
            

PAPER • OPEN ACCESS

Codifference can detect ergodicity breaking and non-Gaussianity
To cite this article: Jakub lzak et al 2019 New J. Phys. 21 053008

 

View the article online for updates and enhancements.

This content was downloaded from IP address 130.237.240.186 on 07/05/2019 at 11:08

https://doi.org/10.1088/1367-2630/ab13f3
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/108729263/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?


New J. Phys. 21 (2019) 053008 https://doi.org/10.1088/1367-2630/ab13f3

PAPER

Codifference can detect ergodicity breaking and non-Gaussianity

JakubŚlęzak1,2, RalfMetzler3 andMarcinMagdziarz2

1 Department of Physics, Bar IlanUniversity, Israel
2 Faculty of Pure andAppliedMathematics,WrocławUniversity of Science andTechnology, Poland
3 Institute of Physics andAstronomy, PotsdamUniversity, Germany

E-mail: rmetzler@uni-potsdam.de

Keywords: diffusion, anomalous diffusion, stochastic time series

Abstract
We show that the codifference is a useful tool in studying the ergodicity breaking and non-Gaussianity
properties of stochastic time series.While the codifference is ameasure of dependence that was
previously studiedmainly in the context of stable processes, we here extend its range of applicability to
random-parameter and diffusing-diffusivitymodels which are important in contemporary physics,
biology andfinancial engineering.We prove that the codifference detects forms of dependence and
ergodicity breakingwhich are not visible from analysing the covariance and correlation functions.We
also discuss a relatedmeasure of dispersion, which is a nonlinear analogue of themean squared
displacement.

1. Introduction

1.1. Statisticalmeasures inmodelling of diffusion
The analysis of stochastic systems has three important and partially distinct aspects:models, properties and
estimation. These roughly correspond to physical,mathematical and statistical aspects of research.Modelling is
concernedwith explaining the nature of a system according to the underlying theory (e.g. ‘the particle undergoes
Brownianmotion, because it rapidly exchangesmomenta with themolecules of liquid’). The analysis of
statistical properties (also called ‘measures’)4 relates thesemodels with observable quantities (‘Brownianmotion
has a linearmean squared displacement’). By using suitable estimators we link these parameters to the
experimental data (‘themean squared displacement can be efficiently estimated by an arithmetic average over
squared displacements’).

This work ismotivated by our conviction that the choice of statisticalmeasures is too small for
contemporary needs, as the scope and number ofmodels increased considerably [1]. The classicalmodels based
on the Langevin equation [2], the generalised Langevin equation [3, 4], as; well as short- [5] and long- [6, 7]
memory randomwalks were complemented bymotions on fractals [8], motions in complex energy landscapes
[9], randomwalks in random environments [10, 11], randomwalkswith correlated steps andwaiting times
[12–16] and Lévywalks [17], spatially heterogeneous diffusion processes [18], diffusing-diffusivity [19] and
more. Distinguishing between differentmodels from this wide class is of course crucially dependent on the
physical understanding of the system, but this requirement does not lessen the importance of empirical
verification based on variousmeasures and corresponding estimators. From an experimental point of view the
large range of different stochastic processes is called for by evermore detailed insights garnered in highly
complex environments such as living biological cells ormembranes, for instance, by single particle tracking of
individual sub-micron tracers of evenfluorescently labelled singlemolecules [20–22].

Traditionally, in the study of diffusion phenomena, the threemost basic and popular statisticalmeasures in
use are: themean as ameasure of location, themean squared displacement (MSD) as ameasure of dispersion
and the covariance as ameasure of dependence, respectively
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Other, alternative choices ofmeasures could be, for example: themedian for the location [23], entropy [24]
or quantile ranges [23] for the dispersion, the rank correlation [23, 25] or themutual information [26] for the
dependence.

The covariance as defined above should not depend on the choice of s, which is true for stationary processes
(the term ‘non-ageing’ is also in use).Wewill assume stationarity whenever wewill be studyingmemory. In
practical applications this condition is fulfilled bymany types of confinedmotions or increments of free
diffusions. Themore general non-stationary case will be only brieflymentioned in equations (3.2) and (3.4).
Many of the arguments presented here could be further extended to non-stationarymodels, but it would require
a case-by-case study. Conversely,measures of dispersion and location are interestingmostly for non-stationary
(ageing) processes, otherwise they are constant, and the discussed cases will fit into that category.

The present range of typically employedmeasures, which could be effectively used for studying diffusion is
indeed quite limited, and the need of awider range ofmethods has been acknowledged formany years. Various
papers proposed, e.g. studying higher ordermoments and ratios ofmoments [27], runningmaximum [28],
p-variation [29], or time averages and ensemble averages of time averages [30]. A prominent example of the last
kind ofmeasure is, e.g. the ergodicity breaking parameter [18, 31–33]. Recently also single-trajectory power
spectralmethodswere proposed [34, 35]. These techniques are steadily gaining public recognition, but often the
range of their application is still narrow.Moreover, a large part of this important research has a limitation of
studying properties ‘not very different’ from the second order on. For example, any power function xa for

1a > has a similar behaviour to x2 (i.e. it is an increasing, convex function) and parameters based on it are
usually not far away from the classical ones5. They all emphasise highly the tails of the distribution, and any
change of distributions for large values of observations has a larger influence than for the small ones. This
connection is very helpful inmaking comparisons, but the important part of the total information is lost and
could be extracted usingmore distinctmeasures.

1.2.Overview of the codifference
Ourmain subject of interest, the codifference, is an example for ameasure different from those based on
moments. It was initially proposed as a tool tomeasure the dependence forα-stable processes, for which the
secondmoment is infinite [42, 37–41]. However, inmany systems the divergence of the secondmoment is not
an expected physical property, which limits the range of possible applications of stable processes. It was already
noticed, e.g. in [43] that the codifferencemay be useful for bothmodels with orwithout finite secondmoment.
In our present workwe study the applications of the codifference for a class ofmodels based onGaussian
distributions, whichwe call conditionally Gaussian processes; as wewill demonstratemany useful andwidely
usedmodels fit into this category.

The definition of the codifference whichwewill use is as follows: for any stationary process X it is given by
the formula
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The sample codifference is introduced in a standardway, by replacing the three ensemble averages  ⋅[ ] in
the above expression by arithmetic averages

n j
n1

1 ⋅å = ( ). Similarly, one can consider a time-averaged codifference.

For all symmetric distributions the considered averages should be real-valued, so inmost of the practical
applications one can average over cos q ⋅( ( )) instead of exp i ;q ⋅( ( )) this was used for theMonte Carlo simulations
whichwill be presented further on.

Note that the so-called generalised codifference has Xs t+ andXsmultiplied by 1q and 2q respectively and
contains evenmore information [37]. In the context ofmodels that wewill consider this additional flexibility
does not seem to bemeaningful and so the cost of complicating our formulaewould be unreasonable.

Conversely, the basic formula for the codifference in the classical book of Samorodnitsky andTaqqu [37] is
similar to ours, butwith 1q = . In themathematical study of stable process this is sufficient, but inmore broad
physical applications introducing an arbitrary dimensional constant equal to unity is not desirable. In our choice
of definition the codifference has the unit ofX2 due to the introduction of 1 2q . This factormakes the
codifference comparable to the covariance, and allows us to show themon the same plots.When this is not
important the factor 1 2q can be omitted. There exists an evenmore simplified object, the dynamical functional
[44], which is just the numeratorminus the denominator from (1.2)with 1;q = it is used to study ergodicity
breaking [30, 45].

5
This similarity is what causes the ‘strong anomalous diffusion’ property, forwhich the power-law dependency X tt

q qv q µ∣ ∣ ( ) is observed
for non-constant function v [36].
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Instead ofmoments such as the covariance, the codifference depends on sines and cosines of Xs tq + and Xsq .
Expanding these functions into Taylor series around zero up to the twofirst terms and using the fact that for
stationary process X const.t =[ ] shows that the codifference agrees with the covariance for distributions
concentrated around the origin. Themost essential difference is that the codifferencemeasuresmainly the
dependence determined by the bulk of the probability density in contrast to the covariance, which putsmuch
larger emphasis on the tails. This is caused by the cancellation of highly oscillatory terms in the tails of the PDF as
stated by the Riemann–Lebesgue lemma,which is in contrast to the huge influence of the tails in the covariance
caused by the quadratic factor in the probabilistic integral X Xs s t +[ ].

Because of the presence of two highly nonlinear transformations: sine/cosine and logarithm, definition (1.2)
may initially not seem very intuitive. It becomesmore natural if we interpret it as a conveniently transformed
Fourier transformof the distribution (that is, the probabilistic characteristic function). In the full,
multidimensional form, the characteristic function contains all information about the dependence.Moreover
forGaussian variables it has the very simple form exp 22qs-( ( ) ), so it seems reasonable to use it as a
dependencemeasure formodels related to theGaussian distribution. Still, it is not obvious that the codifference
behaves as wewould require from amemory function. Fortunately, simple arguments show that this is the case.

(a) When X Xs t s=+ (the case of total positive dependence) the codifference is a positive constant
t 0 0X Xt t= >q q( ) ( ) . If the values Xs t+ andXs become independent, the codifference converges to 0. Both

facts are immediate consequences of the definition togetherwith

e e e 1 1.3X X Xi i i 2s t s s  = <q q q-+[ ] [ ] ∣ [ ]∣ ( )

and, for Xs t+ independent ofXs,

e e e . 1.4X X X Xi i is t s s t s  =q q q- -+ +[ ] [ ] [ ] ( )( )

(b) If the process is a sum of independent components X Y Zt t t= + then the respective codifferences are
additive
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This property is important in common applications, where the observed process usually is at least to some
degree disturbed by noise, which canmost often be assumed to be additive and independent of the basic
motion.

(c) If Xt
2 < ¥[ ] , the covariance can be viewed as a limit of the codifference,

t r tlim , 1.6X X
0
t =

q

q


( ) ( ) ( )

which stems from expanding the complex exponents in definition (1.2) into a Taylor series up to the second
term and noting thatwe obtained the logarithmof expression r t o1 X

2 2 2q q+ + q-( ( ) ( )) . It is then justified
to treat the codifference as a generalisation of the covariance.

(d) For aGaussian process the codifference equals the covariance for any θ

t r t , 1.7X Xt =q ( ) ( ) ( )

which follows immediately from a short calculation, see equation (3.6). Therefore comparing the
codifference and the covariance can be used tomeasure non-Gaussianity.

One intuitive property, that the codifference does not have, is symmetry. Considering two variables we fix
thefirst one and negate the second one (xa−x), andwe expect the strength of dependence to be the same but
for the sign to change. This is the case for the covariance, but not for the codifference, which is by design
nonlinear. Even in the borderline case X Xs t s= -+ wedonot have a guarantee that t 0Xt <q ( ) ,
counterexamples can be given even for the otherwisewell-behaved class of processes considered later. It is
actually possible to remove this sometimes inconvenient property by introducing the symmetrised codifference
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which for all symmetric distributions changes signwith respect to reflection, X Xs t s t-+ + . This quantity can
be useful if onewants to compare the strength of positive and negative dependencies, but there is a cost: the
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symmetrised codifference is ‘linear enough’ to ignoremany types of nonlinear ergodicity breaking, similarly to
the covariance, see equation (3.12). For this reason further onwewill use the non-symmetrised codifference and
study systemswith a positive type of dependence, at least in some suitable limit, such as t  ¥.

Note that if the codifference is a generalisation of the covariance, one should reasonably expect that there
exists a generalisation of theMSDdefined in a similar spirit. Indeed, let us consider the formula

t
2

ln e . 1.9X
X t

2
i t Xz

q
-q q m-( ) ≔ [ ] ( )( ( ))

This quantitymay seem trivial, because studying the distribution in Fourier space is a classicalmethod of
basic probability theory. But, the distinguishing part of this definition is that the result is treated primarily as a
function of time and it is conveniently transformed, so that it can be interpreted as ameasure of dispersionwith
the same unit asX2. Up to a rescaling it can be considered a cumulant generating function calculated at
imaginary argument, but such a quantity does not seem to have an established name in the literature, sowewill
call it by the straightforward term ‘log characteristic function’, in short LCF. It is clear that in analogy to the
features of the codifference, the LCFmeasuresmainly the spread of the bulk of the probability and ismuch less
influenced by the distribution’s tails than theMSD.As before, the first factor, here 2 2q , is optional and only
neededwhen onewants to compare the LCF to theMSD.

The LCF is indeed a reasonablemeasure of dispersion, as shown by the following properties.

(a) For independent Y Z,t t and X Y Zt t t= + ,

t t t . 1.10X Y Zz z z= +q q q( ) ( ) ( ) ( )

(b) For anyGaussian process the LCF equals theMSD,

t t . 1.11X X
2z d=q ( ) ( ) ( )

(c) Aswe stretch the probability density of Xt , the LCF diverges, that is,
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Thefirst two facts are analogues of the corresponding properties of the codifference which allow one to trace
the influence of the noise and detect non-Gaussianity. The point (c) is just the Riemann–Lebesgue lemma in
disguise: it corresponds to the intuition that the rescaled process should have a larger spread. It should be
mentioned that in general the LCF can be negative or complex valued, which is highly undesirable. However, for
the consideredmodels, which are based on internal Gaussian dynamics, this will never be the case, as proved in
proposition 2.

Decomposing any process with independent increments into a sumof its jumps shows that in this case tXz
q ( )

is a linear function. In particular, this holds of Lévyflights [37]. It also holds for continuous time randomwalks
with exponential waiting times [5], for which

t
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where J is one jump andT is onewaiting time of diffusion X . The dependence onT is the same as for theMSD,
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only the scaling depending on Jʼs distribution changes fromnonlinear to linear.
The LCF can also be used forfinite- or infinite-variancemodels which are ‘anomalous’ in some sense. A basic

example is fractional Lévy stablemotion L H
a [46]. It is stable and self-similar which implies that

t C t , 1.15L
H

Hz =q
q

a
a

( ) ( )

for some constantCθ, which depends on the chosen normalisation. This formula agrees with the intuition that a
measure of the spread in this case should behave like a power law. Somewhat surprisingly, the situation is
different for continuous time randomwalkswith power-lawwaiting times, which are used tomodel
subdiffusion. Such processes after rescaling converge to subordinated Brownianmotion B S ta( ( )), for which the
LCF can be calculated directly, using thewell-knownproperties of the inverseα-stable subordinator Sα [47],
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where Eα is theMittag-Leffler function [48]. This function approaches infinity like a logarithm; the exact
asymptotic is shown in equation (2.3). The difference between these twomodels of anomalous diffusion is that
L H
a is self-similar, so its PDF spreads in the uniformmanner, whereas for B Sa( ) the bulk ismuchmore
constrained than the tails.

After this brief discussion about the general properties of the codifference and related notions, wewill study
its behaviour inmore detail formodels based on randomparameters ofmotion and formodels based on
randomand time-varying diffusion coefficient. The next section 2 provides a general physical overview and
concrete examples useful for themodelling. The third and the last section 3 is dedicated to presenting
mathematical results and calculation techniques. The paper is written such that, if the reader prefers, the physical
andmathematical sections 2 and 3 can be read independently.

2.Modelling

2.1. Gaussian diffusion governed by randomparameters
One of the core concepts behind ergodicity and ergodicity breaking is the idea of looking at information
contained in a single trajectory.We speak about ergodicity if the data that can possibly be gained analysing one,
sufficiently long, series of observations, is the same as if one analyses all possible trajectories in the ensemble [49].
Conversely, if this amount of information is smaller, we speak about ergodicity breaking. In otherwords, there is
some information contained in a given trajectory, and using only a single trajectorywe omit the amount
contained in the rest. This is sometimes also rephrased as confinement in the phase space, but this languagemust
be used carefully as the said space has a subtle structure6.

From a different perspective,modelling based on the information content often leads to an intuitive
description, because the differences between trajectories often stem fromdifferences between diffusing particles
and differences between their local surroundings. Bothmay occur, e.g. in biological systems. The latter case
requires the additional assumption that the inhomogeneity present in the surroundings varies on a length scale
of themean distance between trajectories, but does not varymuch at the scale of the trajectories themselves. That
is, distinct trajectories have distinct surroundings, but each particle is sufficiently localised so that the state of the
medium around it does note change significantly. This is reasonable for examplewhen the particles are trapped
or themeasurement time is sufficiently short—compare, e.g. the absolute spread of the traced particles in [33].

In any case, this information can be parametrised, which leads to the so-called hierarchical ormultilevel
modelling [51], which in the context of physics is also called ‘superstatistics’ (a short term for ‘superposition of
statistics’) [52]. Deterministic parameters of the basicmodel become randomon an additional statistical layer.

2.1.1. Random diffusion coefficient
For diffusion the simplest example of an hierarchicalmodel is themotionwith a randomdiffusion coefficient,
the situationwhen different trajectories depictmovements with varying averagemobilities. A typicalmodel of
such observations is the grey Brownianmotion [53–55]

B t D B t . 2.1H H2 , =b b( ) ( ) ( )

HereBH is fractional Brownianmotion [56] and the diffusion coefficientDβ is an independent random
variable with the so-calledβM-Wright distribution [57]. Themoments of grey Brownianmotion are the same as
those of fractional Brownianmotion up to amultiplicative constant, therefore theMSD still grows as t H2 and the
processmodels anomalous diffusion. Nevertheless, a straightforward calculation yields that the LCF can be
expressed using theMittag-Leffler function,
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Here the asymptotic ‘ o 1+ ( )’ is pointwise, which is stronger than the asymptotic proportionality ‘∼’; in the
sense of ‘∼’ the term H t4 ln2q is dominating and the logarithmic behaviour clearly distinguishes the LCF from
the power-lawMSD at long times. This crossover behaviour can be used to distinguish grey Brownianmotion

6
Even for classical Brownianmotion it is the infinitely dimensionalWiener space [50].
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from fractional Brownianmotion (case 1b = [53]) and diffusing-diffusivitymodel (equations (2.27) and
(2.28)). The very slow log increase of the LCF is not surprising: because the diffusion constant is random, but
fixed and it constrains the relaxation of the probability density—it is detected by the LCF, but ignored by the
MSD; for amore general result see proposition 7(d).

Grey Brownianmotionmodels free, unconfinedmovements and is therefore not stationary. Still, the
codifference can be used for its increments B t B t t B tH H H2 , 2 , 2 ,D + D -b b b( ) ≔ ( ) ( ). The calculation is again
not hard and yields
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The covariance decays to zero like a power law t H2 1- , but the function above decays to the non-zero constant
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Thismeans that there is some degree of dependence left even at t = ¥which the covariance does not detect,
but the codifference does. Indeed, it can be interpreted as a joint dependency on the trajectory-wisefixed but
randomdiffusion coefficientDβ.

The above simple example shows that the codifference does not directly detect non-ergodicity, it rather
detects dependence. The notion ofmixing is useful to describe this idea. It is a property which states that the
future evolution of the process after a long delay becomes independent of its past values. Formally speaking, the
process ismixingwhen, if we calculate some statistic in some finite time interval starting at s, and later on any
other statistic starting at s t+ , these twomust become independent as t  ¥ [58]. Therefore, analysing the
codifference, whichmeasures the dependence between Xexp i sq-( ) and Xexp i s tq +( ), allows one to exclude
mixing, i.e. to indicate the presence of a non-vanishing dependence. The lattermeans that themotion is
constrained in phase space, which in turn implies ergodicity breaking7.

Thus, for a very large class of systems one does not need to study time-averages to detect non-ergodicity. It is
sufficient tofind a propermemory functionwhichwill indicate non-mixing. Aswe demonstrate the covariance
fails in this role for the consideredmodels, but the codifference works.

These detecting capabilities of the codifference work under quite general circumstances. If we observe any
ensemble ofmixing, zeromeanGaussian trajectories, the covariancewill converge to zero. This happens because
forGaussian process,mixing is equivalent to a decay of the covariance [58, 59], and themixture of decaying
covariance functions is decaying. But, the ensemble of trajectories as awholewill not be ergodic, whichwill not
be detected by the covariance. Let  is some parametrisation of thismixture, then the conditional average
D Xt

2 = [ ∣ ]be the resulting, possibly random, conditional variance.We call itD because if the data X
corresponds to the velocity or increments of displacements, it will be proportional to the diffusion coefficient.
Under these assumptions the codifference converges to the constant
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as proven in proposition 5. This quantity is related to the coefficient of variation defined as the standard
deviation divided by themean [23]. Denoting it by XCV[ ], the formula above can be expressed as

Dln CV exp 2 12 2 2q q- +- ( [ ( )] )which is an increasing function of DCV exp 22q-[ ( )]and asymptotically
quadratic for small CV . The coefficient of variation is ameasure of dispersion, hence so is Xt ¥q ( )which reflects
the randomness ofD. This behaviour is also equivalent to detecting a residual dependence and the resulting non-
mixing/non-ergodicity.

Outside of the useful limit t = ¥notmuch can be said about the properties of the codifference in such a
wide and general class. The situation changes if we consider amore specificmodel. The idea behind grey
Brownianmotion andmanyworks about superstatistics [52] is that the trajectories differmainly by the diffusion
coefficient, other properties are not significantly distinct. A simplemodel of such a system can bewritten as

X D Y . 2.7t t= ( )

Weassume that the process Y describes the joint formof dependence common for all trajectories.We
consider aGaussian Y , which for grey Brownianmotionwould be fractional Brownianmotion. Another
reasonable choice would be, e.g. a solution of the Langevin equation. In this case, as long as Y is stationary (i.e.
for free diffusionwe consider increments or the velocity process), the covariance is

7
The remaining class of processes which are ergodic but non-mixing is complicated and those do not seem to appear in applications. For a

mathematically constructed example of such a process and the discussion see [59].
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r t D r t , 2.8X Y=( ) [ ] ( ) ( )

of course as long as D < ¥[ ] . If the process Y has sufficiently longmemory, r t 0Y »( ) in the considered time
scale, also r t 0X »( ) . The covariance does not detect the additional dependence introduced by randomD.

At the same time the codifference can be expressed as a function of the covariance of Y , precisely as

t
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ln
e

e
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2 2

Y
2

2


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t
q

=q
q

q
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-
( ) [ ]

[ ]
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for anyD, nomatter if D < ¥[ ] . It clearly converges to the constant (2.6) as r t 0Y ( ) and detects the
additional nonlinear dependence.

For a general, possibly non-stationary Y with Y tt Y
2 2 d=[ ] ( ), the representation of the LCF is

t
2

ln e . 2.10X
D t

2
2Y

2 2z
q

= -q q d-( ) [ ] ( )( )

Given somemodel ofD these formulae can bemade completely explicit, examples are given in table 1. The

first example is the gamma distribution D ,
d
 a b= ( ) inwhich the coefficientα describes the power-law

behaviour of the PDFnear 0 andβ is the rate of exponential decay of the tails (the specific case 1, b( ) is the
exponential distribution); itmodels common types of experiments in which the distribution of diffusion
coefficients resembles a bump concentrated around some finite constant and high values ofD become
exponentially less probable. This case is also illustrated infigure 1.

Diffusion coefficients with a heavy-tailed distribution result in amotion that itself exhibits heavy tails of the
PDF, a phenomenon actively investigated in transport, finance, turbulence andmany other systems [6, 60, 61]. A
classicalmodel of this case is the one-sidedα-stable subordinator c, a( ), determined by its Laplace transform

csexp - a( ( ) ). The resulting type of process was thoroughly studied in the literature concernedwith stable
distributions [37]. This process is called sub-Gaussian, which is arguably a confusing term. In this case the
process X has no secondmoment, therefore attempts to estimate its covariancewill lead to a diverging result.
This is visible in the formulae for the codifference and the LCF,which diverge as 0q  . But, for any 0q > the

Table 1. Formulae for the codifference and the LCF corresponding to commonmodels ofD: gamma, one-sided stable,
Gaussian and uniform.
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Figure 1.Codifference τ and covariance r of the process X D Yt t= with D 1, 1
d
= ( ) and r t t tcos expY = -( ) ( ) ( ), as given by

table 1. Various properties of the codifference are visible: for 0q  it converges to the covariance; the codifference and the covariance
increase and decay in the same intervals; at t 0= the codifference is smaller than the covariance; as t  ¥ the codifference converges
to a θ-dependent value Xt ¥q ( )which is a functional of the law ofD; the type of asymptotic of r tX ( ) and tX Xt t- ¥q q( ) ( ) is the same
(here: exponential decay). The derivations are presented in proposition 6.
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codifference and the LCF arefinite and can be estimated in a standardway, and from the result if onewishes the
covariance and theMSDof Y can be reconstructed.

For a distribution concentrated around itsmean value one can useGaussian , 2 m s( ) or uniform a b,( )
distributions, however the former is only a validmodel for s m , when the probability that D 0< can be
neglected.

Even if the precisemodel ofD is not known, quite a lot can be said about the behaviour of the codifference. In
proposition 6we show that:

(a) the codifference is a monotonic function of the covariance. If one increases, the second one also increases,
the same goes for decreases;

(b) if D < ¥[ ] the codifference is smaller than the covariance for strong positive correlation, but larger for
weak or negative correlations;

(c) the approach to the value Xt ¥q ( ) has the same asymptotic as the decay of the covariance

t
D

r t t
e

e
, , 2.11X X

D

D Y

2

2




t t- ¥ ~  ¥q q
q

q

-

-
( ) ( ) [ ]

[ ]
( ) ( )

assuming r t 0Y ( ) , which is a typical case.
These are all desirable properties: thememory structure of the internal process Y is reflected in a

straightforwardmanner by the codifference. For small values of the covariance their relation is even linear, as
stated in (c), and the proportionality constant isfinite for any distribution ofD, due to the truncating
factor Dexp 2q-( ).

Another property is that the codifference depends additively onD. Precisely speaking, if we decompose
D D D= ¢ + ¢¢ for some independent D¢ and D¢¢, the codifference also decomposes for

t t t , 2.12X X Xt t t= +q q q
¢ ¢¢( ) ( ) ( ) ( )

where X ¢ and X ¢¢ are processes with diffusion coefficients D¢ and D¢ respectively. Therefore subtracting the
codifferences estimated fromdifferent samplesmay be used to analyse different sources of diffusivity. The
derivation is given in proposition 6.

Analogous features can also be checked for the LCF (proposition 7), which can also be decomposed for
D D D= ¢ + ¢¢ and is amonotonic function of theMSD, but is always smaller than theMSD, therefore detecting
the additional constraints of themotion introduced by a randomD.

At the end of the discussion about randomdiffusion coefficients we note that the behaviour of the
codifference near t 0= can also give valuable information. In proposition 8we prove that for a typical case
when D < ¥[ ] its asymptotic reflects that of the covariance.However, if D = ¥[ ] andD has power tails,
corresponding to the presence of high-volatility trajectories, the asymptotic of the codifference has an additional
power law. As forGaussian processes the behaviour of the covariance near t 0= is determined by their fractal
dimension [62], chapter 8.8, the same is true for the codifference, which can be applied also for processes with no
moments.

2.1.2. Randommemory decay rate
Another interesting type ofmodels are ensembles of particles for which the time dependencemay vary from
trajectory to trajectory. The simplestmodel of a time-varying dependency is the exponential decay texp - L( ),
which is the covariance ofOrnstein–Uhlenbeck process [63]. Itmodelsmany kinds of linear relaxation disturbed
by additive noise. It was also studied as amodel of the additivemeasurement noise itself [64, 65]. In the
hierarchicalmodel the decay rateΛmay be random. The covariance of the resultingmixture ofOrnstein–
Uhlenbeck type trajectories was studied in [66] in the context of a randomly parametrised Langevin equation.

The coefficientΛ has a different physical interpretation depending on the details of the studied
phenomenon. For the velocity of a Brownian particle it is proportional to the friction coefficient and its
randomness is related to local changes of the viscosity and/or different shapes of the diffusing particles [67]; in
this system thefluctuation-dissipation relation also links the scaling to the temperature. For trapped particlesΛ
is proportional to the stiffness of the confining harmonic potential (the prominent example being optical
tweezers [21, 68]), therefore the randomness ofΛ is equivalent to an ensemble of trapswith varying sizes, which
are proportional to 1L- .

Another case worthmentioning is that of viscoelastic anomalous diffusion [69], for which the velocity (or
increments)have power-law dependence t H2 1µ - . This function can be expressed as t Hexp ln 1 2- -( ( )( )).
Therefore it is enough to replace t with tln and the results further onwill also follow for the ensemble of power-
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lawmemory trajectories characterised by randomparameter H1 2-( ). It is worth to note that the variability of
the of theHurst indexH seems to bemore of a rule than an exception for biological systems [70–72].

We do notwant tomake the discussion overly technical, so belowwewill analyse only the case of
deterministic scaling and randomdecay rate, r t texpX

2 s= - L( ∣ ) ( ). Results formore general
Df texpL - L( ) ( ) are presented in propositions 10, 11 and 12, which prove that the randomness of the scaling is
not essential formost of the properties discussed below.We also note that sometimes one can remove the
random scaling and normalise the trajectories using the estimate of scaling obtained from the Birkhoff ergodic
theorem [58],

r
T

t X t0 lim
1

d . 2.13X
T

T

0

2 ò=
¥

( ∣ ) ( ) ( )

However, this procedure requires having access to sufficiently long trajectories.
A particular property of ensembles with fixed scaling is that anymarginal distribution is Gaussian, i.e. all

variables Xt haveGaussian distributionwith variance 2s . But the codifference can be found to be

t
1

ln e , 2.14X 2
e t2t

q
=q qs - L( ) [ ] ( )( )

and because it does not equal the covariance, the process as awhole is notGaussian. The codifference indicates
the presence of subtle non-Gaussianity of thememory structure. This formula can also be used to derive useful
bounds between the codifference and the covariance, see proposition 9.

Expanding in a Taylor series the exponent from (2.14) leads to
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Note that r kte kt
X

2s =- L[ ] ( ), so the result is a type of average over the values r ktX ( ).When the
distribution ofΛ is not sufficiently concentrated near 0 and the covariance decays fast (strictly speaking is rapidly
varying [73, 74]), the term k 1= dominates the t  ¥ asymptotic. This is the case, e.g. for the one-sided stable

variable c,
d
 aL = ( ) for which
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that is, we observe a stretched exponential type of dependence.
WhenΛ ismore concentrated around 0 the situation differs. A basic examplewould again be the gamma

distribution ,
d
 a bL = ( ), for which
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When 1a = (i.e.Λ has an exponential distribution) the above can also bewritten using the incomplete
gamma function. For anyα all terms in the sumdecay like t a- and they are comparable. Because of this, the
codifference also decays with the same power law, but the proportionality constant is non-trivial,
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It is not surprising that this behaviour is not specific to a gamma distribution and can be observed for anyΛ
with power-law PDFnear 0+, see proposition 10. Similarly, if the PDF ofΛ decays fast near 0+, the codifference
also decays fast. All these properties are analogous to those of the covariance [66], so here they can be used
interchangeably or simultaneously, as amean to obtain stronger statistical verification.

They are also similar in that both do not detect the non-ergodicity, more precisely the non-mixing, of this
system. Aswas already demonstrated for the covariance it is a commonoccurrence resulting from its linearity.
The codifference fails, because it doesmeasure only a reduced formofmixing. For the process to bemixing it
means that any two sets ofmultiple disjointmeasurementsmust become asymptotically independent, i.e. the
vectors X X X, , ,s s sn1 2

¼[ ]and X X X, , ,s t s t s tn1 2
¼+ + +[ ]have to become independent as t  ¥. The codifference

(and for thatmatter also the covariance)measures only the dependence between two valuesXs and Xs t+ .
For a process with a randomdecay rate these are asymptotically independent and the one-point distributions

are relaxing. Therefore, in order to detect non-ergodicity, we need to analyse the dependence between at least
three values. A practical choice is to use four values divided into two pairs X X,s s t+D[ ]and X X,s t s t t+ +D +[ ]. The
values in thefirst pair are correlated as e t-D L trajectory-wise, analogously for the values of the second pair. This
property of both pairs isfixed and random, i.e. it is a constant ofmotionwhich can be detected. Probably the
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simplestmethod to achieve this is to calculate increments

X X X 2.19t t t tD -+D≔ ( )

and study the codifference of those. A short calculation given in proposition 11 shows that thismethod indeed
works and
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The result depends onΛ in a complexmanner, but it can be easily estimated numerically.We can also use the
fact that for small tD the conditional covariance of increments is

r t D t t, 2 e 2.21X
t2 2 2 4sL Î D L + DD

- L( ∣ ) ( ) ( )

and normalise the process, X X tt tD D D~ ≔ . The result then simplifies and becomes independent of tD ,
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We stress here that thismethod cannot be applied using the covariance, which, calculated from increments,
decays to 0 and does not detect this specificmemory structure. Its decay is even quicker than for the original
process and proportional to the power law decay t 2a- - [66]. Intuitively speaking, the decay rate is quicker by a
factor t 2- , because the scale of XD depends onΛ as 2L and the trajectories with stronger correlation have
smaller amplitude and add less to the average. This property has its analogy for the codifference, for which

tX Xt t- ¥q q
D D( ) ( ) also decays like t 2a- - (see proposition 12 for amore general result). This time the faster

decay rate actually helps in detecting ergodicity breaking,making the limit Xt ¥q
D ( ) visible even at short times.

The numerical illustration of the discussed behaviour is shown infigure 2.

2.2.Diffusing-diffusivity
In the preceding sections we consideredmodels whichwere non-Gaussian and non-ergodic. For non-Gaussian
but ergodicmodels the codifference can also be a usefulmeasure of dependence. In particular we show that it can
be successfully used to analyse diffusing-diffusivitymodels.We now assume that the increments of Xt are
Brownianfluctuations, but rescaled by a time-dependent randomdiffusivity Dt ,

X D Bd d . 2.23t t t= ( )

This is a generalisation of the randomparametermodel, for which D const.t = Becausewemodified the
dynamical equation by replacing the previously constant parameter with a stochastic process,models of this
class are sometimes called ‘doubly stochastic’ [75]. Before application in physics, theywere extensively used in

Figure 2.Estimated codifference τ and covariance r estimated from the process with randomdecay rate 3 2, 1 2
d
L = ( ) and

t 1D = . In the presented domain the covariance r XD was negative, sowe plotted the negated value.One can observe the predicted
power law decays t 3 2µ - and t 3 2 2µ - - (equation (3.62)); the codifference of increments detects the non-ergodicity by converging to
a constant 0.105X

1.5t ¥ »D ( ) , whichfits perfectly equation (2.20). The value 1.5q = was chosen to best illustrate the interesting
properties; for smaller θ the codifference Xt

q becomes closer to the covariance rX , for larger θ the codifference XtqD converges faster to
the t  ¥ limit. To present smooth curves in the whole presented rangewe used a large 107 sample; the general shape of the
presented functions is already visible for samples around 104; a significant difference between r XD and XtD is observed using even a
few hundred trajectories. Examples for smaller sample sizes are presented infigure A1.
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financial engineering, where it is natural to assume that parameters of themarket, such as the volatility, vary in
time. In 1985Cox et al [76] proposed amodel of interest rate (now commonly namedCIR), which describes a
non-negative stochastic process with linearmean-reverting property. In 2012Chubynsky and Slater
independently proposed a special case of the CIR process as amodel of non-Gaussian diffusion [19, 77]. This led
theway to awider range ofmodels based onfluctuating diffusivity coefficient with a short timememory [78–82].
The evolution of the diffusion coefficient in theCIRmodel is defined by the stochastic equation

D a b D t D Bd d d , 2.24t t t ts= - +( ) ( )

where a 0> describes the speed of return to themean b 0> , and 0s > regulates the amplitude of the
fluctuations. In this equation as D 0t  the term a b D t ab td d 0t- » >( ) starts to dominate the fluctuations
with themean-squared amplitude D B D td dt t t

2 =[( ) ] , consequently Dd 0t > which causes themotion to
stay positive.We assume that the system evolved for a long time before the start of themeasurement and has

reached the stationary gammadistribution D ab a2 , 2
d

0
2 2 s s= ( ) [83]. Because of the non-Gaussianity the

LCF function should differ from theMSD. Conditioning by Dt , it can be expressed by the formula
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Expanding the above in powers of 2q shows that again t tX X
2z dq ( ) ( ) as 0q  .

The average in (2.25) appears in the calculation of the expected price of zero-coupon bond andwas
calculated in the initial paper of Cox et al [76], who derived the differential equationwhich it fulfils and then
solved it; amore general result is also available in [83]. The calculationwas performed for the casewhenD0 is
fixed and deterministic, however their result can be easily extended for stationaryD by averaging over the
equilibrium ab a2 , 22 2 s s( ) distribution ofD0. Then the formula for the LCF reads
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with a2 2g qs= +q ( ) . From that a brief calculation proves that themotion is Fickian for long times
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and also for short time, albeit with a diffusion scale agreeingwith theMSD

t bt t, 0 , 2.28Xz ~ q +( ) ( )

which should come as no surprise. For an illustration of these formulae seefigure 3, wherewe present results of
Monte Carlo simulations compared to the theoretical predictions. See also the crossover behaviour of theMSD
in the randomdiffusivitymodel in [81].

Figure 3.MSDand LCF for the diffusing-diffusivity CIRmodel defined by (2.23) and (2.24)with a b1 2, 1, 1s= = = . Solid lines
are functions estimated from 2 104´ trajectories simulated using the Euler schemewith t 10 ;3D = - dashed lines are the analytical
predictions given by (2.26); dotted lines are the long-time linear limits (2.27). It is clearly observed that theMSD exhibits a single linear
lawwhereas the LCF switches between two linear laws at t 0 + and t  ¥. Also note that for large θ and t the estimation becomes
unstable. It is caused by Xcos t q[ ( )]becoming comparable in amplitude to the estimation uncertainty; for this reason one should be
careful using the codifference and the LCF in the range X 1tq  .
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Ifwewant to analyse the codifference of theCIRmodel, itwouldbe required to study thememoryof the velocity
V D B td dt t t= . But thewhite noise B td dt is notwell-defined in a classical sense. It canbe interpreted as a
distributionwhich leads to a similar redefinitionof the covariance, the familiarDiracdelta.The codifference is,
however, nonlinear and this approach fails. The solution is to consider only thewell-defined velocity processes
V D Yt t t= withYt being someclassical processwhichmodels the velocity as beingundisturbedby thefluctuations
of thediffusivity. Thebehaviourof thewhite noise canbe studied ifwe consider t large enough such that r t 0Y =( )
strictly or approximately. It is natural to assume thatYt isGaussian,while choosing themodel of Dt ismore subtle.

TheCIRprocess for ab Î , canbeproved tobe a sumof squared independentOrnstein–Uhlenbeckprocesses,
which followsdirectly fromwriting the stochasticdifferential equationof sucha sum [83]. Thus, anatural generalisation
is to consider Dt beinga squareof aGaussianprocess [80, 81].Wewill assume that the velocity canbedecomposedas

V Z Y , 2.29t t ts= ∣ ∣ ( )

where both Zt and Yt areGaussianwith variance one. In thismodel we have ample freedom in describing awide
range ofmemory types, because any covariance rZ and rY can be used. By choosing rY wemodel the internal
dynamics, if r t 0Y =( ) in the considered time scalewe arrive back at (2.23); by choosing rZwemodel thememory
structure of Dt : exponential, power law, oscillating, etc. The one-dimensional distributions aremore rigged, as
we limit ourselves to Dt having the PDF of a squareGaussian, that is 1

2c distribution (a special case of the gamma
distribution). A rather technical derivation (proposition 13) then shows that the exact formof the codifference is
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This formula looks complicated, but is composed only of elementary functions. It is illustrated infigure 4, were
we plotted the codifference Vt

q as a function of rZ and rY for four different θs.Having calculated the codifference

Figure 4.Codifference Vt
q as a function of rZ and rY as given by equation (2.30).White isolines are drawn at levels

, 2 14, 1 14, 0, 1 14, 2 14,¼ - - ¼{ }. The dependence on rZ is symmetric, which can be seen directly from the definition
V Z Yt t ts= ∣ ∣ . For larger θ the codifference varies less and the influence of the positive dependence of Dt becomes dominating (the
isolines becomemore concave). For a given Vt

q the covariances rZ and rY can be determined by looking for the crossing points of the
corresponding isolines for at least 2 different values of θ.
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for at least two θs, one can solve the systemof equations resulting from (2.30) and calculate r r,Z Y . This procedure
may be considered simpler than using the covariance rZ, which requires calculating the average of Z Zs s t+∣ ∣given
by a hard-to-evaluate integral. The covariance rV can also be obtained from taking the limit 0q  of the
codifference.

More importantly, when r t 0Y =( ) the codifference is clearly non-zero, so it detects the dependence
introduced by D Zt t

2= . Its asymptotic for small r tZ ( ) (e.g. at long times) in this case is the simple relation

t r t r t
2 1

, 0. 2.31V Z Z

2

2 2
2t

s
qs

~
+

q ( )
( ( ) )

( ) ( ) ( )

Thus the codifference detects thememory structure of the time-varying diffusion coefficient D Zt t
2= even

in the regime r t 0Y =( ) inwhich the covariance r tV ( ) is zero and does not contain any important information.
This is also truewhen r t 0Z =( ) but r t 0Y ¹( ) , this time the codifference is asymptotically proportional to
r t ;Y ( ) the proportionality constant depends only on the one-dimensional distributions ofD, the exact formof
the dynamics does notmatter, see proposition 14.

For some systems differentmodels of Dt may bemore suitable.When Dt is strongly concentrated around its
mean value a possible choice is a simpleGaussian centred around some b,V Z b Yt t ts= +( ) . Thismodel
permits the unphysical situationwhen D 0t < , but when bs  the probability of this event is negligible. In this
case an elementary formula for the codifference also can be given (see (3.78)) and again even for r t 0Y =( ) the
internal dependence of Dt is still detected, this timewith asymptotic

t
b

r t r t
1

, 0. 2.32V Z Z

2

2 2
t

qs
~

+
q ( )

( ( ) )
( ) ( ) ( )

2.3.Discussion
The aimof this workwas to provide the theoretical background for using the codifference as a dependence
measure suited for the study of various non-Gaussian and ergodicity breakingmodels. This goal was achieved in
few steps. First we proved that the codifference has intuitive properties that onewould expect from a reasonable
memory function, such as additivity, positivity for the case of complete dependence and being null for the case of
independence. Second, we showed that it can be calculated using fairly straightforwardmethods for typical
randomparameters and diffusing-diffusivitymodels, which represent a significant extension of the previously
established results for stable and infinitely divisible processes. Finally, we analysed how the codifference detects
forms of dependence and ergodicity breakingwhich cannot be easily studied using solely covariance-based
methods.

We also showed one example of non-detected ergodicity breaking, the case of a Langevin equationwith a
random return rate. In this case we offer an easy fix: the codifference workswell for the increments of this
process.We note thatwithin this paper we did not analyse ergodicity breaking caused by ageing. In principle, the
codifference shouldwork, but the analytical analysis will be challenging formany of these phenomena.

In addition to the codifference, we also discussed a related quantity, the logarithmof the characteristic
function (LCF), whichwas interpreted as ameasure of dispersion.Our contribution is an extension of the
Fouriermethods and a distinct view based on ideas previously developed only for heavy tailedα-stable
distributions. The codifference is also very closely related to the theory of the dynamical functional, whichwas
already successfully used for real data, and should be considered a part of the same framework.

The cost of using this technique is that linearity is a powerful analytical tool, especially for complicated
models, and a significant part of this strength is lost when using the codifference. Themore complicated defining
formula alsomaymake its formmore complicated (e.g. see table 1). However, it is a clear application of the
characteristic functionwhich does not seem to be commonly acknowledged and the Fourier-based techniques
by themselves are widely used by the scientific community. Thus, it has an advantage, offering awide choice of
established analyticalmethods and estimation techniques. In some cases (e.g. (2.30)) the codifference has a
simpler form than the covariance.

We believe that themost important example thatwas consideredwas also the simplest: deterministicmotion
with its scale (diffusion coefficient) varying from trajectory to trajectory. The observed asymptotical behaviour
of the codifference contains a lot of useful information and lays the foundation for possible future applications in
more complex and realisticmodels, some ofwhichwe discussed. At the same timewe stress that even this initial,
highly simplifiedmodel is being commonly used, especially in biophysical systems.

We are confident that the obtained results are interesting in their own right, but we also promote their
additional value by indicating the limitations of themethodology based on theMSDand the covariance. Both
are, without a doubt, essential parts of the scientific language related to diffusion and complex phenomena, but
their limitations are becomingmore andmore evident, as contemporary research starts to concentrate around
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non-Gaussian systemswith complicatedmemory structure; the change is stimulated by increasing experimental
evidence. These complex and nonlinear phenomena require new complex and nonlinearmethods.

3.Derivations

3.1. Basic definitions and properties
All processes considered in this work can be labelled as ‘conditionally Gaussian’. In practical applications these
processes areGaussian locally, in the temporal or spatial sense. The formal definition ismore general.

Definition 1.Wecall a process conditionally Gaussianwhen any of its finite-dimensional distributions is a
Gaussian distribution under some conditioning byσ-algebra  . That is, anyfinite dimensional distribution
X X X, ,t tn1

¼≔ [ ]can bewritten as

X YA , 3.1m= + ( )

whereA andm are a -measurable n n´ randommatrix and an n-dimensional random vector. Bothmay
depend on t t, , n1 ¼ . The vectorY is i.i.d. 0, 1( ) and is independent ofA andm.

If 0m = for any t t, , n1 ¼ we call a process conditionally centredGaussian. Further onwewill consider only
this class. Similarly, we call a process conditionally stationaryGaussian, if the distribution ofA andm does not
depend on time translation t t t t t t, , , ,n n1 1¼ + ¼ + .

Proposition 1.The distribution of a conditionally Gaussian process is completely determined by the knowledge of  ,
the conditionalmean and the conditional covariance

t X r s t X X, , . 3.2X t X s t    m =( ∣ ) [ ∣ ] ( ∣ ) ≔ [ ∣ ] ( )

The process is conditionally centred if and only if t 0X m =( ∣ ) . The process is conditionally stationary if and only if
t const.X m =( ∣ ) and r s t,X ( ∣ ) is a function of t−s, denoted r t sX -( ∣ ).

Proof.This is a direct consequence of the equality

X A X A X A X AP , , P , , . 3.3t t n t t n1 1n n1 1 Î ¼ Î = Î ¼ Î( ) [ ( ∣ )] ( )

The conditional probability on the right is aGaussian integral and a function of tX m ( ∣ ) and r s t,X ( ∣ ). The
representation of conditionally centred and stationary processes are just a reflection of the analogical
representations forGaussian processes. ,

Definition 2.Wedefine the codifference function as

s t,
1

ln
e

e e
. 3.4X

X X

X X2

i

i i

t s

t s


 t

q
q

q

q q

-

-
( ) ≔ [ ]

[ ] [ ]
( )

( )

For stationary process it is a function of t−s, whichwe denote as tXt
q ( ), similarly as for the covariance, see also

equation (1.2).
Additionally, we define the log characteristic function (LCF) as

t
2

ln e . 3.5X
X t

2
i t Xz

q
-q q m-( ) ≔ [ ] ( )( ( ))

All expected values in the above definitions arefinite, but theymay be complex and the denominatormay be 0.
This is however not the case in the class of processes considered herein.

Proposition 2. For any conditionally centred Gaussian process the codifference and the LCF are well-defined real-
valued functions.

Proof.TheGaussian function centred at 0 is positive-definite. Themixture of positive-definite functions is
positive-definite. Therefore all expected values in definition 2 are real numbers larger than 0 and less or equal 1.
The logarithms are therefore real. ,

Wealso note that for conditionally centredGaussian processes a reduced formula for the codifference is
available,
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which is very useful for calculations. For non-centred process the additional term

1
ln

e

e e
3.7

t s

t s2
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qm qm
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appears. Here all averages are finite, but they can generally be complex values,moreover in particular cases the
averages in the denominator can be 0. This strongly suggests the codifference should be used carefully in this case
(the same applies to the LCF).

Additionally, representation (3.6) yields another desirable property of the codifference:

Proposition 3. For a conditionally centredGaussian process with positive covariance r s t,X ( ∣ ) the codifference
s t,Xt

q ( ) is also positive, a negative conditional covariance implies negative codifference.

If the support of r s t,X ( ∣ ) is on both positive and negative half-axes, the sign of the codifferencemay vary,
but it is worth noting that with r t t,X ( ∣ ) and r s s,X ( ∣ ) fixed, it dependsmonotonically on r s t,X ( ∣ ), so if the
conditional covariance is smaller in the sense of stochastic dominance, the codifference will also be smaller.

Now, a simple fact follows only from the expansion x x o xln 1Î - +( ) ( ) as x 1 .

Proposition 4. For any stationary process X with asymptotically independent values

t t
1 e

e e
1 , . 3.8X
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X X2
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i i
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Proof.Weassume that Xs t+ andXs are asymptotically independent as t  ¥ (note that this property is not
sufficient to imply that X ismixing). Therefore

e e e , 3.9X X
t

X Xi i is t s s t s  q q q- ¥ -+ +[ ] ⟶ [ ] [ ] ( )( )

and the ratio of expected values under the logarithm converges to 1 sowe can use the expansion
x xln 1» -( ) . ,

This simple fact is a prototype for the later results, which describe cases when it is possible to remove the
nonlinear logarithmic function if the process can be somehowdecomposed as a transformation of someweakly
dependent variables.

If the process X does not have asymptotically independent values the non-linearity cannot be removed at
t  ¥, but if it is an ensemble of such processes (i.e. the conditioned process ismixing), it can be shown that the
codifference converges to a positive constant, non-linearly dependent on the law ofD.

3.2. Randomparametermodels

Proposition 5. If the process X is an ensemble ofmixing stationary centredGaussian processes, then, denoting
D Xt

2 = [ ∣ ],

1
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e
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and equal 0 only for deterministic D.

Proof.The calculation is simple. Because r t DX  ( ∣ ) almost surely the randomvariable e r t DX
2 q -( ( ∣ ) ) is positive

and bounded by 1 for every t .We can commute the limit with the logarithm and the averaging, getting
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The non-negativity of the above stems from Jensen’s inequality applied to the function x x2 and the variable
e D 22q- . ,

Remark.A similar calculation repeated for symmetrised codifference (1.8) shows that it does not exhibit this
behaviour. Under the same assumptions
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i.e. it cannot detect this formof residual dependence and ergodicity breaking.

Proposition 6. Let the process X have the form

X D Y , 3.13t t= ( )

where Y is a stationary Gaussian process, Y 1t
2 =[ ] , and D 0> is a random variable independent of Y . Then the

codifference has the form

t
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(a) It is additive with respect toD, that is if D D D= ¢ + ¢¢ for independent D¢ and D¢¢, then

t t t 3.15X X Xt t t= +q q q
¢ ¢¢( ) ( ) ( ) ( )

where X D Yt t¢ = ¢ and X D Yt t =  .

(b) It is an increasing function of the covariance r tY ( ), which is smaller than r tX ( ) for r tY ( ) close to 1 and larger than
r tX ( )when the latter is close to 0. If D < ¥[ ] the difference t r tX Xt -q ( ) ( ) decreases as a function of r tY ( ).

(c) For any mixing Y the difference tX Xt t- ¥q q( ) ( ) exhibits the same type of asymptotic as the covariance r tY ( ),
that is

t
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r t t
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Proof. Let us start fromwriting the conditional covariance,

X D D X X D D r t, 2 1 , 3.17t s t s Y
2 2 = - = -+[ ∣ ] [( ) ∣ ] ( ( )) ( )

which implies that
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If we substitute D D D= ¢ + ¢¢ both numerator and denominator factorise as products of independent random
variables. The formula

t t t 3.19X X Xt t t= +q q q
¢ ¢¢( ) ( ) ( ) ( )

follows.
In point (b) themonotonic dependence is a consequence of the fact that only the numerator of the fraction in

(3.14) depends on r tY ( ). It is a Laplace transformof the variableD calculated at the point r t1 Y
2q -( ( )), it

decreases as the argument increases, so it is an increasing function of r tY ( ). This dependence is continuous.
When r t 0X =( ) , e.g. always for t 0= formula (3.14) simplifies andwe can apply Jensen’s inequality,

D r0
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q q
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For r tY ( ) close to 0we can use proposition 5 to determine that the codifference is positive. For the last property
listed in b), let uswrite the difference t r tX Xt -q ( ) ( ) as a function of r r tX= ( ),
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Using themajorised convergence theorem, the derivative of the numerator exists and determines the sign of f ¢.
Denoting F D D r1r

2 q - -≔ ( [ ])( )we have
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wherewe used the fact that F 0r =[ ] and x e 1 0x --( ) .
For (c) consider tX Xt t- ¥( ) ( ) and use the expansion x xln 1» -( )
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Nowwe can rearrange the right side of the above equation and get
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The analogues of (a) and (b) also hold for the LCF, the derivation is very similar as in proposition 6 sowe only
state the result.

Proposition 7. Let the process X have the form

X D Y , 3.25t t= ( )

where Y is a centredGaussian process and D 0> is a random variable independent of Y .
Then the LCF has the form

t
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ln e 3.26X
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2
2Y

2 2z
q

= -q q d-( ) [ ] ( )( )

and:

(a) if D < ¥[ ] then

t t t, 0 . 3.27X X
2z d~ q +( ) ( ) ( )

(b) It is additive with respect toD, that is if D D D= ¢ + ¢¢ for independent D¢ and D¢¢, then

t t t 3.28X X Xz z z= +q q q
¢ ¢¢( ) ( ) ( ) ( )

where X D Yt t¢ = ¢ and X D Yt t =  .

(c) It is an increasing function of theMSD tY
2d ( ).

(d) For D < ¥[ ] the difference t tX X
2d z- q( ) ( ) is non-negative and increases as tX

2d ( ) increases.

The asymptotic of the codifference near zero depends on the tail behaviour of pD and can be used to study it.
This statement is clarified by the following result.

Proposition 8. If the stationary Gaussian process Y is mean-square continuous and X D Yt t= , then

(a) for D < ¥[ ]

t D r t t0 1 , 0 3.29X X Yt t- ~ - q q +( ) ( ) [ ]( ( )) ( )

and

t D t t, 0 . 3.30X Y
2z d~ q +( ) [ ] ( ) ( )
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for some slowly varying function L, then
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Proof. For amean-square continuous Y the covariance rY is a continuous function. The codifference is also
continuous and x xln 1» -( ) implies that
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The derivation for Xz
q is similar. For point b)wewrite the asymptotic of t0X Xt t-q q( ) ( ) as the integral
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Now, let usmove our attention from a randomD to the class of processes, for which the shape of the
covariance function varies from trajectory to trajectory:

Proposition 9. For amixture of stationary Gaussian processes with fixed non-random scale D 2s=
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The above formula also implies that
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Proof.Assumption of afixed variancemeans that X t 2 2 s=[ ( ) ∣ ] for some deterministic 2s . Using the
conditional expectancy it follows that
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Now the left inequality is just Jensen’s inequality applied to the function ln. The right inequality follows from
two approximations: the first is x xln 1 - , the second is x L L x Lexp sinh cosh1 +-( ) ( ) ( ) for

L x L - . ,

For the exponentially decaying conditional covariance stronger results are available:

Proposition 10. For amixture of stationary centredGaussian processes with conditional covariance
r t D D, eX

tL = - L( ∣ ) , withΛ andD independent, we observe the following asymptotic properties.

(a) Power law behaviour: if p L , 01l l l l~ a
L

- +( ) ( ) for slowly varying L, then

t C
L t

t
, 3.40X X ,

1

t t- ¥ ~q q
a q a

-
( ) ( ) ( ) ( )

where the constant C ,a q is
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(b) Quick decay behaviour: if p , 0l l lÎ L
¥ +( ) ( ) then

t t t, . 3.42X X t t- ¥ Î  ¥q q -¥( ) ( ) ( ) ( )

(c) Truncation: if 0lL = + L
~
for deterministic 00l > then

t te , 3.43X X
t

X X
0t t t t- ¥ - ¥q q l q q- ~ ~( ) ( ) ( ( ) ( )) ( )

where X
~
is a solution of the Langevin equationwith viscosity L

~
and the sameD.

Proof. For (a)first we apply the expansion x xln 1» -( ) to tX Xt t- ¥q q( ) ( )
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Note that the sumwithin consists of positive terms, so the commutation of expectation and sum is justified.
Now, knowing the asymptotic p , 01l l l~ a

L
- +( ) we can apply the Tauberian theorem
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The sum (3.45) consists of positive terms, so let us study its asymptotic
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where the commutation of taking the limit and the sum is justified by the inequality

t te e . 3.48kt t  a a- L - L[ ] [ ] ( )
The right term is convergent with respect to t , therefore it is bounded, so the left term is uniformly boundedwith
respect to k andwe can use the dominated convergence theorem.

Note that the resulting sum is also boundedwith respect toα,
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This concludes the derivation of (a). Now let us prove (b).We fix integer N 0> and thenmake the estimation
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The limit follows because it is a convergent sumof positive terms.
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In order to prove the last point (c)notice that e 1t 0 <l- and e 1t 0 >l so x xe t 0l- is a concave function and
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In the next propositionwewill study the properties of the increment process

X X X 3.53t t t tD -+D≔ ( )

and use it to detect non-ergodicity.

Proposition 11.Considering the same process as in proposition 10, the codifference of its increments XtD converges
to a constant

tlim
1

ln
e

e
0, 3.54

t
X

D

D2

2 e 1

e 1 2

t

t

2

2




t
q

=q
q

q¥
D

-

-

-D L

-D L
( ) [ ]

[ ]
( )

( )

( )

which equals 0 only when bothD andΛ are deterministic. After suitable rescaling X X tt tD D D~ ≔ the limit
becomes independent of tD ,
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Proof.The reasoning is similar to the one shown in the proof of proposition 6 (b). The increment process XtD is
a stationary process, which is conditionally Gaussian.We can calculate its conditional variance
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and the variance of the difference
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Applying Jensen’s inequality to the variable e D2 e t2q -D L
and the function x x2 yields the inequality.

For the rescaled process it is straightforward to calculate that
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The last considered class of covariance functions is Df texpL - L( ) ( ). The increment process from
proposition 11 fits this class with f t1 expL = - -D L( ) ( ), higher order increments and other similar
transformations correspond tomore complex f, but their behaviour at 0+ can be easily traced.Note that the
proposition below is not a straightforward generalisation of proposition 10. The statements andmethods of the
derivation below are similar, but the assumptions do not coincide, because the introduction of the scaling f L( )
with a power law at 0wasmade at the cost of adding the strong requirement about the fast decay of tails of
D, Dexp 2 q < ¥[ ( )] :

Proposition 12. Let us consider the stationary, conditionally Gaussian process characterised by the conditional
covariance
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r t D Df, e . 3.60X
tL = L - L( ∣ ) ( ) ( )

Now, let us assume thatD andΛ are independent, e D2 < ¥q[ ] and the PDF ofΛ has the form
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We thus need to study the tail behaviour of
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Wewill analyse it using a bottom-up approach and start from considering the long time asymptotic of the
conditional expected value D ⋅[ ∣ ] for one term,
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And for the right term, the Stirling formula shows that
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so thewhole series behaves like k 1 a g- - - and is summable.
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Therefore, we have shown that we can use the dominated convergence theoremwith respect to series (3.65)
multiplied by t L t1a g+ ( ). According to (3.66) the term k 1= converges to D a gG +[ ] ( ) and all terms
k 1> decay like t kg- . Only the first term remains in the limit t  ¥ and
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Remark.Propositions 10 and 12 above can be generalised by replacing t by g t( ) in the formula for the
covariance, the only requirement is that g t  ¥( ) as t  ¥. This allows one to consider somemore general
types of the dependence, e.g. the power-law t H2- corresponds to H2L = and g t tln=( ) ( ).

3.3.Diffusing diffusivity

Proposition 13. Let us assume that Y andZ are centred stationaryGaussian processes.Without loss of generality we
assume Y Z 1t t

2 2 = =[ ] [ ] . Let X be given by

(a)

X Z d Y , 3.73t t ts= +( ) ( )

(b)

X Z Y ; 3.74t t ts= ∣ ∣ ( )

with deterministic d, 0s > . Then the codifference of X is given by elementary formulae, as given at the end of
corresponding derivations in equations (3.78) and (3.82).

Proof.Webegin by conditioning over Zt , the averages then becomeGaussian averages rescaled by values Zt .
Nextwe calculate the denominator in the codifference
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The last equality corresponds to calculating aGaussian integral, which can also be interpreted as a Laplace
transformof the distribution 12c ( ). The numerator ismore complicated,
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Both obtained terms areGaussian integrals which can be easily evaluated. Taking both together and calculating
the logarithmwe obtain
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For (b) the denominator is simple and yields 1 2 1qs+ -( ( ) ) . The numerator can be expressed as
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Using the formula for the two-dimensional density of Z Z,s t s+[ ], the termunder the logarithm in the formula for
the codifference can be expressed as an integral over the function
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The integration over 2 of (3.80) can be changed to an integration over 2+
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Now, the codifference is t IlnX
2t q=q -( ) . ,

When r t 0Y =( ) the above formulae simplify significantly and simple asymptotic can be derived by direct
computation, see equations (2.31) and (2.32). The case r t 0Z =( ) also leads to a simplification and can be
considered in amore general setting.

Proposition14. IfYt is a stationaryGaussian process, Y 1t
2 =[ ] and for large enough t values Ds and Ds t+ are i.i.d.

and independent ofY , then for X D Yt t t=
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whereD has the same distribution as Ds or Ds t+ .

Proof.We take t large enough so that we can represent the values of X as X D Ys s1= and X D Ys t s t2=+ + for
i.i.d. D1 and D2. Using a conditioning on D D,1 2 the codifference can be expressed as
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Nowwe consider the numerator in the above, divide it by r tY ( ) and, using dominated convergence as in previous
propositions,
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The result follows. ,
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Appendix. Sample size dependence of codifference and covariance

In supplement tofigure 2we show infigure A1 that even for smaller sample sizes such as 104, 103, and 500
significant differences between the covariance and codifference of increments are visible.
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