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Abstract

A standard approach to study time-dependent stochastic processes is the power spectral density
(PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation
function of the process in the asymptotic limit of long observation times, T — oo.In many
experimental situations one is able to garner only relatively few stochastic time series of finite T, such
that practically neither an ensemble average nor the asymptotic limit T — oo can be achieved. To
accommodate for a meaningful analysis of such finite-length data we here develop the framework of
single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled
Brownian motion. We demonstrate that the frequency dependence of the single-trajectory PSD is
exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion
that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided
by the explicit dependence on the measurement time 7, and this ageing phenomenon can be used to
deduce the anomalous diffusion exponent. We also compare our results to the single-trajectory PSD
behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work
out the commonalities and differences. Our results represent an important step in establishing single-
trajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean
squared displacement.

1. Introduction

The spectral analysis of measured position time series (‘trajectories’) X(f) of a stochastic process provides
important insight into its short and long time behaviour, and also unveils its temporal correlations [1]. In
standard textbook settings, spectral analyses are carried out by determining the so-called power spectral density
(PSD) pu( f) of the process. The PSD is classically calculated by first performing a Fourier transform of an
individual trajectory X(¢) over the finite observation time T

2
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where f denotes the frequency. The quantity S(f, T) for finite observation times T'is, of course, a random variable.
The standard PSD yields from S( f, T) by averaging it over a statistical ensemble of all possible trajectories. After
taking the asymptotic limit T — 00, one obtains the standard PSD
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where the angular brackets denote the statistical averaging. In the second line of (2), taking into account that X(z)
is real-valued, we took the absolute square and used the summation relation for trigonometric functions [2] to
obtain the cosine function with the difference of the two times and the autocorrelation function (X () X (t,)) of
the process X(#); see[1, 3, 4] for more details.

The PSD (2) is widely used to evaluate measured time traces X(t), especially in experimental setups
measuring in frequency domain, such as spectroscopic methods. The PSD provides information
complementary to the autocorrelation (X () X (t,)), and the relation between the PSD p( f) and (X (1) X (£,)) is
in fact the famed Wiener—Khinchine theorem. Moreover, in physical terms the PSD corresponds to the spectral
net power (energy per unit time). Following definition (2), the standard, ensemble-averaged PSD was
determined for various processes across many disciplines. This includes, for instance, the variation of the
loudness of musical performances [5], the temporal evolution of climate data [6] and of the waiting-times
between earthquakes [7], the retention times of chemical tracers in groundwater [8] and noises in graphene
devices [9], fluorescence intermittency in nano-devices [10], current fluctuations in nanoscale electrodes [11], or
ionic currents across nanopores [12]. The PSD was also calculated analytically for individual time seriesin a
stochastic model describing blinking quantum dots [13], for non-stationary processes taking advantage of a
generalised Wiener—Khinchine theorem [14, 15], for the process of fractional Brownian motion (FBM) with
random reset [16], the running maximum of a Brownian motion [17], as well as for diffusion in strongly
disordered Sinai-type systems [18], to name but a few stray examples.

An alternative approach geared towards realistic experimental situations was recently proposed—based
directly on the finite-time, single-trajectory PSD (1) [3, 4] (see also [19]). The need for such an alternative to the
standard PSD (2) is two-fold. First, while the asymptotic limit T — oo can well be taken in mathematical
expressions, it cannot be realistically achieved experimentally. This especially holds for typical, modern single
particle tracking experiments, in which the observation time is limited by the microscope’s focus or the
fluorescence lifetime of the dye label tagging the moving particle of interest [20]. In general, apart from the
dependence on the frequency fthe single-trajectory PSD (1) therefore explicitly is a function of the observation
time T. Moreover, fluctuations between individual results S( £, T) of the single-trajectory PSD will be observed,
even for normal Brownian motion [3]. Second, and maybe even more importantly, while such fluctuations
between trajectories may, of course, be mitigated by taking an average over a statistical ensemble, in many cases
the number of measured trajectories is too small for a meaningful statistical averaging. Indeed, for the data
garnered in, for instance, in vivo experiments [20], climate evolution [21], or the evolution of financial markets
[22] one necessarily deals with a single or just a few realisations of the process. As we will show, despite the
fluctuations between individual trajectories relevant information can be extracted from the frequency and
observation time-dependence of single-trajectory PSDs. Even more, the very trajectory-to-trajectory amplitude
fluctuations encode relevant information, that can be used to dissect the physical character of the observed
process.

How would we understand an observation time-dependence? This is not an issue, of course, for stationary
random processes, but apart from Brownian motion, only very few naturally occurring random processes are
stationary. A T-dependent evolution of the PSD can in fact be rather peculiar and system dependent. For
instance, the PSD may be ageing and its amplitude may decay with T, as it happens for non-stationary random
signals [15], or conversely, it can exhibit an unbounded growth with T, a behaviour predicted analytically and
observed experimentally for superdiffusive processes of FBM type [4]. As a consequence, the standard textbook
definition (2) of the PSD which emphasises the limit T — 00, can become rather meaningless.

Motivated by the two arguments in favour of using a single-trajectory approach to the PSD—the lack of
sufficient trajectories in a typical experiment in order to form an ensemble average and insufficiently long
observation times T—[3, 4] concentrated on the analysis of the random variable S( f, T) defined in (1) for
arbitrary finite T'and f. Both for Brownian motion and FBM with arbitrary Hurst index (anomalous diffusion
exponent, see below) a range of interesting, and sometimes quite unexpected features were unveiled, as detailed
in the comparative discussion at the end of section 3.

While FBM, whose single-trajectory PSD is studied in [4] is a quite widespread anomalous diffusion process,
itis far from the only relevant example of naturally occurring random processes with anomalous diffusive
behaviour. As, in principle, S( f, T) may behave distinctly for different stochastic processes, in order to geta
general and comprehensive picture of the evolution in the frequency domain, one needs to study systematically
the single-trajectory PSDs of other experimentally-relevant processes, such as, scaled Brownian motion (SBM),
the continuous time random walk, or diffusing diffusivity models, to name just a few. In all these examples the
microscopic physical processes underlying the global departure from standard Brownian motion are different,
and we would expect that this difference in the microscopic behaviour translates into the behaviour in the
frequency domain.

Here we concentrate on trajectories X,,(t) generated by SBM, a class of non-stationary anomalous diffusion
processes encoding the mean squared displacement (MSD) (X2 (¢)) ~ t* with anomalous diffusion exponent a.
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SBM was formally studied within different contexts in the last two decades [23—25]. Historically, it was
introduced already by Batchelor in 1952 in the context of the turbulent motion of clouds of marked fluids [26],
originally studied by Richardson in 1926 [27]. An important application of SBM is for particle motion in the
homogeneous cooling state of force-free cooling granular gases, in which the continuously decaying
temperature (defined via the continuously dissipating kinetic energy) effectively leads to a time-dependence of
the self-diffusion coefficient of the gas [28]. SBM also describes the dynamics of a tagged monomer involved in
processes of irreversible polymerisation [29]. Similar dynamics emerge in the analysis of fluorescence recovery
after photobleaching (FRAP) data [30], as well as of fluorescence correlation spectroscopy data [31], which are
both widely used techniques to measure diffusion of macromolecules in living cells and their membranes. Lastly,
essentially the same type of anomalous diffusion modelling was used for the analysis of potential water
availability in a region due to precipitation (snow and rain) [32].

As an application of SBM in a broader sense, one may envisage a material undergoing an annealing process—
aslow, externally imposed decrease of the temperature used in metallurgy or in preparations of glasses to get rid
of internal defects. Effectively, the dynamics of the latter can be considered as an SBM—a Brownian motion with
adiffusion coefficient being a slowly decreasing function of the temperature. In a similar way, one uses such a
slow annealing in computer search for a global minimum of a complex energy landscape, which prevents
trapping by local minima. Here, as well, if the search process proceeds by jumps of a fixed length, one encounters
effectively an SBM-type process. Moreover, SBM may be used to describe the effective diffusion in an expanding
medium [33]. Finally, SBM may be considered as a mean field description of continuous time random walks
with scale-free waiting time densities [24].

A different perspective for applications of our PSD analysis are areas, in which the time variable represents
other, complementary quantities. Thus, the height profile of an effectively one-dimensional surface may be
thought of as a time series. While such modelling typically involves FBM-type statistics [34], it may be of interest
to compare the predictions to those of the Markovian yet non-stationary SBM. We also mention the connection
of time series to the visibility graph in complex networks [35].

The outline of the paper is as follows. In section 2 we present the basics of SBM, introduce our notation, and
define the properties under study. Section 3 is devoted to the spectral analysis of single-trajectory PSDs governed
by SBM. Here, we first derive an exact expression for the moment-generating function of the random variable S
(f, T) and evaluate the exact form of the associated probability density function (PDF). The form of the latter
turns out to be entirely defined by its first two moments, in analogy to the parental process X, (t). We then
present explicit forms of these two moments, valid for arbitrary anomalous diffusion exponent o, frequency f,
and observation time T. Section 3 ends with a comparative discussion of our results with the behaviour of the
single-trajectory PSD for FBM, the only anomalous diffusion process for which the behaviour of a single-
trajectory PSD is known exhaustively well at present [4]. Finally, we conclude with a brief summary of our results
and a perspective in section 4.

2. Model and basic notations

SBM X, (#) is an a-parametrised family of Gaussian stochastic processes defined by the (stochastic) Langevin
equation [23-25]

dX, (¢
20 _ [35,@ % ), 3
where £(f) denotes Gaussian white-noise with zero mean and variance 1/2, such that
(€M) = 6(h — t). 4)
Moreover, D,(#) is the diffusion coefficient, that follows the deterministic power-law in time’
Da(t) = O‘Kata71> < a<?2, (5)

where the coefficient K, has physical dimension cm?/s®. In general, SBM describes anomalous diffusion, such
that the ensemble-averaged MSD scales as a power law in time

(X2(1)) = 2K, ™ (6)

When 0 < a < 1one observes subdiffusive behaviour, while for 1 < o < 2 SBM describes superdiffusion.
Standard Brownian motion is recovered in the limit & = 1. In figure 1 we depict four representative trajectories
of X,,(¢) for the subdiffusive, normal-diffusive, and superdiffusive cases. We note that, especially for the
subdiffusive case « = 1/2 the non-stationary character is not immediately obvious from the graph of X,,(¢)",

5 Thelimit a = 0 corresponds to the case of ultraslow diffusion with alogarithmic MSD, as studied in [36].

6 . . . . .
One may infer the slower spreading rather from comparison of the span of X,,(f) on the vertical axis.
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Figure 1. Four individual realisations X,,(¢) for SBM with different anomalous diffusion exponent for subdiffusion (o = 0.5, top),
normal diffusion (o« = 1, middle), and superdiffusion (o = 1.5, bottom). In the left column we show the process X,,(¢) itself, while in

the right column we display its square, X (t).

while the character of the process becomes somewhat more obvious when we plot the square process, X4 (2).
Concurrently, in the superdiftusive case the growing fluctuations and large excursions away from the origin

appear relatively more pronounced.
Before we proceed, it is expedient to recall other salient properties of SBM. In particular, its autocorrelation

function can be readily calculated to give
(Xa(t1)Xa(t2)) = 2Ks[min{n, £} @)

Hence, the covariance of X,,(¢) has essentially the same form as the one for standard Brownian motion, except
that the time variable is ‘scaled’’. A basic quantity to analyse the behaviour of individual trajectories is the time-

averaged MSD of the time series X,,(¢) in the time interval [0, T] [38]

STOAY 1 =4 2
PO == [ Kl ) = X0 ®)

and its ensemble-averaged counterpart, which, taking into account expression (7), can be explicitly calculated as
[25]

7 The definition of SBM would allow us to transform (subordinate [37]) time ¢ such that the main calculations could be done for normal
Brownian motion. However, as this would change the meaning of the frequency, we prefer to proceed in terms of the non-transformed time

(and frequency).
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Figure 2. SBM mean squared displacements (MSDs) for three different o values (subdiffusion with a = 0.5, top; normal diffusion
with @ = 1, middle; superdiffusion with « = 1.5, bottom). Blue lines represent time averaged MSDs 62(A) for individual trajectories.
Forsmall A <« T'the individual §?(A) are fully reproducible, while for longer lag time A the statistics becomes worse and the
trajectory-to-trajectory spread is appreciable. The light blue line represents the trajectory-average (6 2 (A)) of the time averaged MSD
while the orange line depicts the ensemble averaged MSD (x?(t)).

S\ 2K, Tat+l — Ao+l B B a)
<6(A)> a+l( — (T — Ay . )

In the limit A < Twe thus find <6 2 (A)> ~ 2K, A / T'~<, abehaviour fundamentally different from the
ensemble-averaged MSD (6), a feature of so-called weak ergodicity breaking: <m> = (X2(A))[38]. We
display the behaviour of individual time-averaged MSDs §%(A) in figure 2, along with their ensemble average
<m> and the standard MSD (X?2(t)). The non-ergodic behaviour of SBM is clearly highlighted by the
different slopes of <m> and (Xj (1))

Equipped with all necessary knowledge on the properties of SBM X, (), we now turn to the question of
interest here, the analysis of its single-trajectory PSD. As S( f, T) is a random variable, the most general
information about its properties is contained in the moment-generating function
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By = (exp(=AS(f, T))), A= 0. (10)

Once @ is determined, the PDF P(S(f, T) = S) of the random variable S( f, T) can be simply derived from
equation (10) by an inverse Laplace transform with respect to the parameter A. As we proceed to show below,
both @, and P(S(f, T) = S) are entirely defined by the first two moments, due to the Gaussian nature of the
process X,(t). The mean value, which represents the standard time-dependent PSD, is given by

u(f, T) = (S(f, 7)), amn
while the variance of the random variable S( £, T) obeys
o*(f, T) = (S*(f, D)) — 1*(f, D). (12)
The quantities u( f, T) and a*( f, T) define the coefficient of variation
_ o D) 03
p(fs 1)

of the PDF of the single-trajectory PSD. As such, yis a measure for the ‘broadness’ of a given distribution: when
~ > 1thespread o(f, T) of the distribution exceeds its mean value yi( f, T), and then the mean value can no
longer be considered representative for the actual distribution. The calculation of the exact explicit forms of the
properties defined in equations (10)—(13) represents the chief goal of our work.

3. Spectral analysis of individual trajectories of SBM

The single-trajectory PSDs S( £, T) for four different sample trajectories for the three anomalous diffusion
exponents @ = 1/2,a = 1,and @ = 3/2 are shown in figure 3 (top). While, naturally, we observe distinct
fluctuations within S( f, T) and between different realisations, all data clearly showa S(f, T) ~ 1/f>-scaling.

The middle and bottom panels of figure 3 demonstrates the apparent scaling of the trajectory-averaged single-
trajectory PSD as function of the observation time T'(ageing behaviour) for two different frequency values—the
respective T-scaling laws are derived below. We are now going to quantify these behaviours in detail.

3.1. Moment-generating function of the single-trajectory PSD
We start from definition (1) of the single-trajectory PSD and rewrite it in the form

T T
S(f, T)z% j; j; cos(f (t — 1)) Xa ()Xo (1) dtdts, (14)

which is just a formal procedure since X,,(f) is a real-valued process. Relegating the intermediate steps of the
derivation to appendix A, we eventually find the exact result

T T
<I>A<exp(% i) cos(f(tlt»)xar(n)xa(tz)dndtz)>

_ ! (15)

JU+ 20X + @2 — )N

where y1and o are defined in equations (11) and (12), respectively. Result (15) shows that the PDF of the single-
trajectory PSD for SBM is fully defined through its first and second moment, and that it has exactly the same
functional form as the results for Brownian motion and FBM derived in [3, 4]. As we have already remarked, this
is a direct consequence of the Gaussian nature of the parental process X,(f) of SBM.

Inverting the Laplace transform with respect to A we obtain the PDF of the random variable S( f, T),

2 _
SR S U S | Pt | (16)
2 — 72 p2—=3) \ @2 -9

where I, is the modified Bessel function of the first kind. This function is known to be a distribution with
heavier-than-Gaussian tails.

In figure 4 we present a comparison of the analytical result (16) for P(S(f, T) = S) with simulations. The
agreement is excellent. The width of the PDF P(S(f, T) = S) becomes narrower for increasing « (note the
different scales on the axes). In particular, the insets show the exponential shape of the PDF P(S(f, T) = S)in the
semi-logarithmic plots.

PS(f, T)=9) =

3.2. Ensemble-averaged PSD

We now proceed further and calculate the first moment of the PSD, defined in equation (11). Recalling the
expression for the autocorrelation function (7) of SBM, we perform the integrations explicitly in appendix A, to
find the final expression
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Figure 3. Left: single trajectory power spectra S( f, T) for subdiffusion (v = 1/2, top), normal diffusion (o = 1, middle), and
superdiffusion (@ = 3/2, bottom) as function of frequency f. The thick lines represent the mean of the simulated PSDs S(f, T). The
1/f? trend is indicated by the dashed line. Centre: zero-frequency behaviour of S( f; T), averaged over individual trajectories, as function
of the observation time T. The dashed lines represent the analytical result in equation (19). Right: large-frequency behaviour of the
S(f, T), averaged over individual trajectories, as function of the observation time T. The dashed lines represent the analytical result in (20).

a+1
pif, T) = ﬂ[

sin(fT)gl(%, fT) - cos(fT)gz(%, fT)], (17)

where we introduced the functions g; and g, defined in appendix A. It is straightforward to check that fora = 1
equation (17) yields the standard expression of the PSD for Brownian motion

in(fT
:u(f) T)la:l = %(1 - Su}%): (18)

where K is the normal diffusion coefficient of dimensionality cm?/ s.
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Figure 4. Amplitude PDF P(S(f, T) = S) of single-trajectory PSDs for different values of the anomalous diffusion exponent:
subdiffusive (« = 1/2, top), normal diffusive (a« = 1, middle), and superdiffusive (a = 3/2, bottom). In the plots, “Theo’ stands for
the analytical result (16), while ‘Sim’ is the histogram obtained from simulations, corresponding to averages over 10° realisations for
each a. The insets report the same quantities on a semi-logarithmic scale, demonstrating that the large-S tail of the PDF in

equation (16) is an exponential function. Analytical and numerical results are in an excellent agreement.

Next, we focus on the asymptotic behaviour of the general expression (17) in the limit fT — oo, which is
equivalent to either the limit f — oo with T fixed, or vice versa. We get

4K, T . I'(a + Dcos(fT — %“)
f? F)°

p(f, T) ~ (19)

Interestingly, the f-dependence of the leading term is the same for any «, in particular, it is equal to the one for
Brownian motion. The fact that we are not able to distinguish SBM from Brownian motion by just looking at the

8
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Figure 5. Left panel: analytical behaviour of  for 3 different values of a corresponding to sub-, normal and super-diffusion. Right
panel: y obtained from 10 realisations of SBM, each consisting of N = 10° time steps.

frequency domain can lead, when analysing data, to the wrong conclusion that one deals with standard
Brownian motion. Only when we have sufficiently precise data over a large frequency window, we could use the
a-dependent subleading term to identify the anomalous diffusion exponent .. The only explicit a-dependence
in the leading order of expression (19) is in the ageing behaviour encoded by the dependence on T " in the
prefactor, which therefore becomes a relevant behaviour to check. The dependence on « of the ageing factor
leads to the convergence of the limit ' — oo in the subdiffusive case and to a divergence in the superdiffusive
case. A second interesting limit is given by the low-frequency limit f = 0. In this case we obtain

B 4KaTa+l
(@ + D(a+2)

This result represents the averaged squared area under the random curve X, (?).

p(f=0,T7) (20)

3.3. Variance and the coefficient of variation

The variance of the single-trajectory PSD is defined in equation (12). It can be calculated exactly for arbitrary o, f
and T, and the details of the intermediate steps are presented in appendix A. Here we report the asymptotic
behaviour for fT — oo, reading

o2(f, T) ~ 16K§Tlafz 5 (o + 1) 20 (e + 1)cos? (fT — ?)
5 f4 4 (fT)m 2a+2(fT)°‘
B 3T (e + Dcos(fT — %) .\ (a + 1)cos? (T — %)
(fT)a (fT)2a
(a4 1)
- W[‘lcos(fﬂ - 1]}_ on

As for the mean value, the f~dependence of the leading term does not involve «, and it has the same scaling as
Brownian motion. Similarly, the explicit dependence on « of the frequence appears only in subleading order.
Once again, studying the leading frequency scaling only we are not able to distinguish SBM from Brownian
motion. Instead, we should pay attention to the ageing behaviour of the amplitude.

We summarise the results for the mean and variance of the single-trajectory PSD in the behaviour of the
coefficient of variation, . It was shown that for FBM this dimensionless factor plays the role of a delicate key
criterion to identifying anomalous diffusion. Namely y assumes three different values in the limit of large
frequency depending on whether we have sub-, normal or superdiffusion, but independent of the precise value
of . In the SBM case, recalling the asymptotic results for the mean and variance in equations (19) and (21)
respectively, we obtain at fixed observation time T (see figure 5 for the behaviour for arbitrary f)

v~ 5/2 f— o0 (22)
for any oe. Moreover in the limit of fT' — 0 we obtain
2K2T20+2
c¥(f=0,T) 32K, and hence vy ~ /2. (23)

T @t D+ 22
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In this limit the moment-generating function simplifies and the PDF is the gamma distribution with scale 24
(f = 0, T) and shape parameter 1/2.

In figure 5 analytical and numerical results for the coefficient of variation yare shown. Analytically, in the
case of subdiffusion we observe heavier oscillation of yas function of the frequency, while in the superdiffusive
case the convergence to the limiting value (22) is faster. Such a distinction is not so clear in the numerics, where
the behaviour of 7y is essentially the same for the three different values of o, showing again the difficulties in
differentiating SBM from Brownian motion.

3.4. Comparison with FBM

As we have already remarked, the behaviour of the single-trajectory PSD is well-understood only for the
anomalous diffusive processes of the FBM-type. The results obtained for SBM show both similarities and
dissimilarities with the ones for FBM reported in [4]. In fact, both processes share the same form for the PDF P(x,
f) in an infinite space and are therefore often confused with one another in literature, see the caveats raised in

[25, 38]. However, while both processes are obviously Gaussian, FBM has stationary increments with long-
ranged, power-law noise correlations. In contrast, SBM is non-stationary but driven by uncorrelated noise. After
our results above a natural question is whether in terms of the single-trajectory PSD the two processes can be told
apart.

For the frequency dependence of the single-trajectory PSD S( f, T), and thus also the mean p( f, T), SBM
shares the 1/f? scaling with that of Brownian motion for any value of the anomalous diffusion exponent « in the
range 0 < a < 2.Subdiffusive FBM, in contrast, exhibits a completely different behaviour with the explicitly a-
dependent frequency scaling 1 /f**1. Moreover, while in the subdiffusive regime SBM shows the ageing
dependence i ~ T~ ', FBM is independent of T. Thus, SBM and FBM can be told apart quite easily from both f
and T dependencies. In contrast, in the superdiffusive regime the results for SBM and FBM are the same for the
functional behaviours with respect to both fand T, and the processes therefore cannot be told apart from each
other by use of the single-trajectory PSD or its mean. However, indeed there exists a difference when we consider
the coefficient of variation y. Namely, for SBM -y always converges to the value v ~ /5 /2 at high frequencies,
the value shared with Brownian motion. FBM, in contrast, assumes three distinct values in the high frequency
limit: y ~ 1 for subdiffusion (0 < a < 1), ¥ ~ /5 /2 for normal diffusion (o = 1),and vy ~ /2 for
superdiffusion (1 < « < 2). These predictions are confirmed by numerical and experimental data [3, 4]. The
coefficient of variation therefore provides a suitable tool to distinguish SBM from FBM. We note that it is not
necessary that the value of v has fully converged within the frequency window probed by experiment or
simulation. It is sufficient to see from the data whether a clear trend for a departure from the value /5 /2
assumed by Brownian motion and SBM.

4. Conclusions

The textbook definition of the PSD takes the Fourier transform of a time series X(#) over an (ideally) infinite
observation time, averaged over an ensemble of trajectories X(¢) [ 1]. Due to experimental and computational
limitation, the observation time of typical single-trajectory measurements or supercomputing studies is limited,
and typically also relatively few trajectories are measured. To account for these limitation, we introduced the
concept of the single-trajectory PSD in [3] and studied it for both normal Brownian motion and FBM in [3, 4].
Apart from the more suitable definition in view of modern single particle experiments, another feature of the
single-trajectory PSD S( f, T) are the amplitude fluctuations of of S( f, T): instead of being considered as a
nuisance, these fluctuations indeed provide important information about the specific stochastic process
generating the data [3, 4]—similar to the amplitude fluctuations of the time averaged MSD of X(¢) [38—40].

We here studied the spectral content of SBM, a standard model for anomalous diffusion which is Markovian
but non-stationary, in terms of the single-trajectory PSD and its full distribution. From analytical and numerical
analyses we showed that the frequency dependence has the invariant scaling form ~1/f2, fully independent of
the anomalous scaling exponent .. We also showed that the coefficient of variation for any « practically has the
same frequency dependence as for Brownian motion. The main difference between SBM and Brownian motion
is the ageing behaviour of single-trajectory PSD and its mean, that is, their dependence on the observation time
T. Similar to Brownian motion, the single-trajectory PSD of SBM was shown to be broad in the sense that its
coefficient of variation is larger than unity, such that the information of the textbook definition (2) of the PSD
has alimited information content, and relevant additional information can be obtained from the single-
trajectory analysis.

FBM, in contrast, has stationary increments yet is non-Markovian due to its power-law correlated driving
noise. Both FBM and SBM are Gaussian in nature, and we found both emerging similarities and dissimilarities.
For both sub- and superdiffusion the coefficient of variation for FBM provides different values from SBM. In
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addition, subdiffusive FBM is non-ageing but has an a-dependent frequency scaling of the single-trajectory
PSD. The situation is different in the superdiffusive regime: here the frequency dependence and the ageing
behaviour of the single-trajectory PSD for FBM is the same as for SBM, leaving the coefficient of variation as the
only way to distinguish the two processes from each other. Concurrently, the PDF of the single-trajectory PSD is
the same for all three cases. Taking together all observables, we conclude that the single-trajectory PSD is able to
distinguish SBM, FBM, and normal Brownian motion. In addition to its ability to identify SBM as a Gaussian
diffusion process, we note that the single-trajectory PSD provides a finite-time analogue of the Wiener—
Khinchine relation, that can be tested based on experimental data.

The results reported here for SBM adds an important additional piece to the development of a complete
picture for single-trajectory PSD analysis of modern single particle tracking data. We demonstrated thatitisa
suitable tool to identify the anomalous scaling exponent « from an individual particle trajectory X, (¢).
Moreover, within the Gaussian processes studied so far, the single-trajectory PSD framework allows one to tell
the different processes apart from each other, and is thus an outstanding physical observable, providing
complementary information to the (more) standard analyses in terms of ensemble and time averaged MSDs.
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Appendix A. Moment-generating function of the single-trajectory PSD

The moment-generating function is calculated as

T T
Oy = (exp{—AS(f, T)}) = <eXP{—%J; j; dydt; cos(f (h — tz))Xa(tl)Xa(tz)}>

N o[ T, :
_ <exp{FU; dtcos(ﬁ)Xa(t)] ?[j; dtsm(ft)X(y(t)] }>

+00 —+00 2 2
T dz f dz, exp _rAH T
471')\ —00 —00 4)\

x <exp {iz1 f " dt cos(fH) X () + iz f " sin(ﬁ)Xa,(t)} >
0 0

+00 +00 2 2
_ T dz f dz, exp AT A
47\ J - —0 4\

T
X <exp {i](; dif(1)(21Q) + ZzQz)}>> (A.1)

where we used the identity exp(—b?/4a) = \Ja/7 L t:o dx exp(—ax? + ibx) and we defined

01— m(sin(fT) B sin(ﬁ))
« f f >

Q= \/ZDa(t)[COSf(ﬁ) - COS;’(T)). (A2)

We can now average over the exponential of Gaussian variable and obtain

+00 0 2 2
D, L dz f dz exp ( TM)

:47()\ —00 4\
| P B P S T
X exp( Efo diz"Q; Ej; diz; Q; j; dtz12,Q:Q»
AN(A+ B AN\ AB — 2|
= |1+ —)‘( * ) + (—)‘) AB—C , (A3)
T 2 T 4
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where for the last equality we used the identity f_ t: dz f_ 4;:0 dz, exp(—azl + (27 — 2vz212,) = w(aB — v*) /2

and we defined

T 2K Ta+2
A= f diQ? = a—[zsinwgl(g, w) — gz(g, Zw)],
0 w 2 2

T a+2
B= f dtQ22 = %[gz(g, Zw) — 2coswg2(g, w)],
0 w 2 2

T a+2
C= f drQ;Q; = &[sinwgz(g, w) — coswgl(g, w) + gl(g, Zw)].
0 w 2 2 2

It is possible to show that
(A + B)
———— > T >
T p(fs T)
4(AB — C?»
T2
Relations (A.5) and (A.6) allows us to rewrite the moment-generating function as

@y = [1 + 2u)\ + Qu?2 — acHXN]V/2,

= 22(f, T) — o*(f, T).

Appendix B. Ensemble-averaged single-trajectory PSD

Recalling definition (19) we have

1 T T .
uf, D= fo dn fo dty cos(f (1 — £))2K, min (t, £,)*

2K,

1

T f T
= - j; dtl{fo dt, cos(f (h — )85 +ft dt; cos(f(h — )t

2K,

T t
= T {j; dl‘1j; dt;[cos(ft)) cos(ft,) + sin(ft;)sin(ft,)]t;'

T T
+ f dtlf dt, [cos(ft,) cos(ft,) + sin(ﬁl)sin(ﬁz)]tf‘}
0 4

2K,
= S+ b+ L+ L)

We focus on the explicit calculation of each integral individually, starting with

T t T f
11:j(; dtlj; dtzcos(ﬁl)cos(ﬁz)t“:fo dtlcos(ftl)j(; dt, cos(ft,)t;

1 1
= T“’“L/(‘) dy cos(wy)y““j(; dz cos(wyz)z®

1
= T“”fo dy cos(wy)y“’“gl(%,wy),

wherew = fTand

1
g(o, w)= j; 72 cos(wr)dT

I'Qa + 1)sin(ma)
a 2a+1

w

- 2w2a+1

Similarly for the second integral we obtain

T f
Iz:j; dy sin(f%l)j:J dt, sin(ft,) t;'

1
= T“”fo dysin(wy)y‘”“gz(%,wy),

(™I Qa + 1, —iw) — e T Qa + 1, iw)).

}

(A4)

(A.5)

(A.6)

(A.7)

(B.1)

(B.2)

(B.3)

(B.4)
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where

1
&0, w) = fo 720 sin(wr)dr

I'Qa + 1)cos(mar)
2a+1

w

(eiﬂ'a]_"(za + 1, —iw) + e—iwal’\(za + 1, 1w)) (B.5)

o 2w2a+1

Plugging in the explicit expressions of g;(a, w) and g, (o, w) and working out the integrals we arrive at

L= T“”{— ['(a + Dsin(ra/2)sin(w)  I'(a + Dcos(ra/2)
wa+2 (Zw)oHrZ
20 +2
1
* 2(2w)+?

[eiﬂ'a/21"(a + 1, —iw — efiﬂ'o‘/zr(()é + 1, lLU)]

[ /2D (a + 1, —2iw) + e ™/ (a + 1, Ziw)]}> (B.6)

L= T”“{— I'(av + 1)cos(war/2)cos(w) n I'(a + 1)cos(mar/2)
wn+2 (20.))(“_2

—;‘)S(fz [ei™/ 2 (o + 1, —iw) 4 e 7/ (a + 1, iw)]

wOé

- ﬁ[eimﬂf(a + 1, —2iw) + e ™/ (o + 1, Ziw)]}. (B.7)
w

Thelast two integrals are given by

T T
L :j(; dy cos(ftl)tlaf dt, cos(ft,)
1

1

= Ter? {sin(uJ)gl(%, w) — %j: dyy© sin(2wy)}, (B.8)

w

T T
L= fo dt sin(ft) 1" f dt, sin(ft,)
1

1

a+2 1
— T {—cos(w)gz(%, w) + %j; dyy® Sin(Zwy)}, (B.9)

w
so that we finally obtain

wa+2

u(f, 1) = 2KaT"“{‘Mcos(w -7

cos(w — =)

2 [N+ 1,iw) + T(a + 1, —iw)]

2w&+2
isin(w — %) ) )
W[F(a + 1, iw) — I'(a + 1, —iw)]
+ l[sin(w)gl(g, w) — cos(w)gz(g, w)]}, (B.10)
w 2 2

which can be simplified to the form (17).
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Appendix C. Variance of the single-trajectory PSD

In order to obtain the PSD variance, given in (12) we first focus on the calculation of the second moment

($*(f, D) = <f f dndry cos(f (6 — £2)) Xa (8) Xa (t2)
X fo fo dtzdty cos(f (t; — t4))Xa(t3)Xa(t4)>

T T T T
= %fo j; fo fo dndt,dtsdty cos(f (f — 1)) cos(f (5 — t4))
X (Xo(t) Xo(82) Xa(t3) Xa(ts)). (C.1)

Following the Wick/Isserlis theorem we have

(Xa (1) Xo (1) Xo (13) X (12)) = (Xa (1) Xa (12)) (Xa (13) Xa (1a))
+ <Xa(t1)Xa(t3)> <Xa(t2)Xa(t4)>
+ <Xa(t1)Xa(t4)> <Xa(t3)Xa(t2)>- (CZ)

This allows us to rewrite (C.1) as

2
(S*(f, 7)) = {[f f dedt, cos(f (h — 1)) (Xa(B) Xa (f2)>]

+ fo fo j; fo didtydtsdty cos(f (1 — t))cos(f (15 — £4))
X (Xa ()Xo (13)) (X (82) X (24))
T T T T
+ j(; j(; j(; L dtldtzdt3dt4 COS(f(tl — tz))COS(f(t3 — t4))
X (Xo ()X, (t4)> (Xa(t)Xa(02))}
= 1> (f, T) + {f f f f dndt,dtsdty cos(f ( — £2))cos(f (5 — t4))

X min (, tg)a min (¢, t4)“

T T T T
+f0 fo fo fo dndt,dtsdty cos(f ( — f2))cos(f (5 — t4))

X min (tlw ty )a min (tz, 13 )a } (C3)

The variance is thus given by

sﬁ
dtzdt3dt4 COS(f(tl — tz))COS(f(t3 — t4))

o*(f, T) =

X min (tl, t3)” mln(tz, )"

8K
= {f f dndt, COS(f(tl — tz))f dt3f dty COS(f(t:; — t4))t tf

+ 2]; J; dndt, cos(f(f — 1)) . dgj(l dty cos(f(ts — )t t0

T T T T
+ f fo dndt; cos(f(h — tz))ft1 dt3j;2 dty cos(f (5 — u))t{“tﬁ’}

2
= SK (C4)

Following the same procedure used above for calculating the mean we can show that the integrals are given by

L=F+1L+I+1I5, (C.5)
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a+2 (%, 2w
Is= T L sin(w)gl(g, w) — M
w 2 2
(%, 2w
+ I ! + 1(2 ) . cos(w)gl(g, w)
2(a + 1) 2 2
(%, 2w
+ Iy| — ! 1(2 ) + sin(w)gz(g, w)
2(a + 1) 2 2
(%, 2w
+ b fcos(w)gz(g, w) + 2(2 ) s
2 2
2
To+2 1 a 2 a 2 gl( o Zw) gz(z ) 2w)
17: ) 2+g1 ) +g2 — W +
w 2+ 1) 2 2 2 2

)z oeln) (2 ()
a+1 8\ Yl = PR S PN

31(%’ w) a « a a
— COS((.U) TH + gl(g, W)gl(—, 2(4)) + gz(z, W)gz(z, Zw) 5

where I; and I, are defined in (B.7) and
L — a2 {F(a + Dcos(ra/2)sin(w)  D'(a + 1)sin(ra/2)
s = _

— sin(w)

wa+2 (zw)(y+2
- —;mi‘fg [ /2D (a + 1, —iw) + e ™/ (o + 1, iw)]
w
1 i

5 @t - 2@ [e/ 2D (o + 1, —2iw) — e ™2 (ar + 1, Ziw)]},
w(& w

o — Ta+2 I'(a + Dsin(wra/2)cos(w)  T'(a + 1)sin(waer/2)
9= - w2 N Quw)at?

. cos(w)

— [ei™/ 20 (v + 1, —iw — e ™/ (o + 1, iw)]

2w
1 i
+ —
2wl + 1) 2Qw)*?

[eiﬂ'a/Z]_"(a + 1, —21w) — e—iTra'/Z]_"(a + 1, 21w)]}
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