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Non-Gaussian, non-ergodic, and non-Fickian
diffusion of tracers in mucin hydrogels†

Andrey G. Cherstvy, a Samudrajit Thapa,a Caroline E. Wagnerbc and
Ralf Metzler a

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-

Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive,

thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component

of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of

tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with ‘‘diffusing

diffusivity’’, fractional and standard Brownian motion are used. The likelihood functions and evidences of

each model are computed, ranking the significance of each model for individual traces. We find that

viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model

with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of

time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the

degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also

quantified. We conclude that—consistent with the original study—diffusion of tracers in the mucin gels is

most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks.

Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis

of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion

in mucin gels.

I. Introduction
A. Biological significance of native-mucus films

Mucus hydrogels are ubiquitous in animal biology, being
quintessential for the survival of animals of multiple classes
(tetrapoda (mammals, amphibians, reptiles, birds), marine
invertebrates, etc.). Sticky polymer-based mucus films are
robust and selectively-permeable filters that maintain tissue-
protective barriers1–21 with intricate physico-chemical properties,
performance-optimisation strategies, and functioning mechan-
isms. Native mucus forms renewable layers on many surfaces in
the human body not protected by ‘‘dry’’ epithelium.22 These
water-based (92–98% of water content) polymeric hydrogels with
B1–5 wt% of mucin–glycoprotein13 coat ‘‘moist’’-epithelial sur-
faces. Additional mucus constituents are ions, lipids, proteins,

and DNA.8,18,23 Mucus is present in the eye (vitreous humour17)
and oral (saliva10,24–26) cavities, in the respiratory tract
(lungs,2,10,23 sputum in bronchi, nasal airways3,6,12,27), gastro-
intestinal (stomach and intestine1,4,7,28–31) and female genital
tract (cervicovaginal mucus9,11,15,17,32), see Fig. 1a and ref. 13
and 20.

In the stomach and lungs, the mucosal surface ensures
protection from harmful molecules and pathogens. In the
lungs, via the cilia-beating mechanism,2 the mucus film establishes
an active ‘‘transportation’’ of inhaled particles—pollutants, aller-
gens, toxic agents, dust, pathogens,8 viruses,9,18,22,26 bacteria,22

etc.—out of the body.2 Hypersecretion and/or dehydration of mucus
gels contribute crucially to chronic airways diseases, such as
asthma, bronchitis, cystic fibrosis,5,8,16,27,33 and chronic
obstructive pulmonary disease.2,12 Enteric infections of the
intestine present major health problems, in the industrialised
and developing world.1,31 The bacterial pathogen Helicobacter
pylori colonises a sizeable part of the human population
(stomach), causing inflammation and gastrointestinal disease,4,10

and, possibly, also triggering gastric cancer.31,169 Additionally,
mucus films on the surfaces of internal organs serve as effective
lubricants.8,25

These examples underline the paramount importance of
mucus, Fig. 1a, making it a popular subject of biological,
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biophysical, and statistical-physics research. This research has
accelerated in recent years due to the experimental exploration
of various aspects of the functioning of native mucus and of
hydrogels of purified mucins, and the quantification of these
results by statistical measures and description by theoretical
models.

Due to ‘‘mucoadhesion’’,6,10,18 mucus layers can trap and
neutralise virus-like particles smaller than the meshwork size
(down to B50 nm9). Conversely, considerably bigger but non-
sticky particles can still diffuse through the mucus layer.1

The addition of salt strengthens the protective properties of
mucus against the penetration of viruses.9 The permeability of
mucus depends on a typical mesh-size of the mucin network,
on the types of physical tracer–gel interactions involved, on
external conditions, and, clearly, on tracer size, see Section
V(C). Moreover, the thickness of mucus varies between tissues
and organs,1,10,14,17,31 as does the wt% of mucins.

Pathogens, in turn, invent various elaborate strategies to
reduce their binding to mucin chains—for instance, by degrading/
disrupting mucus films18 or changing the viscoelastic
properties of mucus31—to ease their penetration through the
protective layer.1,17,28 The diffusion of pathogens and other

molecules of varying chemical structure and surface composition18

in mucin gels10 provides experimental evidences required, e.g.,
to optimise strategies of drug/gene delivery through mucus
layers8,15,17,18,34,35 (see ref. 36 for the perspective on injectable
biodegradable hydrogels for drug delivery). For instance, a
number of macro- and micro-rheological37,38 measurements on
mucus (in bulk and on thin films) have been performed over the
last few decades8 to unravel its mechanical and viscoelastic
properties as well as the response characteristics.170

B. Mucins and structural analysis of their networks

Mucin is the major constituent of mucus with a high molecular
weight.18,20,25 At neutral conditions (pH = 7) mucin chains are
negatively charged glycoproteins which interact via hydrophobic
and electrostatic39,40 forces as well as via the formation of
disulfide bonds.20,30 Therefore, it is not surprising that many
positively charged (sub)micron-sized particles get trapped in
mucus gels.18 Particle–gel binding is one physical mechanism
of hindrance of pathogen propagation in polymer films,14,22,41

see also ref. 42 and 43. At pH = 2, the mucins are close to
neutrally charged and extended (as compared to a coil-like20

shape at pH = 7). Mucin chains can chemically crosslink; their
oligomers25 polymerise up to giant molecular weights, MW B
50–100 MDa,19 via end-to-end disulfide bonds. This results in
complex polymer networks8,10,12,20 with rich internal dynamics
over several timescales, see, e.g., Fig. 4 in ref. 10. The perme-
ability of such a network to thermally agitated and actively
driven tracers is controlled by size- and interaction-dependent
mechanisms, see ref. 2, 6, 7, 10, 12, 17, 18, 20 and 26 for
a discussion. Additionally, mucosal surfaces can host a
number of bacteriophages which—via performing subdiffusive
motion—optimise their search strategies for external bacteria
in the limit of rare phage-host encounters.16

The family of secreted mucins contains oligomeric gel-
forming (MUC2, MUC5AC, MUC5B, MUC6, and MUC19) and
nonpolymeric (MUC7 and MUC8) glycoproteins.1,2,12,26 Each of
them has specific physico-chemical and material characteristics,
affecting tracer diffusion in respective gels.10,12,17,20,25 In recent
years, the properties of translocation of tracers and virus-like
particles in mucin gels17 were explored in a number of
experiments,5–7,10,13–17,19,20,25,27,34 e.g., via single-particle track-
ing (SPT)47,48 and subsequent single-trajectory data analysis.171

Tracer diffusion in gels of MUC5AC9 was studied in detail
recently19,20 (see Section III below and Fig. 2). The data of
ref. 19 and 20 provide the experimental basis for the statistical
and Bayesian analysis presented below, the main focus of the
current study.

C. Structure of the paper

The paper is organised as follows. In Section II(A) we introduce
the theoretical quantifiers for the data analysis. In Section II(B)
we shortly overview the concepts of stochastic diffusivity, super-
statistical viewpoint, and the Bayesian model-ranking approach. In
Section III we overview the features of diffusion of tracers of different
sizes, under varying conditions, and subject to different measure-
ment protocols in mucin gels, as examined in ref. 19 and 20.

Fig. 1 (a) Mucus films in the human body, with their respective pH
conditions. The image is reproduced from ref. 26 (Open-Access domain).
(b) Artistic view of polymer-confined and diffusing tracers in strongly
heterogeneous mucin hydrogels (background images: source files courtesy
pixabay.com).
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In Section IV the main findings of the model ranking and
statistical data analysis are presented. They include the results
of the Bayesian approach (Section IV(A)), the evaluation of time-

averaged displacements, di2 (Section IV(B)), the distribution of
scaling exponents bi and diffusion coefficients (Kb)i of time-
averaged displacements, the extent of Kb–b correlations
(Section IV(C)), the ergodicity breaking parameter (Section IV(D)),
the non-Gaussian PDFs of displacements (Section IV(E)), and,
finally, displacement autocorrelations (Section IV(F)). These quan-
tifiers can be used, e.g., to characterise medium heterogeneities
and determine the most relevant model of diffusion. In Section V
the results are discussed in the context of diffusion models
consistent with the data.19,20 In Section V(C), we list certain aspects
of this system that still remain to be understood. The details of
the Bayesian model-ranking approach and the diffusion models
employed are provided in Appendices A and B, respectively,
whereas the supplementary figures are collected in Appendix C.

II. Physical observables
A. Anomalous diffusion, non-Gaussianity, and non-ergodicity

The hallmarks of normal diffusion are the linear growth of the
mean-squared displacement (MSD) and the Gaussian distribu-
tion of particles’ increments. Stochastic processes producing
anomalous diffusion feature a nonlinear MSD scaling,66,70–80

namely (in one dimension)

½xðtÞ � xð0Þ�2
� �

¼
ð
x2Pðx; tÞdx ¼ 2Kat

a ’ ta: (1)

Here a is the anomalous scaling exponent, Ka is the generalised
diffusion coefficient, and P(x,t) is the probability density func-
tion (PDF) of particle displacements. The situation 0 o a o 1
corresponds to subdiffusion, Brownian motion (BM) features
a = 1, while for 1 o a o 2 superdiffusive spreading dynamics is
realised (actively driven systems). Ballistic motion features a = 2,
whereas for hyperdiffusion we have a 4 2.66,74,76,77 The latter

may arise in non-stationary situations, for instance, for diffusion
in heterogeneous systems,81 under increasing temperature,82 or
in expanding media.83 In what follows, the scaling exponents of
the ensemble-averaged and time-averaged displacements are
denoted as a and bi, respectively, see eqn (1) and (11). In general,
these two exponents are not identical for a potentially non-
ergodic anomalous diffusion process.66,74

In addition to the MSD (1), the measure of spreading often
used in SPT experiments is the time-averaged MSD (TAMSD),
defined for a time series xi(t) as66,73,74,77,79

di2ðDÞ ¼
1

T � D

ðT�D
0

xiðtþ DÞ � xiðtÞ½ �2dt:

For an ensemble of N trajectories the mean TAMSD is

d2ðDÞ
D E

¼ N�1
XN
i¼1

di2ðDÞ: (2)

Here, T is the total length of the trajectory and D is the lag time
(a sliding window for averaging along the trajectory). For SPT
time series of the ith tracer, which is xi(k�dt) at time instance
1 r k r N = T/dt, the TAMSD is the discrete analog of (2), namely

di2ðtÞ ¼
1

N � t
dt

XN� t
dt

k¼1
xiðk � dtþ tÞ � xiðk � dtÞ½ �2: (3)

The non-equivalence of the MSD and TAMSD gives rise to the
phenomenon of weak ergodicity breaking,66,73,74 see also ref. 84
and 85. Its measure—the ergodicity breaking parameter
(EB)—quantifies the degree of irreproducibility or the dispersion
(amplitude scatter) of individual TAMSD realisations. It is
defined via the fourth moment of displacements as66,73–75,86

EBðDÞ ¼ d2ðDÞ
� �2� ��

d2ðDÞ
D E

2 � 1: (4)

In addition to the non-ergodic behaviour of individual
TAMSDs, for some stochastic processes the PDF of particle

Fig. 2 (a) Two trajectories of micron-sized tracers diffusing in mucin gels, as recorded in the experiment #2 of ref. 19 at pH = 2; the time span of diffusion is
6.7 s. Panel (b) illustrates the respective distributions of displacements for fast (Gaussian, green colour in both panels) and slow (exponential, blue colour)
tracers after 0.1 s of diffusion. Separation of particles into two subpopulations and fitting procedure are described in Section III and eqn (10). Video files of
real-time tracking are provided in the ESI† (camera framerate is E30 fps). Some particles (the green one in the video) diffuse more readily than others (the
red and white tracers); the scale bar in the video is 50 mm. The graph is adapted from ref. 19 with permission (Copyright 2017, American Chemical Society).
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displacements can be substantially non-Gaussian.66,67,87–89

We remind here that Gaussianity is expected for BM, with the
PDF for a given D value after time t being

Pðx; t;DÞ ¼ exp � x2

4Dt

	 
� ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p

: (5)

Fractional Brownian motion (FBM) with a fixed noise strength
is also a Gaussian process,66,74 while stochastic processes
with scale-free waiting-time distributions are inherently non-
Gaussian. The non-Gaussianity parameter66,77,90 quantifies the
degree of non-Gaussianity,

k(t) = hx(t)4i/(3hx2(t)i2) � 1. (6)

Here, instead of the ensemble-averaged moments, the time-
averaged moments can also be used.42,91

In recent years, the subject of tracer diffusion in entangled
polymeric networks and in polymer nanocomposites attracted
considerable attention from both theoretical and computer-
simulation communities,39,40,44,92–97 including ‘‘gel on a
brush’’ models.2 Collapsing hydrogels99 and the response of
hydrogels to external stimuli43 were explored. Notably, ageing
effects of mucus viscoelasticity can be pronounced in certain
systems20,30 (see Sections IV(A) and V(C) below; see also ref. 98).172

B. Stochastic diffusivity and Bayesian analysis

Recently, the subject of trajectory-specific and stepnumber-
dependent diffusivities gained a lot of attention from experimental,
theoretical, and computational communities.49,67,82,87–89,100–109,113

Mathematical models with linear MSD growth based on the
‘‘diffusing diffusivity’’ (DD) concept100 are possible candidates to
rationalise non-Gaussian (often exponential) tails in displacement-
distributions.67 The latter were indeed detected in a number of SPT
experiments, see, e.g., ref. 19, 46, 87–89, 95, 105–107 and 110–113.
The model of BM with DD, for instance, can be formulated in
terms of the Ornstein–Uhlenbeck (OU) process68,69 that
describes diffusion in a parabolic potential (see ref. 114 for its
ergodic properties). The current DD model was developed in a
recent theoretical study67 and included in the Bayesian model-
ranking analysis using nested sampling in ref. 49 and 173.

For instance, for the stationary exponential distribution
of diffusion coefficients of the particles, p(D) = e�D/hDi/hDi, as
proposed in ref. 89 and 100, the convolution of the form

Pðx; tÞ ¼
ð1
0

pðDÞPðx; t;DÞdD (7)

with the Gaussian propagator for a given diffusivity, see eqn (5),
results in the exponential PDF of displacements,

Pðx; tÞ ¼
ð1
0

pðDÞPðx; t;DÞdD ¼ e
� jxjffiffiffiffiffiffiffi
hDit
p , ffiffiffiffiffiffiffiffiffiffiffiffi

4hDit
p

: (8)

The resulting MSD obeys Fick’s law of diffusion,

x2ðtÞ
� �

¼
ð1
�1

x2Pðx; tÞdx ¼ 2hDit: (9)

We refer to the recent study49 where the superstatistical
approach117,118 for the DD model67 and the Bayesian nested-
sampling algorithm were described in detail and thoroughly
tested for consistency, performance, model-significance predic-
tions, and size of error bars. The general concepts of Bayesian
statistics and nested sampling are detailed in Appendices A and B.

The mathematical model of BM—modified by the DD
concept due to a variation of diffusion coefficients between
the trajectories and also along each trajectory—reveals an increased
spread of individual TAMSDs (2) as compared to BM, even for short
lag times. This, in turn, is reflected in the EB parameter, see the
inset of Fig. 12 and also Fig. 13. We find that the EB parameter
for the DD model—normalised to the respective EB value for
BM—stays roughly constant. Thus, in the limit D/T { 1 it scales
as EBDD(T) B 1/T with the trace length, similar to BM and some
anomalous diffusion processes.66 Also, plotting the EB results
from computer simulations for different lag times,49 we find
that EBDD(D) is considerably larger than EBBM(D) at short lag
times D, a feature of a less ergodic system, Fig. 13.

The Bayesian maximum-likelihood analysis50,62,119–122 with
the nested-sampling approach51–55,63 is a well established
technique to rank theoretical models for a given set of data
based on their relative probabilities.49,123 In particular, for SPT
data the Bayesian approach combined with the nested-sampling
algorithm was developed for FBM64,124 and the DD model49,63

(the computer codes are available125). We also accounted for
some measurement noise potentially present for BM and FBM,
in terms of errors in the particle-localisation procedure or due to
external inaccuracy sources, see ref. 49 for the algorithm. Our set
of possible diffusion models for each SPT trajectory consists of
BM, noisy BM, FBM, noisy FBM, and DD. For each trajectory,
only models from this list can be chosen.

Our physical intuition, e.g., proposes that tracer diffusion in
mucin gels features certain viscoelastic properties and thus
FBM can be a viable model. We also mention the Bayesian
study123 for selecting the models of normal, confined, drift-
containing, and anomalous diffusion for multiple sets of
biological SPT data. Below, we apply these model-ranking and
parameter-estimation algorithms to experimental data of tracer
diffusion in mucin hydrogels.19,20 We overview the features
of anomalous, non-ergodic, and non-Gaussian diffusion in
Section III. We refer to ref. 49 for the detailed description of the
DD model, underlying equations, and computational algorithm.

III. Recent experimental insights
A. Mucin gels: structure and diffusive properties

Here, we use the data of ref. 19 for diffusion of mm-sized beads
in mucin MUC5AC gels (‘‘spider webs’’,17 Fig. 1b) at rather
dilute concentrations of 1 wt% mucin and varying pH condi-
tions. Variations in the pH level mimic the natural variability of
conditions encountered for mucus films in the body, see
Fig. 1a. For specific details on gel preparation, experimental
setup, measurement procedure, data-acquisition protocols—
including the removal of centre-of-mass motion for each tracer20
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by a drift-correction algorithm—we refer the reader here to the
original studies.19,20 We apply the Bayesian approach with the
nested-sampling algorithm for BM, FBM, and DD, as developed in
ref. 49 and 63, to the data19 to quantify the most statistically
appropriate models for each trajectory. We evaluate additional
statistical quantifiers, to complement the analysis of ref. 19 and 20.

As mentioned in Section I(B), extremely long mucin polymers
form hydrogel-like networks stabilised by reversible hydrophobic
interactions and repulsive electrostatic forces between the sugar
side-chains.14,19,20,30 The microstructure of these biogels alters
with solution acidity: for instance, upon lowering the pH from
pH = 7 to pH = 2 the macrorheological measurements19 revealed
a dramatic, \100 times, increase in their viscoelastic moduli
(at pH = 2 the gel is more solid-like and mucin chains become
progressively unfolded20). This solid-like response is likely due to
less dissociation and a more cross-linked network. At higher pH
values (pH = 7), mucin chains repel one another due to non-
compensated negative charges, resulting in a more liquid-like
gel with smaller viscoelastic moduli.19,174

To quantify biochemical changes, the strength of mucin
interactions, and the network permeability at different pH
levels and salt conditions a detailed analysis of TAMSDs of
carboxylated mm-sized spheres—negatively charged at pH = 7
and less charged at pH = 220—was performed.19,20 Such tracers
stick less to mucins39 and yield diffusion least obstructed by
interactions. All trajectories analysed below were taken on
mucin samples19 with a square cross-section of (0.9 mm) �
(0.9 mm) and length of 20 mm, put inside 3D capillary tubes
(see Section 2.3.1 of ref. 20). Ref. 20 also contains a detailed
description of further details of the SPT apparatus, estimation
of static and dynamic errors129 of the measurements, data-
pretreatment methods, etc.

Three-dimensional tracer motion effectively tracked in a
two-dimensional focal plane of the microscope and the trajec-
tories are limited to Np = 300 points19 (with camera framerate
of E30 fps and exposure time of E33 ms). The trace-length is
T = 10 s. The pre-set values of Np and T can affect the results of
ensemble averaging and the accuracy of further estimations,
see Section V and ref. 107 and 130. Note that with a 20� lens
one usually focuses on 10–12 distinct particle z-planes when
working with well mixed mucin gels. The uncertainty in determin-
ing tracer positions in the SPT experiments19,20 was B0.3–1 pixel,
with 1 mm = 1 pixel� (13/20). The estimate for confidently defined
tracer (static) positions19 is based on an agarose immobilisa-
tion assay, with the static uncertainty of |Dx| t 0.01 mm,
Fig. 2.3.2 of ref. 20.

For lag times from D E 33 ms (experimental time-
resolution) to D E 4 s no dramatic or systematic changes in
the scaling exponent of the TAMSD was detected upon chan-
ging pH from pH = 7 to pH = 4, and, eventually, to pH = 2.
Namely, with no added salt (n0 = 0)—see ref. 19 and 20 for
the exact buffer conditions—the TAMSD exponent at short
lag times decreases from bpH=7 E 0.85 to bpH=4 E 0.61, while
then it increases again to bpH=2 E 0.92.19,20 The tracer
mobility at pH = 2 was, however, the highest. Fig. 2a
shows representative tracer trajectories recorded19 at pH = 2

(see also the video files, ESI†). The tracer beads are less
negatively charged (or even positively charged) at pH = 2, as
compared to pH = 7,19,20 that also affects their mobility. This
may complicate the quantification of pH effects, as discussed
in ref. 19, 20 and 175.

The PDFs of tracer displacements after a fixed time t = 0.1 s
were shown19 to be roughly Gaussian, except at pH = 2, Fig. 2b.
At pH = 2 for displacements for a subpopulation of tracers is
close to exponential, an indicator of DD models.67,100,101,109 We
show in Section IV(A), however, that the DD model is only rarely
realised for this data.19 Note also that pronouncedly broader-
than-Gaussian PDFs at pH = 2 are responsible for overall larger
magnitudes of TAMSDs at these conditions,19,20 Fig. 3. This
heterogeneity of magnitudes of individual TAMSDs renders the
MSD hx2(D)i, see the inset of Fig. 3, to be much less informative

quantifier of diffusion, as compared to the set of di2ðDÞ.

B. Population splitting and non-ergodicity

The data19 at pH = 2 revealed comparatively high values of the
heterogeneity parameter, HR (equivalent to the EB parameter
(4)). This increase (see also the discussion below) was
proposed19 to be caused by a strongly heterogeneous structure
of the mucin network, with polymer-rich and polymer-poor
regions emerging at pH = 2 (Fig. 1b), as compared to a rather
homogeneous network at pH = 7. Mucin-rich and mucin-poor
regions can, correspondingly, hamper and promote tracer
diffusion (see Fig. 1b), resulting in subpopulations of slow
and fast (possibly, weakly superdiffusive) tracers.176 Network
heterogeneities at pH = 2 were studied in ref. 20.

Therefore, one can split the trajectories into a slow sub-
population with exponential and a fast subpopulation with
Gaussian displacement distributions.19 This provided a physical
rationale for some features of the PDFs of tracer displacements

Fig. 3 Spread of individual TAMSD trajectories (2) for the data of ref. 19
with T = 10 s. Different colours denote varying pH conditions. At pH = 2
the data set of experiment #2 of ref. 19 was used, see also Fig. 5. The inset
presents the ensemble-averaged MSDs, for the purpose of comparison.
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in mucin gels.19,20 The probability of displacements Dx after a
time-interval t was proposed to obey19

PfitðDx; tÞ ¼
A exp �ðDxÞ

2

2s2ðtÞ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðtÞ

p þ
ð1� AÞ exp �jDxj

lðtÞ

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2ðtÞ

p : (10)

The magnitude of TAMSDs for these subpopulations at pH = 2, at
short lag times was shown to grow with the exponents b E 0.95

and b E 0.75,19 respectively. The spread of di2ðDÞ was shown to
be considerably larger for the exponential subgroup,19,20

reflected also in the magnitudes of the non-Gaussianity para-
meter (6), as examined in ref. 19 and 20. Importantly, in eqn (10)
the fraction A(t) of tracers diffusing in a Gaussian-like way—as

determined from the short-time behaviour of di2
19—stays nearly

constant with time: A(t) E const within the duration of experi-
ments that validates the division method (10). Moreover, in
eqn (10) the typical length-scales for Gaussian and exponential
subpopulations of the tracers were shown19 to scale asffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2ðtÞ

p
� t0:48 and

ffiffiffiffiffiffiffiffiffiffi
l2ðtÞ

p
� t0:39, respectively. These values of

the scaling exponent of the width are consistent with those for
the TAMSD growth (2) for respective subpopulations, making
this description self-consistent.177

For the mucin gels at pH = 2 the conclusion19 was that—due
to their inherent heterogeneities—‘‘Gaussian-like’’ particles
sample rather mucin-poor regions, being minimally affected
by its structure (Fig. 1b). In contrast, ‘‘exponential’’ tracers are
probing more mucin-rich regions, with different values of net-
work stiffness,19,20 leading to ‘‘confined diffusion’’, Fig. 1b. The
‘‘Gaussian’’ tracers, thus, produce a bell-shaped Gaussian PDFs
of displacements, whereas ‘‘exponential’’ tracers are responsible
for non-Gaussian features of P(x,t), particularly pronounced at
pH = 2.19,178 As outlined in Fig. 2b, after a diffusion time t = 0.1 s,
the displacements of highly diffusive particles have broader
‘‘tails’’, as compared to those of strongly confined ones.19,179

IV. Main results of the data analysis
A. Bayesian analysis and model-prediction results

We performed the maximum-likelihood Bayesian analysis with
the nested-sampling algorithm for the data sets of tracer
diffusion in mucin hydrogels19 in the absence of salt, n0 = 0.20

For pH = 7 the model of BM appears to dominate the single-
trajectory data, see Fig. 4. At these conditions for FBM-
dominated trajectories the Hurst exponent progressively
decreases from H E 0.6 to H E 0.5 as the model preference
is changing from FBM to BM for the set of trajectories analysed.
Overall, at these conditions the model of Fickian diffusion
dominates the dynamics in mucin networks, whereas several
trajectories do favour the DD model as the most statistically
preferred one, Fig. 4.

For the data at pH = 4 we observe that FBM dominates the
model-prediction results, with considerably more subdiffusive
exponents H, Fig. 14. This fact is consistent with the evolution
of TAMSDs upon a transition from pH = 7 to pH = 4 (Fig. 4a in
ref. 19). The Hurst index for trajectories fitted with the FBM

model at pH = 4—when ordered from least subdiffusive to most
diffusive—grows from H E 0.3 to H E 0.5 as we progress from
FBM- to BM-favouring trajectories. This is a physically mean-
ingful behaviour: scaling exponents increase as the FBM model
gets replaced by BM with a linear MSD, i.e., with H = 0.5 in
eqn (1). These trends for H are statistically significant, Fig. 14.
For the data set at pH = 4 almost no trajectories were found
consistent with the DD model.

Finally, for the data set at pH = 2 we find more interesting
behaviour and a very heterogeneous picture, as also mentioned
in ref. 19 and 20. This heterogeneity can be caused by size
variations of typical hydrogel structures which hamper tracer
diffusion and also arise due to batch-to-batch variations of the
purified mucin. Moreover, some variations for different data
sets acquired at this pH value were found, compare Fig. 5, 15,
and 16 containing N = 64, 134, and 334 time series, respectively
(obtained from different experiments in ref. 19, (#1, #2, and #3)).
Although the conditions of these measurements were kept the
same, some ageing effects may be present,30 although sub-
sequent study by the authors of ref. 19 and 20 did not reveal
strong ageing at pH = 2 (unpublished). The ageing times in the
course of sample preparation were, however, not recorded
in ref. 19, making statistical analyses of ageing impossible for
these data (not shown). Although we do find that FBM-based
diffusion dominates the data at pH = 2, the exponents Hi vary

Fig. 4 Results of model comparison from the Bayesian analysis using
nested sampling and Hurst exponent distributions for diffusion of tracers in
mucin gels at pH = 7, obtained for the data set of ref. 19. The trajectories
here are ordered according to decreasing probabilities of the FBM model
(in the top graph, from left to right). The respective exponents Hi = bi/2 are
shown in the bottom graph.
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strongly from trace to trace at these conditions (heterogeneous
medium).180

Additionally, the variations of scaling exponents reveal the
existence of two subpopulations of tracers in the data set at
pH = 2, Fig. 5. In a slower subpopulation the Hurst exponent
varies in the range H E 0.3–0.5, while in a more diffusive
subpopulation H E 0.5–0.65. The first subpopulation corre-
sponds to subdiffusion with a TAMSD exponent of b E 0.6–1,
while the second subgroup describes superdiffusion with
b E 1–1.3. We mention here that superdiffusion was also
observed for worm-like micellar solutions.134 Note that for even
larger number of trajectories at pH = 2, as in experiment #3
of ref. 19, one can distinguish even three subpopulations of
tracers, featuring Hurst exponents within three distinct ranges,
see Fig. 16.

We emphasise that the models of BM and FBM containing a
Gaussian noise of certain strength have low model probabilities,
in comparison to their pure analogues, see Fig. 4, 5, and 16.
These ‘‘noisy’’ models become penalised in our Bayesian model-
prediction results due to Occam’s razor. This results mainly
from the fact that the uniform prior used for the noise strength
(see Appendices A and B for details), does not increase the
maximum-likelihood value of ‘‘noisy’’ models significantly
enough in order to compensate the ‘‘negative’’ effect of an
additional model parameter, see ref. 51 and 53.

As the top panel of Fig. 5 shows—as the FBM model gets
replaced by BM as the most appropriate model of tracer
diffusion19,20—the respective Hurst exponents in each sub-
population approach H E 0.5, as expected. For experiment #2

at pH = 2, we observe that only half-a-dozen of trajectories is
consistent with the DD model, Fig. 5. This small number is unlikely
to result in an exponential—rather than in a Gaussian—PDF of
displacements observed for the ‘‘exponential’’ subpopulation of
tracers.19,181,182 We propose that at pH = 2 the diffusive
medium is most heterogeneous (Fig. 1b) that gives rise to broad
distributions of generalised diffusion coefficients and scaling
exponents (Fig. 6). Therefore, it is rather ensemble averaging
over all trajectories subject to certain distributions p(Kb) and
p(b) that yields non-Gaussian dynamics (on, possibly, multiple
timescales).

B. Spread of TAMSD trajectories

To further quantify the dynamics of tracers in mucin gels,19,20

we employ additional statistical measures,66,74,91,107 including
the spread of individual TAMSDs presented in Fig. 3. As
mentioned in ref. 19 and 20, we find that the spread is minimal
at pH = 7 and maximal for strongly heterogeneous diffusion at

Fig. 5 The same as in Fig. 4 but at pH = 2 (the data set of experiment #2
of ref. 19 with N = 134 traces is used here).

Fig. 6 Correlations of the scaling exponents (a) and generalised diffusion
coefficients (b), as obtained from the Bayesian nested-sampling analysis
(the subscript ‘‘BNS’’) and via direct power-law fit of di2ðDÞ by eqn (11). The
results for different pH values are in the same colours as in Fig. 3; the data
set of experiment #2 is used at pH = 2. The dashed lines are the diagonals:
the respective quantities are equal there. The Pearson correlation coeffi-
cients for the data sets of {bTAMSD, bBNS} and {KbTAMSD

, KBNS} are, respec-
tively, r E {0.97, 0.93, 0.61} and r E {0.98, 0.98, 0.68}, computed for the
set of pH values pH = {2, 4, 7}, respectively.
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pH = 2. Moreover, to support the trends found from the
Bayesian analysis, in Fig. 6 we present the results of the direct

power-law fit of di2ðDÞ of tracers in mucin gels. We compute the
values of the scaling exponent bi and generalised diffusion
coefficient (Kb)i for the ith trace from

di2ðDÞ � 4 Kb
� 


i
� Dbi : (11)

In the SPT experiments19 the particles are effectively tracked
in two dimensions (leading to the factor of four in eqn (11)).
The number of points in the initial range of trajectories used
for the fit (11) is Nfit = 10. Choosing a shorter initial fragments
would slightly increase bi values for TAMSD fits, making their
agreement with the Bayesian results of Fig. 6 even closer.183

Fitting Nfit = 10 points for the data at pH = {2, 4, 7} results in
MSD exponents

a E {0.46, 0.28, 0.36} (12)

and mean-TAMSD exponents

hbi E {1.09, 0.75, 0.94}, (13)

see Fig. 3. Some discrepancies of the obtained b values (13)
from those reported in ref. 19 can be, e.g., due to a different
number of fitting points used, Nfit. A favourable overall com-
parison of respective anomalous exponents and generalised
diffusivities, as shown in Fig. 6a and b, makes us confident in
the robustness and accuracy of the employed Bayesian algorithm
with nested sampling. Significantly different magnitudes and
scaling exponents of the MSDs and mean TAMSDs for respective
pH conditions (see eqn (12) and (13)) indicate weak ergodicity
breaking, see Section IV(D).

At all pH values, the MSDs grow with time slower than the
TAMSDs. Note that these results involve ensemble averaging
with trajectory-specific exponents and diffusivities. Therefore,
the discrepancy between a and hbi can still allow individual
time series to be governed by an ergodic process (BM, FBM).
Moreover, as outlined in ref. 19, on the level of individual
trajectories the tracer displacements can be nearly Gaussian,
while for the whole ensemble of particles the displacements
at the same conditions are distinctly non-Gaussian (see also
Fig. 22–24).

Fig. 6a shows that the spread of scaling exponents for
diffusion at pH = 2 is maximal (the most-heterogeneous
medium), while at pH = 7 the spread is limited. The pronounced

spread of di2ðDÞ is consistent with the available evidences and
data.11,17,144,145 This reflects heterogeneities of the meshwork of
entangled mucins: some tracers diffuse nearly freely, while
others are strongly impeded in their spreading (see the division
into ‘‘Gaussian’’ and ‘‘exponential’’ tracers19 and Fig. 1b). We
also mention that, particularly at pH = 2, the fraction of super-
diffusive trajectories is comparatively large, see Fig. 6a, corro-
borating with the Bayesian results of Fig. 5.

The set with N = 134 is used in Fig. 6 at pH = 2. For this set,
we revealed positive correlations between the errors in deter-
mining the Bayesian exponents DbBNS and the values of bBNS

themselves, Fig. 17.184

C. Positive Kb–b correlations

Another characteristic feature of tracer diffusion in mucin
gels19,20 is a pronounced positive correlation of anomalous
scaling exponents b and generalised diffusion coefficients Kb

for individual trajectories. We find these correlations for all pH
values, Fig. 7. This is a new feature as compared to the previous
analyses.19,20 We fit these correlations with

Kb(b) B exp(c1b + c2), (14)

where c1,2 are the parameters, shown in Fig. 7 as the dashed
lines (different colours for different pH values). The Pearson’s
correlation coefficients for the sets {KbTAMSD

,bTAMSD} are
r E {0.86, 0.85, 0.76}, respectively, for pH = {2, 4, 7}.

Moreover, the data set at pH = 2 reveals two distinct regions

in the phase-space with large and small exponents of the di2ðDÞ
growth, (bTAMSD)i. This illustrates ‘‘population splitting’’
reported in ref. 19 which was based on the results of a
Gaussian-like and exponential fitting of PDFs of individual
tracers.185

D. Ergodicity breaking parameter

The inset of Fig. 3 reveals some discrepancies between
the MSDs and mean TAMSDs, particularly for the short-time

growth of hx2(D)i and d2ðDÞ
D E

at pH = 2. The degree of

irreproducibility of individual TAMSDs for tracer diffusion in
mucin gels is quantified in terms of the ergodicity breaking
parameter (4). Fig. 8 illustrates the evolution of EB for different

pH values. Larger spread of di2 at pH = 2 is consistent with
larger EB for this pH, and also with the EB value not decaying to
zero as a power-law of (D/T) at short lag times. Note that in
ref. 19 and 20 at lag time D = 0.1 s, the heterogeneity parameter
was computed to be HR E 0.07 � 0.02 at pH = 7, HR E 0.22 �
0.02 at pH = 4, and HR E 0.64 � 0.21 at pH = 2, see Fig. 8.

Fig. 7 Correlation of scaling exponents and diffusion coefficients
obtained via fitting di2ðDÞ with eqn (11) at the start of the recorded time
series (the lag time equals one time step). The dashed lines are the best
linear fits of log(Kb) versus b.
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Note that the EB parameter was evaluated for a number of
stochastic processes (normal and anomalous), including regular
BM,86,148 FBM,86,149 continuous-time random walks,73,74,150

heterogeneous diffusion processes,127,151 OU process,114 and
scaled Brownian motion.82,152,153 Note also that for FBM with
MSD exponents in the range 0 o ao 3/2 for short lag times the
EB parameter scales as EB(D) B D/T, while it decays at D/T - 0
slower than linear for the range 2 4 a 4 3/2, namely
EB(D) B (D/T)4�2a.149

We find that at pH = 719,20 for intermediate lag times the EB
parameter is fairly close to the BM limit,66,86,114

EBBM(D) = 4D/(3T). (15)

This is corroborated by a limited spread of TAMSDs and the
value of the scaling exponent (13) at pH = 7, see Fig. 7, as well as
by small non-Gaussianity parameters found for these conditions
in ref. 19 and 20. We mention that the linear EB(D/T)-dependence
is no longer valid at pH = 4, where the scaling behaviour
becomes sublinear, Fig. 8. For short lag times it can be
approximated by

EB(D/T) B (D/T)e, with e o 1. (16)

The deviation from the BM law (15) is especially pronounced at
pH = 2 when almost a plateau region emerges in the EB(D)
evolution at short D.

This is reminiscent of the EB behaviour for continuous-time
random walks66,73,74,149,150,154 with the MSD exponent a, where
at D/T { 1 it was predicted that

EB(D/T - 0) = 2G(1 + a)2/G(1 + 2a) � 1, (17)

where G(�) is the Gamma function. This fact also corroborates
with the pronounced spread of TAMSD realisations at short lag
times for the data set at pH = 2, see Fig. 3. The strongly
heterogeneous nature of the polymer network realised at pH = 2
conditions, Fig. 1b, favours widely distributed particle-network
trapping conditions (in terms of energetic barriers to escape
network-imposed confinement or caging). This, in turn, produces
strongly distributed effective diffusivities of the tracers and
strongly spread magnitudes of individual TAMSDs. The beha-
viour of EB at pH = 2 for different sets (with N = 64, 134, 334
traces19) is shown in Fig. 19a.186,187

We now study the mean TAMSD magnitudes from Fig. 3
for systematically varying number of points in the trajectory, for
T = 10, 30, 100, 300 points. We rescale the data using the

relation d2ðDÞ
D E

’ D
�
T1�a, characteristic for subdiffusive

continuous-time random walks.66,73,74 We observe that for
pH = 4 and pH = 7 practically no dependence on the trace
length T exists, Fig. 19b. Here, the shortest lag time of D = 1
step and the respective MSD scaling exponents (12) were used
in the analysis. Therefore, we can rule out continuous-time
random walk as a possible model of diffusion. This is also
consistent with a rather limited spread of TAMSDs at these
conditions, Fig. 3. At pH = 2, however, there is a remaining but

weak T-dependence in the d2ðD;TÞ
D E

data. Although the

spread of TAMSDs is indeed the largest at pH = 2, the observed

dependence d2ðD ¼ 1;TÞ
D E

is too weak for the continuous-time

random walk to be considered as an alternative model of tracer
diffusion in mucin gels.

E. Non-Gaussian PDFs of tracers

The distributions of displacements of the tracers, as monitored in
the experiments,19,20 are presented in Fig. 9, 20, and 21 (respectively,
for pH = 2, 4, and 7, see also the supplementary video files, ESI†).

Fig. 8 EB parameter (4) for tracer diffusion in mucin gels at different pH
values19 (for the data of Fig. 3). The BM asymptote (15) is the dashed line;
compare also to the DD results in Fig. 12. The results of ref. 19 for the HR
parameter are the star symbols (with the error bars), Section IV(D).

Fig. 9 Non-Gaussian distributions of displacements for tracers diffusing in mucin gels at pH = 2 (shown as counts, N(x)). The results are plotted for
varying time shifts from the start of the trajectories, dt. The data sets of ref. 19 are used. The best-fit exponents d in the compressed Gaussian distribution
(18) are given in each panel.
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The analysis below is performed only for the x-component of
displacements of all the tracers (the y-behaviour is identical, due
to isotropy of the system). We fitted the observed PDFs with a
stretched or compressed exponential function, for logarithmically
sampled time intervals from the start of diffusion, dt. Particularly at
pH = 2 the displacements were found pronouncedly non-Gaussian,
consistent with previous conclusions.19,20 For pH = 4 and, particu-
larly, for pH = 7, the PDF functions were closer to the Gaussian
shape, still revealing some larger than Gaussian displacements of the
tracers, Fig. 21.

We fit the step-size distributions with a two-parameter function
(width and exponent) in Wolfram Mathematica, (see also ref. 107)

P x; dtð Þ � exp � x dtð Þj j
o dtð Þ

	 
d
1

d

" #
: (18)

We find that the fitted exponents d drop continuously for longer
time intervals dt, see Fig. 9, 20, 21. Namely, for the time-shift
increasing from dt = 33 to 3300 ms the exponent d in (18) drops
from dE 0.98 to E0.69 and from dE 1.63 to B1.40, respectively,
for pH = 2 and pH = 4 sets. This indicates that the tracers are
progressively slowed down at later stages of diffusion (longer dt
times). For pH = 7, in contrast, the PDF exponents d stay nearly
constant with the time shift, assuming a large value of d E 1.60
that is close to d = 2 for a Gaussian.66,79 The PDFs for all the tracers
at pH = {2, 4, 7}19 are shown in Fig. 9, 20, and 21, respectively.
Overall, at pH = 2 the decay of the ensemble-averaged PDFs is
found to be the slowest, so that the probability of large tracer
displacements is much higher than that expected from the stan-
dard Gaussian decay.

The width of these stretched or compressed exponential
distributions are found to grow with the time shift, Fig. 9 and 10.
The exponents g of a power law for scaling of the PDF widths,

w2(dt) B (dt)g, (19)

found from our analysis are close to the exponents of the mean
TAMSDs hbi at respective pH conditions, compare Fig. 3 and 10.
This supports our analysis for the scaling law for the growth of

d2ðDÞ
D E

(see eqn (11) and (13)) and of the widths of the PDFs

(see eqn (19)), as intuitively expected.188

In Fig. 22–24 we present the results of fitting of the widths
of displacement distributions for individual tracers, denoted
Pi(x,t). This representation is different from fitting the displace-
ments of all the tracers at a given time shift, as in Fig. 9, 20, and 21.
From single-trace fits of Fig. 22 we find that at pH = 2 those
two traces for which the Bayesian nested-sampling analysis
consistently predicts the DD model yield indeed nearly expo-
nential PDFs. Specifically, we find d E 0.90 and E1.01 for
traces #18 and #28 in Fig. 22, respectively.189 For these
trajectories, very small widths of the PDFs are observed, wi.
Other trajectories favouring the DD model190 are, however, not
close to the exponential PDFs, revealing decay exponents in
the range d E 1.75–1.81, see Fig. 22. Therefore, the DD model
might not be optimal to rationalise the observed close-to-
exponential distributions of displacements for a subpopula-
tion of ‘‘exponential’’ tracers, see eqn (10).

Overall, at pH = 2 the heterogeneity of Pi(x,dt) functions is
dramatic, even at the shortest time shift of dt = 33 ms. For
instance, we detect large variations of the scaling exponent di

and, particularly, of the PDF width wi for each trajectory, as
illustrated in Fig. 22. The trajectories predicted to favour the
DD model correspond to the particles that feature rather
narrow PDFs of displacements (respectively, small wi values).

For tracer diffusion at pH = 419 we find a substantially
smaller spread of scaling exponents di in eqn (18) than at
pH = 2, with the values in the range d E 1.6–2.3, see the top
panel of Fig. 23. The widths of Pi(x,dt) for individual particles
at these conditions are shown in the bottom panel of Fig. 23
(see also the PDF shapes for the whole data set in Fig. 20).
At pH = 4 we thus detect no trajectories dominated by the
DD model.

Lastly, at pH = 7 the spread of the PDF widths is even smaller
(consistent with fairly reproducible TAMSDs at this pH value,
see Fig. 3). The scaling exponents of individual Pi(x,dt) func-
tions for five traces is very close to unity, see the magenta bars
in Fig. 24. This, indeed, is realised for the traces consistent with
the DD model, with the exponents dE {1.03, 1.03, 1.03, 0.97, 0.91}.
The results of fitting PDFs computed from single trajectories are
shown in Fig. 24.

To illustrate the spread of the widths of the fitted stretched
Gaussian and compressed exponential distributions, in
Fig. 25 we present the histograms of (width)2-distributions
for PDFs (18) at all pH values.19,20 In this plot, the trajectories
are ordered from larger to smaller values of the PDF
widths. We find a rather homogeneous distribution p(w2) for
pH = 7 and somewhat heterogeneous one (with a similar
mean) at pH = 4. In contrast, at pH = 2 the distribution
p(w2) is extremely broad, with considerably larger wi

2 values
on average. This strongly heterogeneous distribution of
widths of the PDFs is consistent with a dramatic spread of
TAMSDs at pH = 2, Fig. 3.

Fig. 10 Scaling of the width of PDFs of tracers diffusing in mucin gels.19,20

The exponents g are evaluated from eqn (19) at different pH values, as
indicated in the plot.
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F. Displacement autocorrelation function

For the experimental data19 we compute the displacement
autocorrelation function from the radius-vector of diffusing
tracers, r(t), as follows66,74

Cdt(t) = (dt)�2h[r(t + dt) � r(t)]�[r(dt) � r(0)]i. (20)

This function correlates particle displacements at time t to its
displacements at initial time for a finite time shift, dt.191 The
results for dt = 1 are shown in Fig. 11, where each trajectory is
divided into fragments of Nsub = 10 points (the results shown in
lighter colours in the plot). Final averaging is performed along
each trajectory and over all the traces in the set19 (the solid
symbols connected by thick lines in Fig. 11). We emphasise
large statistical uncertainties when Cdt(t) is computed solely for
a one stretch of a given trajectory.

We observe in Fig. 11 that for a rather subdiffusive set of
trajectories at pH = 4 the function Cdt=1(t) attains negative
values after one time step. This behaviour—consistent with
FBM-like subdiffusion,66,74 as our Bayesian single-trajectory
analysis also suggests—indicates a certain degree of antipersis-
tence in tracer motion. The drop of Cdt=1 (t = 1) below zero is not
very pronounced at pH = 419, but the effect is way larger than
the error bars computed, Fig. 11.

For tracer diffusion at pH = 2 and 7, on the contrary,
the displacement autocorrelation function does not drop
measurably below zero (similar as for BM66,74). For pH = 7
this indicates a ‘‘more normal’’ diffusion, as indeed seen from
the behaviour of TAMSDs, see the values of scaling exponents
(13) and ref. 19 and 20. We note that at pH = 2 a dramatic
scatter of TAMSD realisations, see Fig. 3, appears not to cause
significant deviations in Cdt(t) from the BM-like shape.66,74,158

The behaviour of Cdt(t) for longer time shifts dt, shown
in Fig. 26, supports these trends. Namely, the most sub-
diffusive behaviour is indeed realised at pH = 4, as follows
from the most negative values of Cdt (t = dt) drop found in this
situation.

V. Discussion and conclusions

Understanding the transport and diffusion mechanisms
of natural pathogens and artificial tracers in native mucus and
reconstituted mucin hydrogels presents a number of challenges,
both for SPT measurements, experimental physical chemistry in
general, and for theoretical data-analysis of these polymer-based
soft-matter systems. The data analysis—based on a number of
statistical quantifiers and Bayesian model-ranking approach
with the nested-sampling algorithm—is our main focus here.

A. Main results on tracer diffusion in mucin gels

Here, the central results of our analysis of SPT-data on diffusion
of mm-sized tracers in reconstituted mucin hydrogels19,20 are
summarised. Thermally agitated motion of polymers in these
gels governs their structural dynamics45 and plays a crucial role
in controlling transport of tracers and pathogens.13,17,18,21,26,39,40 We
quantified this behaviour using a number of standard statistical
quantifiers: namely, the magnitude, spread, and scaling exponents
of TAMSDs, non-Gaussian step-size distributions, scaling of widths
of the PDFs, the ergodicity breaking parameter, and displacement
autocorrelations. We thereby complement the analysis of the same
data performed in ref. 19, offering a number of decisive statistical
features helping a better understanding of this system.

Specifically, we confirmed the largest spread of TAMSDs
at pH = 2, despite a more subdiffusive behaviour at pH = 4,
in agreement with previous conclusions.19,20 Moreover, we
unveiled strongly positive correlations between the scaling
exponents and diffusion coefficients for individual trajectories.
We concluded that tracer diffusion at pH = 2 is most hetero-
geneous and most non-ergodic, based on comparison of EB(D)
variation at different pH values. We confirmed that SPT data at
pH = 2 yield the most non-Gaussian PDFs, as compared to the
PDFs for the entire ensemble of tracers computed at pH = 4 and
7 (which also decay slower than a Gaussian). The fit of the PDFs
for individual tracers, Pi(x,t), yielded different exponents d and
widths w, indicating a strongly heterogeneous environment of
mucin gels for the tracers at pH = 2.19,20,192

Fig. 11 Displacement autocorrelation function—defined in eqn (20) and normalised to its value at t = 0—computed for tracer diffusion in mucin gels19 at
the pH values as indicated. The time shift here is one experimental frame, dt = 1 or dt E 0.033 s. The results of double averaging—namely, for different
fragments along the trajectories and among different trajectories—are the solid symbols. The error bars are rather small (the black symbols). The colours
are the same as in Fig. 3.
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The main novelty of the current analysis was on applying the
Bayesian approach of multiple-hypothesis testing using the
nested-sampling algorithm developed by us recently49,63 for
a number of competing ergodic and weakly non-ergodic
processes featuring anomalous diffusion—to real experimental
data. We examined the SPT data sets of tracer diffusion in
mucin gels,19,20 an example of a disordered polymer-based
system with pH-sensitive and ageing behaviours. We discovered
that tracer spreading in these gels on the level of individual
trajectories is dominated by BM and FBM, and only rarely the
DD model49,67 is realised. We remind here that BM/FBM feature
Gaussian PDFs,66,74,86 while the DD model implies an exponen-
tial step-length distribution for each trace.63,67,89,100 Therefore, we
propose that the observed19,20 non-Gaussian ensemble-averaged
distributions of displacements are likely due to a superposition of
Gaussian single-particle PDFs with certain ensemble-specific
p(Kb) and p(b) distributions reflecting the relevant properties of
the medium.

We also quantified the correlations of the generalised
diffusion coefficients and the anomalous scaling exponents of
the TAMSDs. This novel single-trajectory based analysis
received some in-depth attention only fairly recently.107,130

The form of Kb–b correlations delivers additional helpful
information to decode the nature of the underlying stochastic
process and to propose the best physical model of tracer
diffusion. We also confirmed that the values of the scaling
exponents for the growth of the mean TAMSDs and for the
width of the ensemble-averaged distributions of displacements
of the tracers in mucin gels are mutually consistent. This makes
the respective laws of anomalous diffusion universal on the
timescale of the SPT experiments.19,20 One more novel measure
of the current analysis, as compared that of ref. 19 and 20, is
the displacement autocorrelation function, Cdt(t). The beha-
viour of the short-time dips of this function appears consistent
with the FBM model (proposed also from the single-trajectory
Bayesian analysis), including the most subdiffusive behaviour
observed at pH = 4.

B. Results of other studies of mucin diffusion

We mention here the results of the likelihood-based analysis
and model-comparison tests for two-dimensional data on tracer
diffusion in sputum mucus27 conducted in ref. 23 (for the
60 fps-data for mm-sized tracers and 30 s trajectories). The models
of subdiffusive FBM and generalised Langevin equation-based
motion were compared23 via computing the respective Bayes
factors. Tracer diffusion at 2.5 and 5.0 wt% of mucus was shown
to have a very pronounced spread of trajectories,27 while dilute
solutions with 1 wt% revealed nearly BM-like properties.23 More-
over, the TAMSD exponent was shown to decrease drastically
from E0.9 for 1 wt% solutions to E0.25 for 5 wt% of mucus,
with a fitted linear decrease hbi E 1.1–0.17 � (mucus wt%), see
Fig. 2B and 4A in ref. 27 and 193. We refer the reader also to Fig. 2
of ref. 16 where the diffusivity and anomalous exponent of T4
bacteriophages (particles of E200 nm in size) were measured for
varying wt% of mucin. The MSD magnitude was also shown to
decrease as wt% of mucin grows.27 This seemingly beneficial

effect for preventing pathogen penetration is, however, appar-
ently out-weighted by other factors (e.g., decreased clearance by
cilia beating in the lung).27 We refer the reader to ref. 23 for the
discussion of different priors and the significance of multi-
parametric diffusion models as well as to ref. 162 for the
Bayesian analysis of FBM-type models with drift. Taken
together, the Bayesian analysis of ref. 23 showed that for
diffusive trajectories of micron-sized tracers in mucin gels the
FBM model was outperformed by a model using the generalised
Langevin equation with tunable power law relaxation spectra.
No models of continuous-type random walk type were analysed
in ref. 23.

C. Open questions and future research

Non-Gaussian PDFs and ensemble heterogeneity. We
obtained from the Bayesian analysis using the nested-sampling
algorithm that the models of BM and FBM dominate the results
of model ranking for tracer diffusion in mucin gels. The DD
model—featuring the exponential displacement distribution49,67

(7)—is, on the contrary, realised quite rarely. The experimentally
observed non-Gaussianity in the PDFs of displacements can then
stem from a convolution of a particular distribution of diffusiv-
ities p(Ka) for an ensemble of tracers with the Gaussian single-
tracer (superstatistical) propagator,

P dx; dt;Kað Þ ¼ exp � ðdxÞ
2

4KaðdtÞa

	 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pKaðdtÞa

p
; (21)

namely

Pðx; tÞ ¼
ð1
0

p Kað ÞP dx; dt;Kað ÞdKa; (22)

see also ref. 49, 67 and 107. Different generalised diffusivities in
p(Ka) can reflect, e.g., large-scale heterogeneities, with the
patches of different mucin densities sampled by different
tracers. We plan to clarify the limiting behaviour of displace-
ment PDFs for certain realistic p(Ka) forms.163 Moreover, we
emphasise that the Richardson–Lucy iterative deconvolution
procedure160,161 can be employed to the data in order to
determine experimentally relevant forms of p(Ka) from the
PDF shapes P(x,t) measured in experiments19,20 (see, e.g., the
recent study159).

Ageing of mucin hydrogels. The properties of tracer diffu-
sion in mucin hydrogels crucially depend on the actual sample
age.20,30 This renders control over the starting time and dura-
tion of the measurement vitally important for quantifying the
dynamics. The effects of a waiting time between the sample
preparation and the start of the measurement should be
examined in more detail. As shown in Fig. 4.3.11 of ref. 20,
the effect of ageing of the mucin samples from ta = 1 to 7 hours
at pH = 2 leads to a measurable decrease in both the magnitude
and the exponent of the TAMSD. In contrast, at pH = 7 the effect
of sample ageing from ta = 1 to 8.5 hours is the opposite (and
stronger). In ref. 19 and 20 the total data-collection time for a
sample was about 1 hour, i.e., of the same order as typical
ageing time of the mucin gels, trelax. As the samples can age
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during the SPT-measurement,20 time variation of the model
parameters may be important to verify.194

Trajectory length and sample size. Setting a minimal length
for an SPT trajectory, Nmin

p , can bias the final data and out-
comes of the analysis. Faster particles quickly leave the focus of
the microscope and might not be tracked for a required
minimal number of frames, whereas slower particles stay more
often in the view-field and, thus, create a bias towards slower
subpopulation in the ensemble.17,20,130,164 In the data sets of
ref. 19 and 20 the requirement for larger Nmin

p was shown to
quickly reduce the number of trajectories. In the current data
sets, the traces were limited to 300 points.19

Additionally, in particular in non-stationary polymer-based
samples with complex internal dynamics, possibly ageing on
the timescale of the measurement, collecting a data set with a
minimal number of traces, Nmin, can favour slower tracers at
later stages of the experiment. This, in turn, creates some
spurious effects enhancing the weight of slower tracers if larger
data sets are collected.195,196 Note that the recent developments
of approaches based on machine learning and convolutional
neural networks for object recognition and automated tacking
of particles in two and three dimensions,48 may provide novel
strategies for data acquisition via employing different condi-
tions for minimal trace length, sample size, maximal particle
displacements, ageing protocols, etc.

Varying tracer size and surface properties. Tracer sizes and
probe–network interactions were varied in a number of SPT
setups involving mucin. For instance, PEG-ylated nearly neutral
particles at both pH = 2 and 7 were studied (the beads were
functionalised with a polyethylene-glycol corona), see ref. 20
also for the original studies on the zeta potential. Analysing
additional SPT data with variable tracer sizes and surface
properties using the current Bayesian approach might help
quantifying changes in the dominant models of diffusion in
these hydrogels under varying experimental conditions.

Additional statistical quantifiers. Clearly, a number of other
quantifiers can be evaluated for the SPT data sets examined
here.19,20 One more parameter is the so-called asphericity146,167 that
defines the degree of asymmetry168 of a random walk. Statistical
quantifiers involving high-order moments of particle displace-
ments—such as excess kurtosis and the non-Gaussianity
parameter133,149,167—can also be studied. Fractal dimensions of SPT
trajectories167 and their space-filling properties can also be quanti-
fied, for tracer diffusion in mucin films in vitro and in mucus in vivo.

First-passage and target-search properties. The properties of
penetration times of pathogens across mucus layers is also of
great applied and theoretical interest, with typical timescales
for translocation ranging from tens of minutes to hours.23 To
make some reliable predictions regarding diffusion models
describing these translocation events, one would need to per-
form the Bayesian analysis on much longer time series of
tracers in mucus, as compared to 10 s-long tracks analysed
here, Fig. 3. Collecting long trajectories without intermissions
is a great challenge for SPT data-acquisition strategies.

Regarding the search problem, one important feature is
the ‘‘search efficiency’’ of mucus-internalised bacteriophage

particles for bacterial ‘‘prey’’ cells which are to be infected and
destroyed.16 It would be interesting to investigate this issue in
the future, as a function of (tunable) anomalous exponent of
phage diffusion, density of phage ‘‘predators’’ and bacterial
‘‘prey’’ cells in the gel, overall mucin concentration, and other
relevant parameters.

Abbreviations

SPT Single-particle tracking
MSD Mean-squared displacement
TAMSD Time-averaged mean-squared displacement
PDF Probability density function
DD Diffusing diffusivity
BM Brownian motion
FBM Fractional Brownian motion
OU Ornstein–Uhlenbeck
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Appendix A: Bayesian model-ranking
approach and parameter estimation

Below, we present some details of the Bayesian model-ranking
analysis and the nested-sampling algorithm employed in the
main text. We also describe some key properties of the diffu-
sion models used in the analysis (more details are provided in
the original method study49).

Using Bayes’ theorem, we compute the conditional prob-
ability of a model Mi given data as50–53

P(Mi|Data) = P(Data|Mi)P(Mi)/P(Data). (A1)

Here, P(Mi|Data) is the posterior probability, P(Data|Mi) is the
marginal likelihood (or the evidence Zi) for Mi, P(Mi) is the prior
probability for Mi, and P(Data) is the probability of the data.
As all possible models (Nm in total) are initially equiprobable,
they can be ranked via computing their probabilities as

P Mkð Þ ¼ Zk

�PNm

i¼1
Zi. Each model features N parameters

(a model-specific number) so that hi = {y1,y2,. . .,yN}i. Depending
on our knowledge about their range, certain prior probability
distributions are chosen, p(hi) = P(hi|Mi). The likelihood func-
tion of data, Li hið Þ ¼ P Datajhi;Mið Þ, is then used to express the
evidence Zi of Mi as

Zi ¼
ð
Li hið Þp hið Þdhi: (A2)

To estimate the model parameters, we use the posterior
probability distribution, so that from eqn (A1) we get

P hijMi;Datað Þ ¼ P Datajhi;Mið ÞP hijMið Þ
P DatajMið Þ ¼ Li hið Þp hið Þ

Zi
; (A3)
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which is used to estimate the mean and variance of each
parameter of the model Mi. The evaluation of the evidence
values is central for model comparison and parameter estima-
tion. From eqn (A2) it follows, however, that this computation
becomes—both analytically and computationally—expensive as
the dimension of hi increases. For this, we use the method of
nested sampling52,54–56 that reduces the multi-dimensional
integral (A2) to a one-dimensional one.49

Appendix B: models of diffusion

Below, we apply the Bayesian framework to three models of
diffusion used in the main text. We specify the likelihood
functions, the model parameters, and their prior distributions.
For parameters with large ranges, we use a prior distribution
uniform on a log scale (Jeffrey’s prior). In contrast, if the range of a
parameter is small, a uniform prior is employed. For a parameter
y in the range y A [ymin,ymax] the Jeffrey’s prior50,57–59 is

pðyÞ ¼
1= y log ymax=yminð Þ½ �; ymin o yo ymax

0; otherwise

(
; (B1)

while the uniform prior is

pðyÞ ¼
1= ymax � ymin½ �; ymin o yo ymax

0; otherwise

(
: (B2)

(i) BM is described (in the overdamped limit) by the Lange-

vin equation,60 dxðtÞ=dt ¼
ffiffiffiffiffiffiffi
2D
p

� xðtÞ; where x(t) is white
Gaussian noise with zero mean and autocorrelation hx(t1)x(t2)i =
d(t1 � t2). As displacements Dxj = xj � x( j�1) at the jth step are
independent identically distributed random variables, we use a
Gaussian likelihood function,61

LBM hBMð Þ ¼
YNp

j¼2
exp �

Dxj
� 
2
4DjDt

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDjDt

p
: (B3)

Here, j is the index along the trajectory with the total number of
points Np. BM has a single parameter—the diffusion coefficient
Dj = D—related to the step deviation s as D = s2/[2(Dt)]. For the
parameter s we use Jeffrey’s prior, eqn (B1).

For BM with additional noise—given the actual xact
j and observed

particle positions xobs
j at time step j—we include into xobs

j a Gaussian
measurement noise Zj (with zero mean and variance hZj

2i = sN
2). The

observed positions are then xobs
j = xact

j + Zj and the likelihood
function becomes49,61,63

LBMþNðhÞ ¼
YNp

j¼2
exp �

xobsj � ~xj

� �2
2~sj2

0
B@

1
CA
, ffiffiffiffiffiffiffiffiffiffiffi

2p~sj2
q

: (B4)

Here, the sets of new variables are iteratively defined for 2 o j r Np

as x̃j = xj�1� sN
2(xj�1� x̃j�1)/~sj�1

2 and ~sj
2 = s2 + sN

2(2� sN
2/~sj�1

2).
For the initial step, at j = 2, we set x̃2 = x2, ~s2

2 = s2 + 2sN
2 (subscript N

denotes ‘‘noise’’ here). In addition to D, for noisy BM we use a
uniform prior (B2) for sN.

(ii) FBM obeys the equation dx(t)/dt = xfGn(t), where xfGn(t) is
the fractional Gaussian noise with zero mean and long-ranged
correlations,64,65

hxfGn(t1)xfGn(t2)i = 2H(2H � 1)DH � |t1 � t2|2(H�1). (B5)

Here t1 a t2, the angular brackets denote averaging over the
noise, DH is the generalised diffusion coefficient, and H is the
Hurst exponent. Two parameters of FBM—DH and H (so that
N = 2)—are to be determined. The step deviation sH obeys
the relation DH = sH

2/[2(Dt)2H]. As possible sH values vary in a
wide range, Jeffrey’s prior (B1) is used for sH. For a limited

Fig. 12 Distribution of N = 102 TAMSD trajectories of T = 3000 points
long for the models of BM (red curves) and DD (blue curves). The
ensemble-averaged quantities are shown by the symbols. The inset shows
the evolution of the ergodicity breaking parameters for these two models
versus lag time D. Parameters: D = 1, Dt = 1 (for the BM model) and t = 5,
D* = 0.2, Dt = 1 (for the DD model), see also ref. 49 for the details of the
Bayesian analysis. The image is reproduced from ref. 49 with permission
from the Royal Society of Chemistry.

Fig. 13 Ergodicity breaking parameter for the DD model, normalised to
the BM values and plotted versus lag time D, as obtained from computer
simulations, see ref. 49. The maximal trace length is T = 3 � 104 and
lag time varies (see the legend). Other parameters are the same as in
Fig. 12.
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Fig. 14 The same as in Fig. 4 but at pH = 4, with N = 102 trajectories.19

Fig. 15 The same as in Fig. 4 but at pH = 2 (experiment #1 of ref. 19 with
N = 64 traces).

Fig. 17 Correlations of Bayesian scaling exponents and errors of their
determination. The data of tracer diffusion in gels at pH = 2 from the
experiment #2 of ref. 19 were used.

Fig. 16 The same as in Fig. 4 but at pH = 2 (experiment #3 of ref. 19
containing N = 334 traces).
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range of Hurst exponents, H A [0, 1], a uniform prior (B2)
is used.

We derive for the FBM model a quadratic form similar
to (B4). For this, for Np positions at evenly spaced time
intervals (the time step is Dt), the displacements after n steps
Dxn = xn � xn�1 have the autocovariance function61,63 g(k) =
hDxn � Dxn+ki = DH(Dt)2H[|k + 1|2H + |k � 1|2H � 2|k|2H]. Here,
the index k denotes the step number. This function only
depends on the time-step difference, k, see ref. 66. From
displacements along the trajectory, the column-vector Dx(Np�1)

and its transpose DxT
Np�1ð Þ are formed. The likelihood func-

tion is constructed as49,63

LFBMðhÞ ¼
exp �1

2
DxT

Np�1ð ÞC Np�1ð Þ
�1Dx Np�1ð Þ

	 


ð2pÞN=2 C Np�1ð Þ
��� ���1=2 ; (B6)

where C Np�1ð Þ
�1 is the inverse of the (Np � 1) � (Np � 1)

covariance matrix with the elements g(m � n) and determinant
|C(Np�1)|.

We also consider the model of noisy FBM for which the
displacements have the autocovariance63

gobsðkÞ ¼

gactð0Þ þ 2sN2; for k ¼ 0

gactð1Þ � sN2; for k ¼ 1

gactð0Þ; for 1o ko Np � n� 1
� 


8>>><
>>>:

(B7)

and the likelihood function49,63

LFBMþNðhÞ ¼
exp �1

2
Dxobs

Np�1ð Þ

	 
T

Cobs
Np�1ð Þ

	 
�1
Dxobs

Np�1ð Þ

	 
 !

ð2pÞN=2 Cobs
Np�1ð Þ

����
����
1=2

;

(B8)

where Cobs
Np�1ð Þ

	 

m;n

¼ gobsðm� nÞ. The model of FBM with

additional noise has three parameters: the step deviation sH,
the Hurst index H, and the strength sN of the measurement noise.
For sH we use (B1), while for H and sN (B2) is used as a prior.

Fig. 18 Stacked histograms of distributions of initial scaling exp-
onents of TAMSDs and respective diffusion coefficients (see eqn (11)),
computed for the data sets of Fig. 7. Data bars at different pH values do
not overlap.

Fig. 19 Panel (a): Comparison of the ergodicity breaking parameters for
the data sets of ref. 19 at pH = 2 with different number of trajectories
(N = 64, 134, and 334). Panel (b): The magnitude of the mean TAMSD at
D = 1 step for the data sets of Fig. 3, plotted for varying trajectory length
(T = 10, 30, 100, 300 points) for pH = 2, 4, and 7. At longer T no significant
ageing is observed. Coding for colours is the same as in Fig. 3.
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Fig. 20 The same as in Fig. 9 but for pH = 4 data set of ref. 19.

Fig. 21 The same as in Fig. 9 but for pH = 7. Note that the entire data sets are presented here, including some statistically insignificant rare outliers at
relatively large tracer displacements.

Fig. 22 Distribution of scaling exponents d and widths w of tracer
displacement distributions, see the fit of eqn (18), for individual tracers as
measured at pH = 2 in experiment #2 of ref. 19. The traces have the same
(original) order in both panels. The trajectories dominated by the DD
model are in magenta (the same colour coding as in Fig. 5).

Fig. 23 The same as in Fig. 22 but for N = 102 tracer trajectories at pH = 4
in ref. 19.
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(iii) The minimal model of DD obeys the system of stochastic
differential equations49,67

dxðtÞ=dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p
� xðtÞ (B9a)

D(t) = Y2(t) (B9b)

dY(t)/dt = �Y(t)/t + e � �Z(t). (B9c)

Here, x(t) is the position, D(t) is the time-dependent diffusivity
(in terms of auxiliary variable Y(t) given by the OU process68,69),

e is the amplitude of white Gaussian noise, and t is
the relaxation time. The parameters of the DD model
((Np + 1) = N in total) are hDD = [t,D*,D1,D2,. . .,D(Np�1)]. Here,
D* = te2 is the characteristic diffusivity and {D1,D2,. . .,DNp�1}
are the instantaneous diffusion coefficients at

t1 þ t2

2
;
t2 þ t3

2
; . . . ;

t Np�1ð Þ þ tNp

2

( )
(computed for each trajec-

tory). The diffusivities at these times are {Y1
2,Y2

2,. . .,Y(Np�1)
2}.

For the parameters t and D* we use Jeffrey’s prior (B1). For Y1

we choose the prior from the equilibrium distribution of the
OU process49,67 as p(Y1|D*) = (pD*)�1/2 exp(�Y1

2/D*). For other Yj

we use the OU Gaussian distribution49,67 and a Gaussian prior.
Thus, for an arbitrary k we define the set of {Y]k[} 	
{Y1,Y2,. . .,Yk�1,Yk+1,. . .,Y(Np�1)} (not containing the value Yk).
For {Y]1[} the prior is49

p Y�1½
� �

j t;D
;Y1f g
� 


¼

exp �

PNp�1

l¼2
Yl � Yl�1e

�Dt=t� 
2
D
 1� e�2Dt=tð Þ

0
BBB@

1
CCCA

pD
 1� e�2Dt=tf g½ �
Np�2

2

:

(B10)

The likelihood function for the DD model can be written
similarly to that of BM, eqn (B3). As the position increments
Dxj are independent random variables, the likelihood is given
by the product of Gaussian likelihoods for each increment,49

LDDðhÞ ¼
XNp�1

j¼1
exp �

Dxj
� 
2
4DjDt

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDjDt

p
:

Appendix C: supplementary figures

Below we present additional figures supporting the claims in
the main text of the paper.

Fig. 24 The same as in Fig. 22 but computed for tracer trajectories in
mucin gels at pH = 7, as measured in ref. 19.

Fig. 25 Histograms of the width of tracer displacement distributions for single trajectories, see eqn (18), as obtained by fitting dt = 33 ms data of ref. 19
for different pH values (as indicated in the panels). The colours are the same as in Fig. 3.
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Lévy walk, Nat. Commun., 2018, 9, 344.

99 R. Keidel, A. Ghavami, D. M. Lugo, G. Lotze, O. Virtanen,
P. Beumers, J. S. Pedersen, A. Bardow, R. G. Winkler and
W. Richtering, Time-resolved structural evolution during
the collapse of responsive hydrogels: The microgel-to-
particle transition, Sci. Adv., 2018, 4, eaao7086.

100 M. V. Chubynsky and G. W. Slater, Diffusing diffusivity: a
model for anomalous, yet Brownian, diffusion, Phys. Rev.
Lett., 2014, 113, 098302.

101 R. Jain and K. L. Sebastian, Diffusion in a crowded,
rearranging environment, J. Phys. Chem. B, 2016, 120, 3988.

102 R. Jain and K. L. Sebastian, Lévy flight with absorption: a
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distances increase vastly with sample age, reaching Bmm
scale30 (as in the ‘‘gelation’’ effect).

173 The importance of different microenvironments for tracer
diffusion in inhomogeneous media was emphasised
previously.44 This study presents the (first) quantitative
analysis of non-Gaussian, nearly exponential PDFs for
diffusion of micron-sized tracers in heterogeneous media,
such as agarose gels. The authors observed the presence of
varying local microenvironments and particle-to-particle
variations in diffusivities,44 laying the foundation for the
DD-based models.67,87,100 The effect of non-Gaussianity
and cage rearrangement were also emphasised,115,116 with
for cooperative motion of neighbouring particles and
longer-than-Gaussian tails emerging for self-diffusion in
dense colloidal suspensions due to long-range jumps into
newly opened cages.

174 The effect of added salt on elasticity and stability of mucin
networks is two-fold. From the point of view of persistence
of a polyampholyte-like mucin chain, its rigidity at higher
salt amounts should decrease due to better Debye–Hückel
screening of charges,19 see also ref. 126 and 127. Also, at
higher salt amounts the intermolecular repulsions
between mucin chains are weakened, so the (salt-
insensitive) crosslinks between the chains may live longer
(dissociate less frequently).19 The viscoelastic moduli of
mucin gels grow substantially as salt concentration
increases from 0 to 400 mM at pH = 7, see Fig. 2b of
ref. 19. Upon this change in salinity, tracer motion
becomes progressively subdiffusive, but the Gaussian
PDF is still preserved.19 We refer to ref. 20 for the discus-
sion of effects of added salt on the charge density of mucin
chains and tracer beads.

175 With increasing n0 at pH = 7 the magnitude of di2ðDÞ and
their exponent bi decrease substantially, Fig. 4b in ref. 19
(not shown). This trend of decreasing particle mobility
(more confined motion) is corroborated by an increasing
elastic modulus of the network at higher salt concentra-
tions, n0. Overall, however, the maximal tracer displace-

ments often remain very small, d2 Dmaxð Þ � 0:1� 1 mm.
This ‘‘jiggling’’-like tracer motion occurs on scales smaller
than its own diameter (similar to ref. 75).

176 SPT experiments19 sometimes faced technical difficulties
with dedrifting fast and slow particles in the same image
for strongly heterogeneous gels. This could potentially give
rise to superdiffusive behaviours for the fastest particles
(Crocker–Grier–Weeks–Kilfoil dedrifting scheme128 was
employed in ref. 19 and 20). We mention here, however,
the recently proposed physical mechanism of facilitation
of tracer diffusion via binding to hydrogel and disrupting
its polymer crosslinks.41 We also refer to the discussion of
superdiffusive exponents in ref. 131.

177 A similar separation of subdiffusive tracers was performed
for F-actin networks in ref. 45. The population was split
into predominantly diffusive particles and tracers strongly
confined to local microenvironments and only rarely hop-
ping between ‘‘cages’’ of the network. These hops results
in progressively subdiffusive MSDs for particle spreading
in entangled F-actin networks at increasing polymer
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concentrations.45 In theory, the events of particle hopping
can also be realisable for ‘‘slow’’ tracers confined in
‘‘cages’’ of mucin hydrogels,19,20 but likely on timescales
much longer than those probed originally.19

178 These results can be compared to findings of ref. 132 in
which protein crowding on lipid bilayers was demon-
strated by computer simulations to give rise to intermit-
tently confined particles, broad distributions of diffusion
coefficients, p(D), and non-Gaussian PDFs of particle
displacements.

179 At pH = 7—despite increasing viscoelastic moduli of the
gel with addition of salt (from n0 = 0 to 0.4 M)20—the
mucin network stays quite homogeneous, with fairly
Gaussian PDFs and small HR values.19 Note that a decom-
position of tracer trajectories into clusters was also
proposed in ref. 133, aiming at developing a quantitative
metric to describe diffusive heterogeneities of soft-matter
media on a submicron scale.

180 We mention here the recent variational Bayesian SPT-
study135 using the hybrid method of a gamma-mixture
model and a hidden Markov model. It is aimed at recog-
nising multiple diffusion states along particle trajectories
in heterogeneous media.91 Using a machine-learning
approach, the time- and space-controlled regions with
varying tracer diffusivities were reliably identified.135

181 We note that one disadvantage of the single-trajectory-
based Bayesian analysis emerges when the method is
applied straightforwardly to an ensemble of trajectories
with a pronounced spread of TAMSDs, as for diffusion in
mucin gels at pH = 2,19 see Fig. 3. Here, in order to make a
statement about the applicability of the FBM model for the
entire ensemble of traces, this model must be supplemen-
ted with a set of trajectory-specific diffusivities p((Kb)i) and
exponents p(bi).

182 Also, as quantified in ref. 49, for each diffusion model the
performance and accuracy of the nested-sampling predic-
tion of model significance are diminished for shorter
trajectories. Therefore, the model-prediction results, as
in Fig. 4, will change when longer traces are provided:
one can expect a stronger dominance of one model49

(results not shown). Additionally, as the level of confidence
of this algorithm can vary differently for each models with
trace length, the conclusions for longer tracer regarding
the dominant model may also change. Moreover, for a
larger list of possible diffusion models, relative model
probabilities will likely get reduced. This is the subject of
our future work.

183 Clearly, fixing Nfit turns our results non-universal (see also
ref. 107 and 136), inevitable in such an analysis. The initial
points of di2ðDÞ yield the most statistically robust results
for the short-time scaling behaviour.66,74 Some studies
reporting on optimisation of determining scaling expo-
nents and diffusion coefficients, also in the presence of
localisation errors,137–139 should be mentioned here as
well.140–142 We note also the recent diffusivity analysis
for multistate trajectories in heterogeneous media, i.e.,

when several different models of diffusion occur along a
single trajectory (e.g., free and bound diffusion).143

184 The distributions and correlations of scaling exponents
and diffusion coefficients were uncovered for nano-
particles in mammalian cells.130 We also refer to ref. 146
for detection of p(b) and p(Kb) distributions for SPT data on
subdiffusion of endoplasmic reticulum network. Note that
pronounced Kb–b anticorrelations were detected at early
lag times for active spreading of ameboid cells.107

185 Additionally, the histograms for distributions of scaling
exponents and diffusion coefficients are presented in
Fig. 18a and b. Note that a similar splitting of particles
into ‘‘exponential’’ and ‘‘Gaussian’’ subpopulations diffus-
ing in a heterogeneous medium with space-dependent
diffusivity was considered in ref. 147. We also refer to
cluster-averaging and population-splitting analyses of
ref. 44.

186 Note that certain limitations exist when evaluating EB for a
limited number of traces. We also mention here an alter-
native dynamic functional-based approach to estimate
non-ergodicity of a stochastic process, proposed recently
in ref. 157.

187 Note that the ageing properties of continuous-time
random walks were examined in ref. 155 and 156.

188 We refer to a similar TAMSD versus (PDF width) analysis
performed for active diffusion of amoeboid cells in
ref. 107.

189 We note that data binning for PDFs can affect the exact
values of the exponents and widths as extracted from the
fit (18).

190 We refer to the method study49 for the detailed discussion
of the criteria of model significance in the Bayesian
analysis with nested sampling used here.

191 Note that situations t o dt and t 4 dt are possible. For
overdamped BM the (normalised) Cdt(t) function drops as
a straight line from unity at t = 0 to zero at t = dt and stays
zero at t 4 dt. A similar behaviour is observed for sub-
diffusive continuous-time random walks.74 Importantly,
the fact that Cdt(t) 4 0 in the region 0 o dt o t is not
associated with the persistence of the process or inertia
effects. As follows from eqn (20), only at t 4 dt the
positiveness (negativeness) of Cdt(t) indicates persistent
motion and superdiffusion (antipersistent motion and
subdiffusion).

192 We mention the recent SPT analysis of diffusion of colloids
in gelatin solutions159 and the emergence of broader-than-
than Gaussian tails of the PDF of the tracers close to the
critical gel point. A continuous ‘‘thickening’’ during the
gelation transition—observed for growing ageing times of
the samples (denoted ta)—was shown to progressively
reduce the MSD magnitude and its exponent. Note that
when—following the classical studies160,161—deconvolut-
ing the diffusivity distribution (7) conditioned with the
Gaussian (5), it was shown that for longer ta the distribu-
tion p(D) remains single-peaked and localised. After a
critical waiting time, a ‘‘population splitting’’ takes place.159
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Namely, a second peak in p(D) emerges at large diffusivities
and it reflects a smaller medium viscosity for this subpopula-
tion. The conclusions of ref. 159 support the findings of
ref. 19 regarding two subpopulations of tracers.

193 We note that the emergence of certain ‘‘spurious’’
anomalous-diffusion features was discussed in ref. 110 as
a consequence of using conventional statistical classifiers
to strongly heterogeneous random walks. In particular, the
superstatistical approach and the autoregressive process of
the first order were employed110 to describe superdiffusive
motion of tumour cells (breast carcinoma cells on collagen
networks). A new sequential Bayesian method was
proposed110 to estimate the parameters of the autoregres-
sive process (persistence and activity). The latter vary on
each time-step along the trajectory mimicking varying
microenvironments for cell diffusion. This renders the
approach of ref. 110 similar to the DD model in the current
Bayesian framework.

194 For instance, for financial time series longer-than-
Gaussian tails in the distribution of returns occur as well.
The recent Bayesian analysis with time-varying parameters165

has shown that mutual correlations of volatility and walk
persistence are pronounced. Moreover, incorporating a
certain time evolution of the model parameters can be
sufficient to rationalise these tails.165,166 Likewise, additional

time variation D(t) can be employed for ageing diffusion in
mucin gels.

195 The effect of minimal trace-length Nmin
p varies with particle

size: largest tracers are typically easier to track for longer
times.20 The probes of size 0.2–5 mm were analysed in
Fig. 4.3.8a and b of ref. 20. This means, however, that if
long enough time series with the same Nmin

p are to be
recorded for different tracer sizes, for smaller tracers this
will over-represent a slower subpopulation (particles stay
longer in the view-field). This might affect, e.g., the diffu-
sivity versus particle-size relation in polymer-based solu-
tions, often targeted in experiments.27

196 Also, for tracer diffusion in mucin gels, for progressively
longer trajectories of smaller tracers the respective ensem-
ble becomes smaller than for bigger particles, for which
the number of tracked particles does not drop with
Nmin

p that rapidly. This could give rise to a paradoxical
effect: in 1 wt% MUC5AC solutions at pH = 2—see
Fig. 4.3.8a in ref. 20—5 mm tracers at long times show an
order-of-magnitude larger MSD than 0.2–0.5 mm tracers at
the same conditions.20 Also, as Fig. 4.3.8e of ref. 20 shows,
the short-time TAMSD exponent at pH = 2 reveal a non-
monotonic dependence with particle size. Namely, the
exponent hbi in (11) grows fast for small tracers and shows
a weak maximum for medium-sized tracers.
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