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Abstract
A standard approach to study time-dependent stochastic processes is the power spectral density
(PSD), an ensemble-averaged property defined as the Fourier transformof the autocorrelation
function of the process in the asymptotic limit of long observation times,T  ¥. Inmany
experimental situations one is able to garner only relatively few stochastic time series offiniteT, such
that practically neither an ensemble average nor the asymptotic limitT  ¥ can be achieved. To
accommodate for ameaningful analysis of suchfinite-length datawe here develop the framework of
single-trajectory spectral analysis for one of the standardmodels of anomalous diffusion, scaled
Brownianmotion.We demonstrate that the frequency dependence of the single-trajectory PSD is
exactly the same as for standard Brownianmotion, whichmay lead one to the erroneous conclusion
that the observedmotion is normal-diffusive. However, a distinctive feature is shown to be provided
by the explicit dependence on themeasurement timeT, and this ageing phenomenon can be used to
deduce the anomalous diffusion exponent.We also compare our results to the single-trajectory PSD
behaviour of another standard anomalous diffusion process, fractional Brownianmotion, andwork
out the commonalities and differences. Our results represent an important step in establishing single-
trajectory PSDs as an alternative (or complement) to analyses based on the time-averagedmean
squared displacement.

1. Introduction

The spectral analysis ofmeasured position time series (‘trajectories’)X(t) of a stochastic process provides
important insight into its short and long time behaviour, and also unveils its temporal correlations [1]. In
standard textbook settings, spectral analyses are carried out by determining the so-called power spectral density
(PSD)μ( f ) of the process. The PSD is classically calculated byfirst performing a Fourier transformof an
individual trajectoryX(t) over thefinite observation timeT
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where f denotes the frequency. The quantity S( f,T) forfinite observation timesT is, of course, a randomvariable.
The standard PSD yields from S( f,T) by averaging it over a statistical ensemble of all possible trajectories. After
taking the asymptotic limitT  ¥, one obtains the standard PSD
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where the angular brackets denote the statistical averaging. In the second line of (2), taking into account thatX(t)
is real-valued, we took the absolute square and used the summation relation for trigonometric functions [2] to
obtain the cosine functionwith the difference of the two times and the autocorrelation function X t X t1 2á ñ( ) ( ) of
the processX(t); see [1, 3, 4] formore details.

The PSD (2) is widely used to evaluatemeasured time tracesX(t), especially in experimental setups
measuring in frequency domain, such as spectroscopicmethods. The PSDprovides information
complementary to the autocorrelation X t X t1 2á ñ( ) ( ) , and the relation between the PSDμ( f ) and X t X t1 2á ñ( ) ( ) is
in fact the famedWiener–Khinchine theorem.Moreover, in physical terms the PSD corresponds to the spectral
net power (energy per unit time). Following definition (2), the standard, ensemble-averaged PSDwas
determined for various processes acrossmany disciplines. This includes, for instance, the variation of the
loudness ofmusical performances [5], the temporal evolution of climate data [6] and of thewaiting-times
between earthquakes [7], the retention times of chemical tracers in groundwater [8] and noises in graphene
devices [9], fluorescence intermittency in nano-devices [10], current fluctuations in nanoscale electrodes [11], or
ionic currents across nanopores [12]. The PSDwas also calculated analytically for individual time series in a
stochasticmodel describing blinking quantumdots [13], for non-stationary processes taking advantage of a
generalisedWiener–Khinchine theorem [14, 15], for the process of fractional Brownianmotion (FBM)with
random reset [16], the runningmaximumof a Brownianmotion [17], as well as for diffusion in strongly
disordered Sinai-type systems [18], to name but a few stray examples.

An alternative approach geared towards realistic experimental situationswas recently proposed—based
directly on thefinite-time, single-trajectory PSD (1) [3, 4] (see also [19]). The need for such an alternative to the
standard PSD (2) is two-fold. First, while the asymptotic limitT  ¥ canwell be taken inmathematical
expressions, it cannot be realistically achieved experimentally. This especially holds for typical,modern single
particle tracking experiments, inwhich the observation time is limited by themicroscope’s focus or the
fluorescence lifetime of the dye label tagging themoving particle of interest [20]. In general, apart from the
dependence on the frequency f the single-trajectory PSD (1) therefore explicitly is a function of the observation
timeT.Moreover, fluctuations between individual results S( f,T) of the single-trajectory PSDwill be observed,
even for normal Brownianmotion [3]. Second, andmaybe evenmore importantly, while suchfluctuations
between trajectoriesmay, of course, bemitigated by taking an average over a statistical ensemble, inmany cases
the number ofmeasured trajectories is too small for ameaningful statistical averaging. Indeed, for the data
garnered in, for instance, in vivo experiments [20], climate evolution [21], or the evolution of financialmarkets
[22] one necessarily deals with a single or just a few realisations of the process. Aswewill show, despite the
fluctuations between individual trajectories relevant information can be extracted from the frequency and
observation time-dependence of single-trajectory PSDs. Evenmore, the very trajectory-to-trajectory amplitude
fluctuations encode relevant information, that can be used to dissect the physical character of the observed
process.

Howwouldwe understand an observation time-dependence? This is not an issue, of course, for stationary
randomprocesses, but apart fromBrownianmotion, only very few naturally occurring randomprocesses are
stationary. AT-dependent evolution of the PSD can in fact be rather peculiar and systemdependent. For
instance, the PSDmay be ageing and its amplitudemay decaywithT, as it happens for non-stationary random
signals [15], or conversely, it can exhibit an unbounded growthwithT, a behaviour predicted analytically and
observed experimentally for superdiffusive processes of FBM type [4]. As a consequence, the standard textbook
definition (2) of the PSDwhich emphasises the limitT  ¥, can become rathermeaningless.

Motivated by the two arguments in favour of using a single-trajectory approach to the PSD—the lack of
sufficient trajectories in a typical experiment in order to form an ensemble average and insufficiently long
observation timesT—[3, 4] concentrated on the analysis of the randomvariable S( f,T) defined in (1) for
arbitrary finiteT and f. Both for Brownianmotion and FBMwith arbitraryHurst index (anomalous diffusion
exponent, see below) a range of interesting, and sometimes quite unexpected features were unveiled, as detailed
in the comparative discussion at the end of section 3.

While FBM,whose single-trajectory PSD is studied in [4] is a quite widespread anomalous diffusion process,
it is far from the only relevant example of naturally occurring randomprocesses with anomalous diffusive
behaviour. As, in principle, S( f,T)may behave distinctly for different stochastic processes, in order to get a
general and comprehensive picture of the evolution in the frequency domain, one needs to study systematically
the single-trajectory PSDs of other experimentally-relevant processes, such as, scaled Brownianmotion (SBM),
the continuous time randomwalk, or diffusing diffusivitymodels, to name just a few. In all these examples the
microscopic physical processes underlying the global departure from standard Brownianmotion are different,
andwewould expect that this difference in themicroscopic behaviour translates into the behaviour in the
frequency domain.

Here we concentrate on trajectoriesXα(t) generated by SBM, a class of non-stationary anomalous diffusion
processes encoding themean squared displacement (MSD) X t t2á ña

a( ) with anomalous diffusion exponentα.
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SBMwas formally studiedwithin different contexts in the last two decades [23–25]. Historically, it was
introduced already by Batchelor in 1952 in the context of the turbulentmotion of clouds ofmarked fluids [26],
originally studied byRichardson in 1926 [27]. An important application of SBM is for particlemotion in the
homogeneous cooling state of force-free cooling granular gases, inwhich the continuously decaying
temperature (defined via the continuously dissipating kinetic energy) effectively leads to a time-dependence of
the self-diffusion coefficient of the gas [28]. SBMalso describes the dynamics of a taggedmonomer involved in
processes of irreversible polymerisation [29]. Similar dynamics emerge in the analysis offluorescence recovery
after photobleaching (FRAP) data [30], as well as offluorescence correlation spectroscopy data [31], which are
bothwidely used techniques tomeasure diffusion ofmacromolecules in living cells and theirmembranes. Lastly,
essentially the same type of anomalous diffusionmodellingwas used for the analysis of potential water
availability in a region due to precipitation (snow and rain) [32].

As an application of SBM in a broader sense, onemay envisage amaterial undergoing an annealing process—
a slow, externally imposed decrease of the temperature used inmetallurgy or in preparations of glasses to get rid
of internal defects. Effectively, the dynamics of the latter can be considered as an SBM—a Brownianmotionwith
a diffusion coefficient being a slowly decreasing function of the temperature. In a similar way, one uses such a
slow annealing in computer search for a globalminimumof a complex energy landscape, which prevents
trapping by localminima.Here, as well, if the search process proceeds by jumps of afixed length, one encounters
effectively an SBM-type process.Moreover, SBMmay be used to describe the effective diffusion in an expanding
medium [33]. Finally, SBMmay be considered as amean field description of continuous time randomwalks
with scale-free waiting time densities [24].

A different perspective for applications of our PSD analysis are areas, inwhich the time variable represents
other, complementary quantities. Thus, the height profile of an effectively one-dimensional surfacemay be
thought of as a time series.While suchmodelling typically involves FBM-type statistics [34], itmay be of interest
to compare the predictions to those of theMarkovian yet non-stationary SBM.We alsomention the connection
of time series to the visibility graph in complex networks [35].

The outline of the paper is as follows. In section 2we present the basics of SBM, introduce our notation, and
define the properties under study. Section 3 is devoted to the spectral analysis of single-trajectory PSDs governed
by SBM.Here, we first derive an exact expression for themoment-generating function of the randomvariable S
( f,T) and evaluate the exact formof the associated probability density function (PDF). The formof the latter
turns out to be entirely defined by itsfirst twomoments, in analogy to the parental processXα(t).We then
present explicit forms of these twomoments, valid for arbitrary anomalous diffusion exponentα, frequency f,
and observation timeT. Section 3 ends with a comparative discussion of our results with the behaviour of the
single-trajectory PSD for FBM, the only anomalous diffusion process for which the behaviour of a single-
trajectory PSD is known exhaustively well at present [4]. Finally, we concludewith a brief summary of our results
and a perspective in section 4.

2.Model and basic notations

SBMXα(t) is anα-parametrised family of Gaussian stochastic processes defined by the (stochastic) Langevin
equation [23–25]

X t
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where ξ(t)denotes Gaussianwhite-noise with zeromean and variance 1/2, such that

t t t t . 41 2 1 2x x dá ñ = -( ) ( ) ( ) ( )

Moreover,Dα(t) is the diffusion coefficient, that follows the deterministic power-law in time5

D t K t , 0 2, 51a a= < <a a
a-( ) ( )

where the coefficientKα has physical dimension cm s2 a. In general, SBMdescribes anomalous diffusion, such
that the ensemble-averagedMSD scales as a power law in time

X t K t2 . 62á ñ =a a
a( ) ( )

When 0<α<1 one observes subdiffusive behaviour, while for 1<α<2 SBMdescribes superdiffusion.
Standard Brownianmotion is recovered in the limitα=1. Infigure 1we depict four representative trajectories
ofXα(t) for the subdiffusive, normal-diffusive, and superdiffusive cases.We note that, especially for the
subdiffusive caseα=1/2 the non-stationary character is not immediately obvious from the graph ofXα(t)

6,

5
The limitα=0 corresponds to the case of ultraslow diffusionwith a logarithmicMSD, as studied in [36].

6
Onemay infer the slower spreading rather from comparison of the span ofXα(t) on the vertical axis.

3
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while the character of the process becomes somewhatmore obviouswhenwe plot the square process,Xα
2 (t).

Concurrently, in the superdiffusive case the growing fluctuations and large excursions away from the origin
appear relativelymore pronounced.

Beforewe proceed, it is expedient to recall other salient properties of SBM. In particular, its autocorrelation
function can be readily calculated to give

X t X t K t t2 min , . 71 2 1 2á ñ =a a a
a( ) ( ) [ { }] ( )

Hence, the covariance ofXα(t) has essentially the same form as the one for standard Brownianmotion, except
that the time variable is ‘scaled’7. A basic quantity to analyse the behaviour of individual trajectories is the time-
averagedMSDof the time seriesXα(t) in the time interval [0,T] [38]

T
X t X t t

1
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and its ensemble-averaged counterpart, which, taking into account expression (7), can be explicitly calculated as
[25]

Figure 1. Four individual realisationsXα(t) for SBMwith different anomalous diffusion exponent for subdiffusion (α=0.5, top),
normal diffusion (α=1,middle), and superdiffusion (α=1.5, bottom). In the left columnwe show the processXα(t) itself, while in
the right columnwe display its square, X t2

a ( ).

7
The definition of SBMwould allow us to transform (subordinate [37]) time t such that themain calculations could be done for normal

Brownianmotion.However, as this would change themeaning of the frequency, we prefer to proceed in terms of the non-transformed time
(and frequency).

4
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In the limitΔ=Twe thusfind K T22 1á ñd D ~ Da a-( ) , a behaviour fundamentally different from the

ensemble-averagedMSD (6), a feature of so-calledweak ergodicity breaking: X2 2á ñd D ¹ á D ña( ) ( ) [38].We

display the behaviour of individual time-averagedMSDs 2d D( ) in figure 2, alongwith their ensemble average
2á ñd D( ) and the standardMSD X t2á ña ( ) . The non-ergodic behaviour of SBM is clearly highlighted by the

different slopes of 2á ñd D( ) and X t2á ña ( ) .
Equippedwith all necessary knowledge on the properties of SBMXα(t), we now turn to the question of

interest here, the analysis of its single-trajectory PSD. As S( f,T) is a randomvariable, themost general
information about its properties is contained in themoment-generating function

Figure 2. SBMmean squared displacements (MSDs) for three differentα values (subdiffusionwithα=0.5, top; normal diffusion
withα=1,middle; superdiffusionwithα=1.5, bottom). Blue lines represent time averagedMSDs 2d D( ) for individual trajectories.
For smallΔ=T the individual 2d D( ) are fully reproducible, while for longer lag timeΔ the statistics becomesworse and the
trajectory-to-trajectory spread is appreciable. The light blue line represents the trajectory-average 2d D( ) of the time averagedMSD
while the orange line depicts the ensemble averagedMSD x t2á ñ( ) .
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OnceΦλ is determined, the PDF P(S( f,T)=S) of the randomvariable S( f,T) can be simply derived from
equation (10) by an inverse Laplace transformwith respect to the parameterλ. Aswe proceed to showbelow,
bothΦλ andP(S( f,T)=S) are entirely defined by thefirst twomoments, due to theGaussian nature of the
processXα(t). Themean value, which represents the standard time-dependent PSD, is given by

f T S f T, , , 11m = á ñ( ) ( ) ( )

while the variance of the randomvariable S( f,T) obeys

f T S f T f T, , , . 122 2 2s m= á ñ -( ) ( ) ( ) ( )

The quantitiesμ( f,T) andσ2( f,T) define the coefficient of variation
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of the PDF of the single-trajectory PSD. As such, γ is ameasure for the ‘broadness’ of a given distribution: when
γ>1 the spreadσ( f,T) of the distribution exceeds itsmean valueμ( f,T), and then themean value can no
longer be considered representative for the actual distribution. The calculation of the exact explicit forms of the
properties defined in equations (10)–(13) represents the chief goal of ourwork.

3. Spectral analysis of individual trajectories of SBM

The single-trajectory PSDs S( f,T) for four different sample trajectories for the three anomalous diffusion
exponentsα=1/2,α=1, andα=3/2 are shown infigure 3 (top).While, naturally, we observe distinct
fluctuationswithin S( f,T) and between different realisations, all data clearly show a S( f,T);1/f 2-scaling.
Themiddle and bottompanels offigure 3 demonstrates the apparent scaling of the trajectory-averaged single-
trajectory PSD as function of the observation timeT (ageing behaviour) for two different frequency values—the
respectiveT-scaling laws are derived below.We are now going to quantify these behaviours in detail.

3.1.Moment-generating function of the single-trajectory PSD
We start fromdefinition (1) of the single-trajectory PSD and rewrite it in the form

S f T
T
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which is just a formal procedure sinceXα(t) is a real-valued process. Relegating the intermediate steps of the
derivation to appendix A, we eventually find the exact result
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whereμ andσ2 are defined in equations (11) and (12), respectively. Result (15) shows that the PDF of the single-
trajectory PSD for SBM is fully defined through itsfirst and secondmoment, and that it has exactly the same
functional form as the results for Brownianmotion and FBMderived in [3, 4]. Aswe have already remarked, this
is a direct consequence of theGaussian nature of the parental processXα(t) of SBM.

Inverting the Laplace transformwith respect toλwe obtain the PDF of the randomvariable S( f,T),
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where Iν is themodified Bessel function of thefirst kind. This function is known to be a distributionwith
heavier-than-Gaussian tails.

Infigure 4we present a comparison of the analytical result (16) forP(S( f,T)=S)with simulations. The
agreement is excellent. Thewidth of the PDF P(S( f,T)=S) becomes narrower for increasingα (note the
different scales on the axes). In particular, the insets show the exponential shape of the PDFP(S( f,T)=S) in the
semi-logarithmic plots.

3.2. Ensemble-averaged PSD
Wenowproceed further and calculate the firstmoment of the PSD, defined in equation (11). Recalling the
expression for the autocorrelation function (7) of SBM,we perform the integrations explicitly in appendix A, to
find thefinal expression
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wherewe introduced the functions g1 and g2 defined in appendix A. It is straightforward to check that forα=1
equation (17) yields the standard expression of the PSD for Brownianmotion
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whereK1 is the normal diffusion coefficient of dimensionality cm s2/ .

Figure 3. Left: single trajectory power spectra S( f,T) for subdiffusion (α=1/2, top), normal diffusion (α=1,middle), and
superdiffusion (α=3/2, bottom) as function of frequency f. The thick lines represent themeanof the simulatedPSDsS( f,T). The
1/f 2 trend is indicated by the dashed line.Centre: zero-frequency behaviour ofS( f,T), averaged over individual trajectories, as function
of the observation timeT. The dashed lines represent the analytical result in equation (19). Right: large-frequency behaviour of the
S( f,T), averagedover individual trajectories, as functionof the observation timeT. The dashed lines represent the analytical result in (20).
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Next, we focus on the asymptotic behaviour of the general expression (17) in the limit f T   ¥, which is
equivalent to either the limit f  ¥withTfixed, or vice versa.We get
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Interestingly, the f-dependence of the leading term is the same for anyα, in particular, it is equal to the one for
Brownianmotion. The fact that we are not able to distinguish SBM fromBrownianmotion by just looking at the

Figure 4.Amplitude PDFP(S( f,T)=S) of single-trajectory PSDs for different values of the anomalous diffusion exponent:
subdiffusive (α=1/2, top), normal diffusive (α=1,middle), and superdiffusive (α=3/2, bottom). In the plots, ‘Theo’ stands for
the analytical result (16), while ‘Sim’ is the histogramobtained from simulations, corresponding to averages over 106 realisations for
eachα. The insets report the same quantities on a semi-logarithmic scale, demonstrating that the large-S tail of the PDF in
equation (16) is an exponential function. Analytical and numerical results are in an excellent agreement.
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frequency domain can lead, when analysing data, to thewrong conclusion that one deals with standard
Brownianmotion. Onlywhenwe have sufficiently precise data over a large frequencywindow, we could use the
α-dependent subleading term to identify the anomalous diffusion exponentα. The only explicitα-dependence
in the leading order of expression (19) is in the ageing behaviour encoded by the dependence onTα−1 in the
prefactor, which therefore becomes a relevant behaviour to check. The dependence onα of the ageing factor
leads to the convergence of the limitT  ¥ in the subdiffusive case and to a divergence in the superdiffusive
case. A second interesting limit is given by the low-frequency limit f=0. In this casewe obtain

f T
K T

0,
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This result represents the averaged squared area under the random curveXα(t).

3.3. Variance and the coefficient of variation
The variance of the single-trajectory PSD is defined in equation (12). It can be calculated exactly for arbitraryα, f
andT, and the details of the intermediate steps are presented in appendix A.Herewe report the asymptotic
behaviour for f T   ¥, reading
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As for themean value, the f-dependence of the leading termdoes not involveα, and it has the same scaling as
Brownianmotion. Similarly, the explicit dependence onα of the frequence appears only in subleading order.
Once again, studying the leading frequency scaling onlywe are not able to distinguish SBM fromBrownian
motion. Instead, we should pay attention to the ageing behaviour of the amplitude.

We summarise the results for themean and variance of the single-trajectory PSD in the behaviour of the
coefficient of variation, γ. It was shown that for FBM this dimensionless factor plays the role of a delicate key
criterion to identifying anomalous diffusion.Namely γ assumes three different values in the limit of large
frequency depending onwhetherwe have sub-, normal or superdiffusion, but independent of the precise value
ofα. In the SBMcase, recalling the asymptotic results for themean and variance in equations (19) and (21)
respectively, we obtain atfixed observation timeT (see figure 5 for the behaviour for arbitrary f )

f5 2, 22g ~  ¥ ( )

for anyα.Moreover in the limit of f T→0we obtain

f T
K T

0,
32

1 2
and hence 2 . 232

2 2 2

2 2
s

a a
g= =

+ +
~a

a+
( )

( ) ( )
( )

Figure 5. Left panel: analytical behaviour of γ for 3 different values ofα corresponding to sub-, normal and super-diffusion. Right
panel: γ obtained from103 realisations of SBM, each consisting ofN=106 time steps.
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In this limit themoment-generating function simplifies and the PDF is the gammadistributionwith scale 2μ
( f=0,T) and shape parameter 1/2.

Infigure 5 analytical and numerical results for the coefficient of variation γ are shown. Analytically, in the
case of subdiffusionwe observe heavier oscillation of γ as function of the frequency, while in the superdiffusive
case the convergence to the limiting value (22) is faster. Such a distinction is not so clear in the numerics, where
the behaviour of γ is essentially the same for the three different values ofα, showing again the difficulties in
differentiating SBM fromBrownianmotion.

3.4. Comparisonwith FBM
Aswe have already remarked, the behaviour of the single-trajectory PSD is well-understood only for the
anomalous diffusive processes of the FBM-type. The results obtained for SBM showboth similarities and
dissimilarities with the ones for FBMreported in [4]. In fact, both processes share the same form for the PDFP(x,
t) in an infinite space and are therefore often confusedwith one another in literature, see the caveats raised in
[25, 38]. However, while both processes are obviously Gaussian, FBMhas stationary increments with long-
ranged, power-lawnoise correlations. In contrast, SBM is non-stationary but driven by uncorrelated noise. After
our results above a natural question is whether in terms of the single-trajectory PSD the two processes can be told
apart.

For the frequency dependence of the single-trajectory PSD S( f,T), and thus also themeanμ( f,T), SBM
shares the 1/f 2 scalingwith that of Brownianmotion for any value of the anomalous diffusion exponentα in the
range 0<α<2. Subdiffusive FBM, in contrast, exhibits a completely different behaviourwith the explicitlyα-
dependent frequency scaling f1 1a+ .Moreover, while in the subdiffusive regime SBMshows the ageing
dependenceμ;Tα−1, FBM is independent ofT. Thus, SBMandFBMcan be told apart quite easily fromboth f
andT dependencies. In contrast, in the superdiffusive regime the results for SBMand FBMare the same for the
functional behaviours with respect to both f andT, and the processes therefore cannot be told apart from each
other by use of the single-trajectory PSDor itsmean.However, indeed there exists a difference whenwe consider
the coefficient of variation γ. Namely, for SBM γ always converges to the value 5 2g ~ at high frequencies,
the value sharedwith Brownianmotion. FBM, in contrast, assumes three distinct values in the high frequency
limit: γ∼1 for subdiffusion (0<α<1), 5 2g ~ for normal diffusion (α=1), and 2g ~ for
superdiffusion (1<α<2). These predictions are confirmed by numerical and experimental data [3, 4]. The
coefficient of variation therefore provides a suitable tool to distinguish SBM fromFBM.Wenote that it is not
necessary that the value of γ has fully convergedwithin the frequencywindowprobed by experiment or
simulation. It is sufficient to see from the datawhether a clear trend for a departure from the value 5 2
assumed by Brownianmotion and SBM.

4. Conclusions

The textbook definition of the PSD takes the Fourier transformof a time seriesX(t) over an (ideally) infinite
observation time, averaged over an ensemble of trajectoriesX(t) [1]. Due to experimental and computational
limitation, the observation time of typical single-trajectorymeasurements or supercomputing studies is limited,
and typically also relatively few trajectories aremeasured. To account for these limitation, we introduced the
concept of the single-trajectory PSD in [3] and studied it for both normal Brownianmotion and FBM in [3, 4].
Apart from themore suitable definition in view ofmodern single particle experiments, another feature of the
single-trajectory PSD S( f,T) are the amplitude fluctuations of of S( f,T): instead of being considered as a
nuisance, thesefluctuations indeed provide important information about the specific stochastic process
generating the data [3, 4]—similar to the amplitude fluctuations of the time averagedMSDofX(t) [38–40].

We here studied the spectral content of SBM, a standardmodel for anomalous diffusionwhich isMarkovian
but non-stationary, in terms of the single-trajectory PSD and its full distribution. From analytical and numerical
analyses we showed that the frequency dependence has the invariant scaling form∼1/f 2, fully independent of
the anomalous scaling exponentα.We also showed that the coefficient of variation for anyα practically has the
same frequency dependence as for Brownianmotion. Themain difference between SBMandBrownianmotion
is the ageing behaviour of single-trajectory PSD and itsmean, that is, their dependence on the observation time
T. Similar to Brownianmotion, the single-trajectory PSDof SBMwas shown to be broad in the sense that its
coefficient of variation is larger than unity, such that the information of the textbook definition (2) of the PSD
has a limited information content, and relevant additional information can be obtained from the single-
trajectory analysis.

FBM, in contrast, has stationary increments yet is non-Markovian due to its power-law correlated driving
noise. Both FBMand SBMareGaussian in nature, andwe found both emerging similarities and dissimilarities.
For both sub- and superdiffusion the coefficient of variation for FBMprovides different values fromSBM. In
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addition, subdiffusive FBM is non-ageing but has anα-dependent frequency scaling of the single-trajectory
PSD. The situation is different in the superdiffusive regime: here the frequency dependence and the ageing
behaviour of the single-trajectory PSD for FBM is the same as for SBM, leaving the coefficient of variation as the
onlyway to distinguish the two processes from each other. Concurrently, the PDF of the single-trajectory PSD is
the same for all three cases. Taking together all observables, we conclude that the single-trajectory PSD is able to
distinguish SBM, FBM, andnormal Brownianmotion. In addition to its ability to identify SBMas aGaussian
diffusion process, we note that the single-trajectory PSDprovides afinite-time analogue of theWiener–
Khinchine relation, that can be tested based on experimental data.

The results reported here for SBMadds an important additional piece to the development of a complete
picture for single-trajectory PSD analysis ofmodern single particle tracking data.We demonstrated that it is a
suitable tool to identify the anomalous scaling exponentα from an individual particle trajectoryXα(t).
Moreover, within theGaussian processes studied so far, the single-trajectory PSD framework allows one to tell
the different processes apart from each other, and is thus an outstanding physical observable, providing
complementary information to the (more) standard analyses in terms of ensemble and time averagedMSDs.
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AppendixA.Moment-generating function of the single-trajectory PSD

Themoment-generating function is calculated as
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Appendix B. Ensemble-averaged single-trajectory PSD

Recalling definition (19)wehave
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AppendixC. Variance of the single-trajectory PSD

In order to obtain the PSDvariance, given in (12)wefirst focus on the calculation of the secondmoment
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The variance is thus given by
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Following the same procedure used above for calculating themeanwe can show that the integrals are given by
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