms. Other biological processes are also 
described as random walks with memory [19–21].

In random walks with memory, each step the walker makes depends not only on its location 
in the previous step but on its history. It might depend on its entire history, or a finite part of it. 
Notably, in one of the first and best known random walk models that included memory [22], 
a single walker moves on a one-dimensional lattice. At each step, the walker either moves 
in the same direction as it did in the previous step with probability 1

2 + δ, or in the opposite 
direction with probability 1

2 − δ. This rule mimics inertia, and does not introduce bias in any 
specific direction. The basic random walk model is retrieved for δ = 0. Such walkers with 
one-step memory are also called persistent walkers. Since the introduction of this model, 
it was expanded in various forms to explain different phenomena in fields such as polymer 
chains [23], animal movement [24], scattering in disordered media [25], motion of bacteria 
[2], artificial micro-swimmers [26, 27], and motion in ordered media [28].

A different class of random walk models emulates the interactions in many-body systems. 
In these ‘lattice-gas models’ many walkers move on a discrete graph or lattice with some type 
of interaction between the different particles. In the simple symmetric exclusion principle 
(SSEP) model [29] the interaction is purely steric. Each site on a lattice is either vacant or 
occupied by at most one walker, and each walker has an internal clock, independent of the 
other walkers, which governs the timing of its attempted moves. If a walker attempts to move 
to an already occupied site, it remains in place. In the asymmetric simple exclusion principle 
(ASEP) model [29], the walkers are biased to move in a certain direction, and it has been 
used to describe transport phenomena in biology [14, 30, 31]. A special consideration is given 
to one-dimensional systems [32], which emulate transport along a narrow channel, such as 
transport of water [33] and drugs [34] through nanotubes, or of molecular motors in cellular 
protrusions [14] and along microtubules [30, 35]. The single file diffusion in one-dimensional 
systems is known to be anomalous, even without memory [36]. The basic SSEP and ASEP 
models have been expanded to include energetic interactions [37], a single biased particle 
surrounded by unbiased particles [38], birth and death of particles [39], higher site occupancy 
[40], spatial inhomogeneities [41] and kinetic constraints [42].

There are several studies that combine these two variations of the basic random walk, 
mutual exclusion effects and memory, and they investigate three characteristics of this type of 
models. First, this model may be considered as a coarse-grained version of active Brownian 
particles (ABP) [26], and it was shown that it indeed shows motility induced phase separation 
[43, 44], one of the hallmarks of ABP. Second, some studies derived an effective hydrody-
namic description in either one-dimensional [45, 46] or higher-dimensional [47, 48] sys-
tems, including anomalous walkers [49]. The third group of studies investigates the mean 
squared displacement (MSD) of crowded walkers with memory, in particular the short time 
approximation of the MSD [50], the MSD of interacting subdiffusive random walkers in a 
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one-dimensional system [51], the MSD in the very high density limit in one dimension [52], 
and the effective diffusion coefficient of a cross-shaped persistent walker in a bath of memory-
less cross-shaped walkers [53].

In this study we investigate the MSD of persistent random walkers in a crowded environ-
ment in both one-dimensional (1D) and two-dimensional (2D) systems. We perform simula-
tions covering the entire parameter space and find that in general the MSD behaves as expected: 
it decreases with the density and increases with the persistence. However, for strong anti-per-
sistence we find two different regimes, in which the dependence of the MSD on the density is 
non-monotonic. For very strong anti-persistence there is an optimal density at which the MSD 
reaches a maximum. In an intermediate regime, the MSD as a function of the density exhib-
its both a minimum and a maximum, a phenomenon which to our knowledge has not been 
observed before. We derive a mean-field theory which explains this phenomenon qualitatively. 
We also investigate the previously unexplored cases of totally persistent and totally anti-persis-
tent particles, for which the density has a critical effect. On the one hand, a single totally per-
sistent particle performs a ballistic motion, while remarkably in a system with finite density all 
movement halts after a transient time. On the other hand, a single totally anti-persistent walker 
is localised, while in a system with density larger than 1/2 its motion is unbounded.

The details of the model we investigate are described in section 2. Section 3 is devoted to 
the numerical analysis of the MSD under general conditions, while in sections 4 and 5 we 
consider the extreme cases of full persistence and full anti-persistence. Finally, section 6 sum-
marises the paper. In the appendix we derive a computationally efficient method to calculate 
the MSD of a single particle with general memory, which we use in our mean-field theory.

2. Description of the model

We consider a lattice gas in either a 1D linear lattice or a 2D square lattice. Each site on the lat-
tice can be either vacant or occupied by at most one particle. Each particle has an independent 
exponential clock with mean time τ . When the clock rings, the particle attempts to move to 
one of its two (in 1D) or four (in 2D) nearest neighbours. If the target site is vacant, the particle 
moves. Otherwise, it remains in place. In both cases, its clock resets.

The target direction, however, is not chosen from a uniform distribution but it rather depends 
on the history of the particle. We consider here one-step memory models, also called persistent 
walkers. In the 1D model, pictured in figure 1(a), the probability that a particle attempts to 
move in the same direction as in its previous state is 12 + δ with − 1

2 � δ � 1
2, and the probabil-

ity it reverses its direction is 1
2 − δ. We call the parameter δ the persistence parameter, since 

it encodes the tendency of the particle to persist in its motion. Note that since the probability 
distribution for choosing the direction of motion is relative to the current direction of motion, 
there is no macroscopic bias in the system unless it is imposed from the boundaries. In the 
2D model, pictured in figure 1(b), the probability that a particle attempts to move in the same 
direction as before is 1

4 + δf , the probability that it attempts to move in the opposite direction 
is 1

4 + δb, and the probability that it attempts to move in either of the other two directions is 
1
4 − δf +δb

2 , i.e. here δf  is not necessarily equal to −δb as in one dimension1.

1 In higher dimensions the situation is similar to 2D: the probability to move forward is 1
2d + δf , the probability to 

move backwards is 1
2d + δb, and the probability to move to any of the other 2d  −  2 directions is 1

2d − δf +δb

2(d−1) . We 
expect the results for high dimensions to be qualitatively similar to two dimensions. Here we focus on the relevant 
1D and 2D cases.
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Note that although the net current is zero, this model is out of equilibrium because it does 
not obey detailed balance. Consider for example a particle moving to the vacant site to its 
right, and that in its previous step it also moved to the right. Such a move occurs with prob-
ability 12 + δ (in 1D) or 14 + δf  (in 2D). The opposite transition, however, has a zero probability 
of occurring, since if the particle moves to the now vacant adjacent site to its left its last move 
was to the left, and it is thus in a different state than the one it started from.

In the simulations we perform, we use periodic boundary conditions and a system of either 
size 104 (in 1D) or 100 × 100 (in 2D). The initial state of the system is uncorrelated: each site 
is independently occupied with probability ρ , and the direction of each walker is indepen-
dently and uniformly generated from the possible two (in 1D) or four (in 2D) directions. At 
each step of the simulation, one of the particles is chosen randomly and a move is attempted. 
Whether the move succeeds or not the clock advances by τN , where N is the number of particles 
in the system and we choose the time units to be τ = 1. This evolution is equivalent to each 
particle having an exponential clock with mean τ . All results are averages of 100 independent 
runs.

3. Finite persistence

We first consider the non-pathological cases, i.e. that neither the probability to continue for-
ward nor the probability to turn backward is exactly unity—we will consider these limiting 
cases below. Sample trajectories for three cases are shown in figure 2. Figure 3 shows sample 
trajectories in 2D, here we only depict a single particle’s trajectory for clarity.

Without memory, it is known that in one dimensional systems the MSD scales as 
√

t  [36], 
with the dependence on the density, for an equilibrium initial condition, given by

〈
x2〉

1D (t) =
1 − ρ

ρ

√
2D0t
π

, (1)

where D0 is the diffusion coefficient of a single walker. Note that for a single particle the MSD 
is linear in time 

〈
x2
〉

1D (t) = D0t so that the limit ρ → 0 drives the system across a transition. 
In two and higher dimensions, the MSD grows linearly with t, but the exact coefficient is 
unknown analytically [40, 54]. Furthermore, the MSD of a single particle with finite memory 
grows linearly with time in any dimension, since the velocity correlations decay exponen-
tially. For one-step memory, the MSD of a single particle is [22, 23]

Figure 1. An illustration of the model. The last direction in which the particle moved 
is denoted by the red arrow. At each step the particle turns in one of the directions with 
probabilities shown near the green arrows, and moves in that direction if the target site 
is vacant. In 1D the system parameter is the persistence δ, in 2D we classify the motion 
by the two parameters δf  and δb.
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〈x2〉1D(t) = D0
1 + 2δ
1 − 2δ

t,

〈r2〉2D(t) = 2D0
1 + δf − δb

1 − δf + δb
t,

 
(2)

where D0 is the diffusion coefficient of a single walker without memory, and r2 = x2 + y2 . 
Except for the pathological cases of full persistence and full anti-persistence, we find numer-
ically that for all values of the persistence δ and the density ρ  the MSD in 1D systems grows 
as 

√
t  and in 2D systems as t, see figure 4. The slope, however, becomes distinctly different 

from memory-less systems.
In 1D for each combination of the density ρ  and the persistence δ we use equation (1) and 

extract an effective diffusion coefficient Deff , as shown in figure 5, while in 2D we extract an 
effective diffusion coefficient from 

〈
r2
〉
= 2Defft, see figure 6. Since for memory-less systems 

the MSD is a decreasing function of the density, and for single persistent walkers the MSD is 

Figure 2. Sample trajectories of 1D systems with density ρ = 0.4. Left: anti-persistent 
case, δ = −0.2; Middle: neutral case, δ = 0; Right: persistent case, δ = 0.2.

Figure 3. Sample trajectories of 2D systems for densities ρ = 0.1 (Left), ρ = 0.6 
(Middle) and ρ = 0.9 (Right). In the top row the persistence parameters are δf = 0.45 
and δb = −0.50 (highly persistent case), in the bottom row they are δf = −0.50 and 
δb = 0.45 (highly antipersistent case). The particle starts in the red region and ends in 
the blue region. The lengths of the black scale bars is given in lattice units. The different 
sizes of the scale bars give an impression of the overall span of the trajectories with 
respect to each other.
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an increasing function of the persistence, we expect that this dependence remains when both 
density and persistence are involved. Indeed, in 1D, we find that the effective diffusion coef-
ficient is always a monotonically decreasing function of the persistence δ, while in 2D it is 
a monotonically decreasing function of δf  and a monotonically increasing function of δb, as 
intuitively expected. Furthermore, in 1D it is an increasing function of the density for δ < 0 
and a decreasing function of the density for δ > 0.

Figure 4. The MSD for a 1D and a 2D system with ρ = 0.5 and different persistence 
values. The continuous black line is the known result for δ = 0 in 1D, equation (1), or a 
numerical fit in 2D. In all cases, the MSD grows with time as 

√
t  for 1D and as t for 2D.

Figure 5. Log-plots of the slope of the MSD curve in 1D and the extracted diffusion 
coefficient as a function of the density ρ  for different values of the persistence δ from 
δ = 0.4 (top line in blue) to δ = −0.4 (bottom line in red) in jumps of 0.1 in the top 
panels, and from δ = −0.49 (top line in blue) to δ = −0.41 (bottom line in red) in 
jumps of 0.01 in the bottom panels.
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We now look at the dependence of 〈x2〉/
√

t in 1D and of 〈r2〉/t  in 2D on the density. In 
most cases, it is a decreasing function of the density. However, at strong anti-persistence 
(δ � −0.48 in 1D and δb � 0.55 and δf � −0.19 in 2D), remarkably we find two other types 
of density dependence. In that regime, the MSD may either have a single maximum as a 
function of the density (for example, as in δf = −0.25 and δb = 0.65), or it may have both a 
maximum and a minimum (as in δf = −0.22 and δb = 0.62), see figure 7. We note that in 1D, 
the single maximum regime occurs only for totally anti-persistent particles (δ = −1/2), as 
will be explained below.

A similar peak in the MSD as a function of density was also found in a lattice model of a 
single biased tracer surrounded by regular random walkers [15, 55], but to our knowledge no 
other model exhibits the more complicated behaviour of both a maximum and a minimum. 
This behaviour is a competition between three mechanisms. The first, simplest mechanism 
occurs at high densities and is simply the blocking of the movement of the particles by their 
neighbours which reduces the MSD. The second mechanism is different in 1D systems and in 
higher dimensional systems, but in both cases it occurs at low densities. In 1D the MSD of a 
single particle scales linearly with t while the MSD in a system with finite density scales as 

√
t  

due to the known effects of single file diffusion [36, 56]. Therefore, the MSD divided by 
√

t  
diverges at ρ = 0, and thus for very small densities it is a decreasing function of ρ . In higher 
dimensions, the explanation is different since both the single particle MSD and the MSD in a 
finite density system are linear in time. In this case, when the anti-persistence is not too high 

Figure 6. Diffusion coefficient for the 2D one-step memory model as a function 
of the density ρ  for various values of δf  and δb and fixed δf + δb. The different 
lines correspond to different values of δf  and δb. In each plot the top line (in blue) 
is for δb = −0.25 and the bottom line (in red) is for δf = −0.25. For example, 
the lines for δf + δb = −0.1 are (from top to bottom) (δb = −0.25, δf = 0.35),  
(δb = −0.2, δf = 0.3), ..., (δb = 0.35, δf = −0.25). The limit at ρ → 0 agrees 
with the single particle values.
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and the density is low, the collisions between the particles are rare, and thus the only effect of 
the density is to occasionally block the movement, and thus reduce the MSD.

The intriguing third mechanism becomes relevant at high degrees of anti-persistence. In 
this mechanism, a particle is prevented from moving backwards by other particles that reach 
the site it occupied before, and thus in effect force it to move forward. In order to explain this 
behaviour qualitatively, we consider a single tracer starting at the origin. The other particles 
are acting as an effective bath, such that each move succeeds with probability 1 − ρ and fails 
with probability ρ . We consider this mean-field description in 1D and 2D.

In 1D the time evolution of the probability to find the particle at time t in site n such that in 
the last step it moved in direction σ = ±1, Qσ(n, t), is

τ
∂Qσ(n, t)

∂t
= −Qσ(n, t) +

(
1
2
+ δ

)
[ρQσ(n, t) + (1 − ρ)Qσ(n − σ, t)]

+

(
1
2
− δ

)
[ρQ−σ(n, t) + (1 − ρ)Q−σ(n − σ, t)] .

 

(3)

Using the discrete Fourier transform of Qσ(n, t)

Q̃σ(k, t) =
∞∑

n=−∞
einkQσ(n, t), (4)

yields

τ
∂Q̃σ(k, t)

∂t
= −Q̃σ(k, t) +

(
1
2
+ δ

)[
ρQ̃σ(k, t) + (1 − ρ) eiσkQ̃σ(k, t)

]

+

(
1
2
− δ

)[
ρQ̃−σ(k, t) + (1 − ρ) eiσkQ−σ(k, t)

]
.

 
(5)

In matrix form this may be written as

τ
∂

∂t

(
Q̃+

Q̃−

)
= M1(k)

(
Q̃+

Q̃−

)
, (6)

Figure 7. (a) Diffusion coefficient for the 2D one-step memory model as a function 
of the density ρ  for various values of δf  and δb. The connecting lines are a guide to the 
eye. When δf  is small and δb is large, D is not monotonic with ρ . (b) Phase diagram in 
the δb − δf  plane showing for each value whether the MSD is monotonically decreasing 
with ρ  (red squares), has a single maximum (blue triangles), or has both a maximum 
and a minimum (green circles).
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with

M1(k) =
(
−1 +

( 1
2 + δ

) [
ρ+ (1 − ρ) eik

] ( 1
2 − δ

) [
ρ+ (1 − ρ) eik

]
( 1

2 − δ
) [

ρ+ (1 − ρ) e−ik
]

−1 +
( 1

2 + δ
) [

ρ+ (1 − ρ) e−ik
]
)

. (7)

Therefore
(

Q̃+(k, t)
Q̃−(k, t)

)
= eM1(k)t/τ

(
Q̃+(k, 0)
Q̃−(k, 0)

)
. (8)

In order to find Q̃σ(k, 0) we note that by its definition

Q̃σ(k, 0) =
∞∑

n=−∞
einkQσ(n, 0) =

∞∑
n=−∞

eink 1
2
δn,0 =

1
2

. (9)

The MSD is given by

〈
n2〉 = − ∂2

∂k2

[
Q̃+(k, t) + Q̃−(k, t)

]∣∣∣∣
k=0

=
4δ (1 − ρ)

2

(1 − 2δ)2

(
e−(1−2δ)t/τ − 1

)
+ (1 − ρ)

(
1 +

4δ (1 − ρ)

1 − 2δ

)
t
τ

.
 

(10)

The long time MSD is monotonically decreasing with the density for all δ � − 1
6, while for 

δ < − 1
6 it has a single maximum at ρ = 1+6δ

8δ .
We now consider a persistent walker in 2D, such that each move succeeds with probability 

1 − ρ and fails with probability ρ . The evolution equation for the probability to find the walker 
at site n at time t, such that in the last step it moved in direction e, Qe (n, t) is

τ
∂Qe (n, t)

∂t
= − Qe (n, t) +

(
1
4
+ δf

)
[ρQe (n, t) + (1 − ρ)Qe (n − e, t)]

+

(
1
4
+ δb

)
[ρQ−e (n, t) + (1 − ρ)Q−e (n − e, t)]

+

(
1 − 2(δf + δb)

4

) ∑
s=±1

[ρQse⊥ (n, t) + (1 − ρ)Qse⊥ (n − e, t)] ,

 

(11)

where e⊥ = ey if e = ±ex , and e⊥ = ex if e = ±ey. Using the Fourier transform of Qe (n, t)

Q̃e (k, t) =
∞∑

nx,ny=−∞
ein·kQe (n, t) , (12)

yields

τ
∂Q̃e (k, t)

∂t
=− Q̃e (k, t) +

(
1
4
+ δf

)[
ρQ̃e (k, t) + (1 − ρ) eie·kQ̃e (k, t)

]

+

(
1
4
+ δb

)[
ρQ̃−e (k, t) + (1 − ρ) eie·kQ−e (k, t)

]

+

(
1 − 2(δf + δb)

4

) ∑
s=±1

[
ρQ̃se⊥ (k, t) + (1 − ρ) eie·kQse⊥ (k, t)

]
.

 

(13)

In matrix form this may be written as

E Teomy and R Metzler J. Phys. A: Math. Theor. 52 (2019) 385001
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τ
∂

∂t




Q̃x

Q̃−x

Q̃y

Q̃−y


 = M2(k)




Q̃x

Q̃−x

Q̃y

Q̃−y


 . (14)

Therefore



Q̃x (k, t)
Q̃−x (k, t)
Q̃y (k, t)

Q̃−y (k, t)


 = eM2(k)t/τ




Q̃x (k, 0)
Q̃−x (k, 0)
Q̃y (k, 0)

Q̃−y (k, 0)


 . (15)

In order to find Q̃e (k, 0) we note that by its definition

Q̃e (k, 0) =
∞∑

nx,ny=−∞
ein·kQe (n, 0) =

∞∑
nx,ny=−∞

ein·k 1
4
δn,0 =

1
4

. (16)

The long time limit of the MSD is given by

〈
n2〉 = − ∇2

k

∑
e

Q̃e (k, t)

∣∣∣∣∣
k=0

=
1 − ρ

1 + δb − δf
[1 + (1 − 2ρ) (δf − δb)]

t
τ

.

 (17)

The calculation was done using a computationally efficient method described in the appendix. 
The MSD is a monotonically decreasing function of the density for δf − δb > − 1

3 , while for 
δf − δb < − 1

3  it has a single peak at ρ = 3
4 + [4 (δf − δb)]

−1.
Not surprisingly, based on a mean field description equations (10) and (17) can only give 

a qualitative picture of the mechanisms behind the non-monotonicity of the diffusivity. In 
particular, in 1D the scaling of the MSD with time is different. Even in 2D, the diffusion 
coefficient obtained from equation (17) does not agree too well with the simulation results. 
Furthermore, while the mean field result accounts for the single maximum scenario and there-
fore provides some added value in understanding our observations above, it cannot capture 
the strongly non-monotonic regime. Less severely, it does not provide the correct value of the 
persistence at the critical point. Moreover, we see from figure 5(b) that the behaviour in 2D 
depends on δf  and δb in a more complicated manner than simply as δf − δb.

4. Full persistence

We now investigate the limiting case of full persistence in 1D. In this case, the model may be 
thought of as a two-species totally antisymmetric exclusion principle (TASEP), with equal 
populations of right-moving and left-moving particles. In this model, all motion stops after a 
short, density-dependent relaxation time, since a particle stops moving as soon as it encounter s 
a block containing at least one other particle of the opposite species.

In order to investigate the motion of, say, a right-moving particle, it is sufficient to consider 
its nearest left-moving particle to the right of it and all the intervening right-moving particles, 
since all the other particles cannot affect its motion. Let us consider a right-moving particle 
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starting from the origin. At time t  =  0, its nearest left-moving particle (to the right of it) is 
located at site n with probability

q(n) =
(

1 − ρ

2

)n−1 ρ

2
. (18)

Let us assume at first that there are no other right-moving particles between them. Note that 
until they encounter each other, the movement of the two particles is completely uncorrelated. 
Therefore, the probability that the right-moving particle is at site m at time t given that its near-
est left-moving particle started at n, p(m, n, t), is given by

p(m, n, t) = p0(m, t)
n−m−1∑

m′=0

p0(m′, t)

+

∫ t

0
dt′

∫ t

t′
dt′′p0(m, t′)

(
1 − e−(t′′−t′)/τ

)
p0(n − m − 1, t′′)

+

∫ t

0
dt′

∫ t

t′
dt′′p0(m, t′′)

(
1 − e−(t′′−t′)/τ

)
p0(n − m − 1, t′),

 

(19)

where p 0(m, t) is the probability that a single independent walker moved m steps at time t. The 
first term corresponds to the probability that at time t the right-moving walker reaches site m 
and the left-moving walker reached at most site n  −  m  −  1, so they did not interact yet. The 
second term is the probability that the right-moving walker reached site m at some time t′, 
and did not move until time t′′ at which point the left-moving particle reached site n  −  m  −  1. 
The last term is analogous to the second term, with the left-moving particle arriving first. The 
probability for an independent walker, p 0(m, t), is governed by the evolution equation

τ
∂p0(m, t)

∂t
= −p0(m, t) + p0(m − 1, t), (20)

with the initial condition p0(m, 0) = δm,0, and therefore

p0(m, t) = e−t/τ
( t
τ

)m 1
m!

. (21)

Using (21) in (19) yields

p(m, n, t) =
(n + 1)

[
n!− Γ

(
n + 1, 2t

τ

)]
2n+1 (n − m)! (m + 1)!

+ e−t/τ
( t
τ

)m Γ
(
n − m, t

τ

)
m! (n − m − 1)!

,

 (22)
where Γ(n, z) is the incomplete gamma function [57]. Summing over all possible initial loca-
tions for the left moving particle yields

p(m, t) =
∞∑

n=m+1

p(m, n, t)q(n) = ρ
(

1 − ρ

2

)m−1
(

1(
1 + ρ

2

)m+2 − 1
2m+2

)

+ e−(1+ρ/2)t/τ
( t
τ

)m (
1 − ρ

2

)m 1
(m + 1)!

(
m + 1 − ρ

2 + ρ

t
τ

)

+
ρ

m! (4 − ρ2)

( t
τ

)m+1 (
1 − ρ

2

)m
[
(2 + ρ)E−m

(
2t
τ

)
− 4E−m

(
t(1 + ρ/2)

τ

)]
,

 

(23)

where Eν(z) is the exponential integral E [58]
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Eν(z) =
∫ ∞

1

e−zt

tν
dt. (24)

The MSD of such a right-moving particle without any intervening other right-moving par-
ticles is thus

〈
x2〉

0 =

∞∑
n=1

m2p(m, t) =
2 (2 − ρ)

(
4 + 6ρ+ 4ρ2 − ρ3

)

ρ2 (2 + ρ)
3

+

[
2ρ

4 − ρ2 +
32ρ

[
2 − 3ρ− 2 (2 − ρ) (1 − ρ) t

τ

]

(2 − ρ)
3
(2 + ρ)

[
2 − (2 − ρ) t

τ

]2

]
e−(1+ρ/2)t/τ

+
e−ρt/τ

4 (−4 + ρ2)

{
8ρ− 2

[
8 − (4 − ρ) ρ2] t

τ
− (2 − ρ)

2
[4 − ρ (2 + ρ)]

( t
τ

)2
}

+
4ρ

[
4ρ+ (2 − ρ) (2 − 3ρ) t

τ

]

(2 − ρ)
3 [2 − (2 − ρ) t

τ

]2 e−2t/τ

+
2e−4/(2−ρ)ρ

(2 − ρ)
4 [4 − ρ (8 + ρ)]Ei

(
4

2 − ρ
− 2t

τ

)

+
8e−(2+ρ)/(2−ρ)ρ

(
−4 + 5ρ2

)

(2 − ρ)
4
(2 + ρ)

Ei
[

2 + ρ

2 − ρ
−

(
1 +

ρ

2

) t
τ

]
,

 (25)
where Ei(z) is the exponential integral Ei [58]

Ei(z) = P
∫ z

−∞

et

t
dt. (26)

In the long time limit the MSD converges to a constant, given by the first line of (25). If there 
are intervening particles, then the MSD must be lower than that given by (25). Therefore, the 
MSD of a totally persistent system converges to a density-dependent constant, bounded from 
above by (25). Figure 8 shows the value of the MSD at long times compared to the upper 
bound. We observe that the bound is indeed fulfilled. Remarkably, the upper bound provides a 
fairly good approximation to the simulated data at intermediate densities.

5. Full anti-persistence

In the complementary limit of full anti-persistence the system exhibits several unique proper-
ties. We consider a 1D lattice with totally anti-persistent particles, such that at each step the 
particles always switch direction and attempt to move in the opposite direction than before. 
To our knowledge, this pathological case has not been explored before. The two sites between 
which the particle hops change only if another particle enters one of the two sites, such that the 
first walker pushes itself on its new neighbour. Physically, this limit represents very deep and 
narrow traps, such that a particle can escape only if another particle enters its trap. In a closed 
system with density ρ < 1/2, we find that the system relaxes to a steady state in which each 
particle jiggles between two sites, and thus the MSD converges to a constant, see figure 9.

For ρ > 1/2 we find that the MSD scales as 
√

t , as shown in figure 10(a). We extract the 
effective diffusion coefficient Deff  from the slope of the MSD versus time and show the results 
in figures 10(b) and (c). We note that unlike in the case with δ > −1/2, here the MSD divided 
by 

√
t  has a single maximum as a function of the density. At a density of exactly ρ = 1/2, 
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the MSD appears to grow slightly slower than 
√

t , however more precise measurements are 
required to find its exact time dependence.

6. Conclusions

We studied a lattice gas of persistent walkers in which each site is occupied by at most one 
particle and the direction each particle attempts to move to depends on its last step. The direc-
tionality is modulated by a ‘persistence’, the particle’s tendency to continue moving in the 

Figure 8. Totally persistent case. Left: sample trajectory of the system. Right: long time 
value of the MSD versus density. The symbols are simulations results, the continuous 
line is the analytical upper bound (25).

Figure 9. Time evolution of a fully anti-persistent system of length 100 with periodic 
boundary conditions, with either density ρ = 0.4 (left panel) or ρ = 0.6 (right panel). 
Each colour represents a different particle, and vacancies are represented in white. At 
low density, the particles are localised, while at the high density they move.

Figure 10. MSD and effective diffusion coefficient in the fully anti-persistent case for 
density ρ � 0.5.
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same direction as in the last step. Specifically, we analysed the mean squared displacement 
(MSD) as function of the particle density and the persistence.

First, we found that the scaling of the MSD with time is the same as in memory-less 
systems, i.e. the simple symmetric exclusion principle (SSEP) model, MSD∝

√
t in 1D and 

MSD∝ t in 2D. We expect that this scaling remains true even for particles with longer mem-
ory, as long as the velocity autocorrelations decay sufficiently fast.

Second, we observed that the MSD increases with growing persistence of the walkers, in 
accordance with intuition. However, the dependence of the MSD on the density turns out to be 
non-trivial. As long as the anti-persistence, i.e. the tendency to go backwards, is not too high, 
the MSD decreases with the density ρ  simply due to the crowdedness. However, for highly 
anti-persistent walkers, the MSD increases with growing ρ  for low densities and reaches a 
maximum at some persistence-dependent density. This occurs because for highly anti-persistent 
walkers, the other walkers prevent a given walker from stepping backwards and thus effectively 
increase their MSD. There is also an intermediate regime in which for low densities the MSD 
decreases with the density, but at intermediate densities it reaches both a minimum and a maxi-
mum. To our knowledge, this type of behaviour has not been observed before.

Third, we considered the two extreme limits of full persistence and anti-persistence. For 
totally persistent particles, although a single walker performs a ballistic motion, when other 
particles come into play, the single walker is blocked by other particles going in the opposite 
direction, such that the MSD saturates and all movement halts. We derived an upper bound for 
the MSD in this case which quite nicely approximates the simulations results at intermediate 
particle densities. In the totally anti-persistent case, a single particle jumps between two sites, 
but when other particles exist and the density is higher than 1

2, they enable it to move and the 
MSD grows as 

√
t . We suspect that at exactly ρ = 1

2  the MSD grows with time slower than √
t , but more precise measurements are needed.
An interesting expansion of this work would be to analyse the MSD of walkers with slowly 

decaying velocity autocorrelations, in which the MSD of a single walker is not linear in time 
(anomalous diffusion [59]). In 1D a similar model was investigated in [51]. We expect that for 
positive autocorrelations (i.e. persistent walkers) the MSD in 1D scales as 

√
t  for all densities, 

while for negative autocorrelations (i.e. anti-persistent walkers) it scales as 
√

t  for ρ > 1
2  and 

slower for ρ < 1
2 . From preliminary results on crowded Lévy walkers, we indeed find that in 

1D the MSD scales as 
√

t  and in 2D it scales as t. Furthermore, at high enough densities the 
system exhibits motiliy induced phase seperation (MIPS).

In the model we investigated here, the direction chosen at each step is completely uncorre-
lated to the success of failure of the moves and thus to the other particles. Another interesting 
expansion involves correlating the chosen direction with the density, such that the probabil-
ity to move forward or backwards depends on whether the last move was successful or not. 
We conjecture that persistent walkers that tend to turn around when they are blocked would 
exhibit a transition from a behaviour similar to positive persistence at low densities to a behav-
iour similar to anti-persistence at high densities. Another expansion of this model would be to 
add quenched disorder to the system, i.e. to fix some of the particles in place so they become 
obstacles. It is possible that at sufficiently high densities, perhaps related to the percolation 
threshold, anti-persistent particles will have a higher MSD than persistent particles.
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Appendix. Calculation of the MSD in a mean field approximation

We here present a computationally efficient method of calculating the MSD in the mean field 
approximation. We derive the result for 1D systems, but expanding it to higher dimensions is 
straightforward. The derivation applies to more general models than we consider in this work.

Consider a single particle with a set of internal states moving in 1D. It is not constrained 
to move on a lattice. Given that it is currently at state η, it moves a distance r and changes its 
state to η′ with rate Mη,η′(r)/τ . The evolution equation may be written in matrix form as

τ
∂Q(x, t)

∂t
=

∫ ∞

−∞
drM(r)Q (x − r, t) . (A.1)

In Fourier space the evolution equation is given by

τ
∂Q̃(k, t)

∂t
= M(k)Q̃(k, t). (A.2)

When k  =  0, the dynamical matrix has a single zero eigenvalue, with the corresponding right 
and left eigenvectors V0 and UT

0 . Note that all entries of the left eigenvector are equal to 1, 
and the eigenvector V0 represents the steady state of the system. The other eigenvalues and 
eigenvectors are denoted by λi, Vi  and UT

i  with i  >  0. The real part of all the other eigenvalues 
is negative. The solution to equation (A.2) is

Q̃(k, t) = eM(k)tQ̃(k, 0). (A.3)

We assume that at time t  =  0 the system is in the steady state and the particle is at the origin 
(i.e. Q(n, 0) = δn,0V0). Therefore, we note that at time t  =  0 the vector Q̃(k, 0) is independent 
of k, since by definition

Q̃(k, 0) =
∞∑
−∞

einkQ(n, 0) =
∞∑
−∞

einkδn,0V0 = V0. (A.4)

The MSD is given by

〈
n2〉 = − ∂2

∂k2

∑
σ,σ−,σ+

Q̃σ,σ−,σ+
(k, t)

∣∣∣∣∣∣
k=0

= − ∂2

∂k2 UT
0 eM(k)t/τV0

∣∣∣∣
k=0

. (A.5)

We now use [60]

∂

∂k
eM(k)t/τ =

t
τ

∫ 1

0
eαM(k)t/τ ∂M(k)

∂k
e(1−α)M(k)t/τdα, (A.6)

and find that
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〈n2〉 = − t
τ

UT
0

∫ 1

0

{[∫ 1

0
α

t
τ

eαβMt/τ ∂M
∂k

eα(1−β)Mt/τdβ

]
∂M
∂k

e(1−α)Mt/τ

+eαMt/τ ∂M
∂k

[∫ 1

0
(1 − α)

t
τ

e(1−α)βMt/τ ∂M
∂k

e(1−α)(1−β)Mt/τdβ

]

+eαMtτ ∂
2M
∂k2 e(1−α)Mt/τ

}
dαV0,

 

(A.7)

where the matrix M and its derivatives are evaluated at k  =  0. Since V0 and UT
0  are the zero 

eigenvalues of M at k  =  0 we find that

〈n2〉 = − t
τ

UT
0

∫ 1

0

{
α

t
τ

∂M
∂k

[∫ 1

0
eα(1−β)Mt/τdβ

]
∂M
∂k

+
∂M
∂k

(1 − α)
t
τ

[∫ 1

0
e(1−α)βMt/τdβ

]
∂M
∂k

+
∂2M
∂k2

}
dαV0.

 (A.8)

In the first term we change the integration variable from β to 1 − β, in the second term we 
change the integration variable from α to 1 − α, and in the third term we perform the integra-
tion over α, such that

〈
n2〉 = − t

τ
UT

0

{
2

t
τ

∂M
∂k

[∫ 1

0

∫ 1

0
αeαβMt/τdαdβ

]
∂M
∂k

+
∂2M
∂k2

}
V0.

 (A.9)
We now use the spectral decomposition of M

M =
∑
i>0

λiViUT
i , (A.10)

such that

eαβMt/τ = V0UT
0 +

∑
i>0

eαβλit/τViUT
i . (A.11)

We may now perform the integrals over α and β

∫ 1

0

∫ 1

0
αeαβMt/τdαdβ =

1
2

V0UT
0 +

∑
i>0

ViUT
i

[
− 1
λit/τ

+
eλit/τ − 1

(λit/τ)
2

]
,

 (A.12)
which in the long time limit is

∫ 1

0

∫ 1

0
αeαβMt/τdαdβ =

1
2

V0UT
0 −

∑
i>0

ViUT
i

1
λit/τ

. (A.13)

We define a new matrix

M̃ = M+ V0UT
0 , (A.14)

such that
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∫ 1

0

∫ 1

0
αeαβMt/τdαdβ =

1
2

V0UT
0 + V0UT

0
1

t/τ
−
∑
i>0

ViUT
i

1
λit/τ

− V0UT
0

1
t/τ

=

(
1
2
+

τ

t

)
V0UT

0 − τ

t
M̃−1,

 

(A.15)

and thus

〈
n2〉 =− 2

(
1
2
+

τ

t

)( t
τ

)2
(

UT
0
∂M
∂k

V0

)2

+ 2
t
τ

UT
0
∂M
∂k

M̃−1 ∂M
∂k

V0 −
t
τ

UT
0
∂2M
∂k2 V0.

 (A.16)

Due to symmetry the first term vanishes and thus

〈
n2〉 = 2

t
τ

UT
0
∂M
∂k

M̃−1 ∂M
∂k

V0 −
t
τ

UT
0
∂2M
∂k2 V0. (A.17)

Note that in the case of isotropic one-step memory, all elements of the steady state distribution 
V0 are equal, and thus constructing the matrix V0UT

0  is trivial, and the only time consuming 
part of the calculation is the inversion of the matrix M̃. It is straightforward to check that the 
MSD in a d dimensional system is d times the expression in (A.17).
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