
PHYSICAL REVIEW E 98, 022134 (2018)

Time averages and their statistical variation for the Ornstein-Uhlenbeck process:
Role of initial particle distributions and relaxation to stationarity

Andrey G. Cherstvy,1,* Samudrajit Thapa,1 Yousof Mardoukhi,1 Aleksei V. Chechkin,1,2 and Ralf Metzler1,†
1Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany

2Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine

(Received 25 April 2018; revised manuscript received 30 July 2018; published 28 August 2018)

How ergodic is diffusion under harmonic confinements? How strongly do ensemble- and time-averaged
displacements differ for a thermally-agitated particle performing confined motion for different initial conditions?
We here study these questions for the generic Ornstein-Uhlenbeck (OU) process and derive the analytical
expressions for the second and fourth moment. These quantifiers are particularly relevant for the increasing number
of single-particle tracking experiments using optical traps. For a fixed starting position, we discuss the definitions
underlying the ensemble averages. We also quantify effects of equilibrium and nonequilibrium initial particle
distributions onto the relaxation properties and emerging nonequivalence of the ensemble- and time-averaged
displacements (even in the limit of long trajectories). We derive analytical expressions for the ergodicity breaking
parameter quantifying the amplitude scatter of individual time-averaged trajectories, both for equilibrium and out-
of-equilibrium initial particle positions, in the entire range of lag times. Our analytical predictions are in excellent
agreement with results of computer simulations of the Langevin equation in a parabolic potential. We also examine
the validity of the Einstein relation for the ensemble- and time-averaged moments of the OU-particle. Some
physical systems, in which the relaxation and nonergodic features we unveiled may be observable, are discussed.
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I. INTRODUCTION

A. Ornstein-Uhlenbeck process

The paradigmatic model by Ornstein and Uhlenbeck orig-
inally published in 1930, see Refs. [1–8] (hereafter, the OU
process), describes the diffusive Brownian motion (BM) of
thermally-agitated particles [9–12] confined by an external
parabolic potential, exerting a Hookean restoring force. Ap-
plications of this fundamental harmonic-oscillator model for
physical, chemical, and biological problems are truly ubiq-
uitous and range “from quarks to cosmology” [8]. Some
important applications include financial economics [13–17],
transition rates of chemical reactions [18], optically trapped
objects and cells [19–22], ecology and adaptive evolution
models [23], theoretical neuroscience [24,25], stochastic res-
onance (for bistable systems) [24,26], to mention a few. The
stationarity of the OU process makes it an adequate candidate
to describe and quantify deviations from steady-state behavior
induced by thermal fluctuations.

The problems of escape and first-hitting time for
harmonically-trapped particles were considered in Refs. [27–
30]. Barrier-crossing Kramers-type problems for a thermally-
activated escape [18,31] of trapped particles were also exam-
ined in double-well optical traps [32,33] and for fractional
Gaussian noise [34]. Time-changed [35], fractional [36,37],
and generalized OU processes in the presence of Lévy-stable
noise [38–40] were studied as well. Time-averaged displace-
ments and their statistical uncertainty for massive and massless
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particles confined in an harmonic potential, also in the presence
of dissipative/friction memory kernels, were considered in
Ref. [41]. The dynamics of a quantum harmonic oscillator [42],
a relativistic OU process [43,44] (see also Ref. [45]), and time-
and space-fractional OU process [46–48] were investigated.
A harmonic oscillator driven by colored noise [24,25] and
effects of relaxation from nonequilibrium conditions [39] were
examined; see Fig. 1.

Some models of harmonic oscillators with stochastic fre-
quency, random noise and damping [8,49–51] were proposed
(for ensemble averages). This temporal stochasticity of the
model parameters is reminiscent of the “diffusing diffusivity”
concept introduced recently [52–55]. The analog of fluctuating
diffusion coefficients for BM [56] is the concept of stochastic
volatility in financial economics and option-pricing models
[13,57–61] described by Black-Scholes-Merton as geometric
BM [62,63]. The concept of stochastic volatility is the standard
tool for stochastic models of stock-price variations [14,15,64].

B. Time averaging and weak ergodicity breaking

The concepts of time averaging and nonergodicity were
introduced for a number of diffusion processes, both normal
and anomalous [65–67]. These quantifiers were computed
for canonical BM [68–70], free and confined fractional BM,
fractional Langevin equation motion [68,71–73], for free,
confined, and aging continuous-time random walks [65,73–
77], heterogeneous diffusion processes [78–81], scaled BM
[81–85], ultraslow Sinai-like diffusion [83], for dynamics in
disordered systems [86,87], random walks with memory [88],
and Lévy walks [89].

In the standard Boltzmann-Khinchin sense, weak ergod-
icity breaking [90,91] signifies the nonequivalence of the
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FIG. 1. Schematic of different initial particle distributions in a
parabolic potential, as examined in the text for both equilibrium and
nonequilibrium (fixed and distributed) cases.

ensemble- and time-averaged mean-squared displacements
(MSDs) of a physical process in the long-time limit. In contrast,
for strong ergodicity breaking, some regions of the phasespace
remain inaccessible on the timescale of particle diffusion,
which might depend on initial conditions of the system
[67,91–93]. The phenomena of weak ergodicity breaking for
long trajectories and anomalous diffusion [66,67,94–98] were
repeatedly detected in cellular biological systems, inter alia, for
tracer diffusion in the cytoplasm of living cells, lipid, and pro-
tein motion on biomembranes, internal dynamics of proteins,
diffusion of chromosomal loci, motion of proteins, viruses, and
RNAs inside cells (see recent reviews [66,67]). In particular,
the behavior of ensemble- and time-averaged MSDs as well as
the ergodicity breaking parameter (denoted EB) for fractional
BM and generalized Langevin equation motion under power-
law memory kernel—confined both by infinite square wells
[71] and by a parabolic potential [72]—were investigated.
Despite the asymptotically ergodic nature of these processes,
transient nonergodic behavior was shown to occur [68,99].

C. Trapping and tracking of tracer particles

A number of single-particle manipulation and tracking
experiments [99–112] performed, e.g., in living cells utilize
localization properties of dielectric particles in optical traps
[21,22,109,113,114,117]. Such optical “tweezers” create a
parabolic potential for tracer motion: the restoring force is
linear in particle displacement from the center of the trap
(allowed displacements are often � 400 nm [22]). Optical
tweezers enable secure trapping in all three spatial dimensions
and high-precision manipulation of micro- and nanosized
objects, also inside biological cells [22,103]. Provided the
laser energies and densities are significantly low and the
exposure times are short enough [103], trapping of particles
in complex, dynamic, and heterogeneous environments of the
cell cytoplasm by infrared-laser optical tweezers is rather
noninvasive [115]. Some calibration issues [103,116,118,119]
and trap-stiffness estimations [120] for this setup were reported
(also for a time-dependent trap stiffness [121]). Typically, such
single-particle tracking experiments record fairly long but not

so many trajectories, which are later evaluated in terms of
time averages rather than ensemble averages. This prompts
a detailed study of relevant physical observables and their
ergodic behavior in an harmonic potential.

The experimental trap-stiffness (spring-constant) values
used for biological cells are k ∼ 0.01 . . . 1 pN/nm [22,103]
(often, however, in a lower part of this range, see k ∼
0.05 pN/nm in Ref. [99]). The spatial resolution of the optical
trap apparatus is 0.1 . . . 2 nm [22] and particle sizes can vary
from several tens of nm to several microns (see Refs. [115,116]
for the trap characteristics used in living cells). Numerical
simulations of optically trapped particles with inertia [33] and
theoretical investigations of massive particles in harmonic traps
[106] were conducted. Here, we also mention single-molecule
setups for monitoring tethered particle motion [22,122], with
often parabolic potentials acting, e.g., on a magnetic bead
tethered to a DNA molecule due to entropic elasticity of the
DNA [123].

We focus below on deviations of the time-averaged and
ergodic characteristics of the OU process. We find that—
particular for nonequilibrium initial particle conditions in an
harmonic potential relevant in single-particle systems—the
discrepancy of the ensemble- and time-averaged MSDs may
turn out to be very pronounced. Note that, in addition to
the standard particle-displacement characteristics, additional
statistical methods and classifiers exist for the analysis of
single-particle trajectories [124–128].

D. Structure of the paper

The paper is organized as follows. We present the main
analytical results for the ensemble- and time-averaged MSDs
of the OU process in Sec. II A, both for equilibrium and
nonequilibrium initial particle conditions. In Sec. II A 3 we dis-
cuss possible alternative definitions of particle-displacement
characteristics for diffusion in external potentials. In Sec. II B
we examine the behavior of the ergodicity breaking parameter
for confined OU motion, EBOU. To the best of our knowledge,
the exact expression for EBOU for arbitrary initial particle
positions is not known. The analytical evaluation of EB for a
thermally-driven particle in an harmonic potential—useful for
the examination of physical data—is the main mathematical
challenge of this study.

The behavior of displacements and EB parameter are
rationalized for equilibrium and nonequilibrium (fixed and
distributed) initial particle conditions. These choices reflect
initial preparations of the system, before the start of the
measurement. The first choice is to start with an initial thermal
equilibrium, while the second scenario is a δ-function-like
initial position. The third, and often most complicated, scenario
involves an arbitrary distribution of starting positions, P (x0);
see Fig. 1. For the latter, the second moments of displacements
and EB become functions of the moments of P (x0), denoted
as 〈x2

0 〉 and 〈x4
0 〉. We note that nonthermal initial conditions

a fairly standard situation in single-particle experiments, e.g.,
when a tracer is initially captured by the tweezers potential
(when the trap is located close to the particle). In Sec. II C
we present the linear-response relations for the ensemble- and
time-averaged characteristics of the OU process. The conclu-
sions are presented in Sec. III A and possible applications of
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our findings are outlined in Sec. III B. Technical details of the
derivations are given in Appendix A.

II. MAIN RESULTS

A. Ensemble- and time-averaged displacements

As most prominent quantifiers of diffusive processes, we
first compute the ensemble- and time-averaged MSDs of a
particle confined by the harmonic potential

U (x) = kx2/2 ≡ λx2/(2μ). (1)

Here, the particle mobility is μ and the spring constant of
the potential is k = λ/μ. Below, we perform the analysis
(for simplicity, in one dimension only, higher dimensions
can be viewed component-wise) for arbitrary initial positions,
x(t = 0) = x0, both fixed and distributed. We start with the
overdamped Langevin equation for diffusion of a pointlike
particle without inertia effects,

dx(t )/dt + λx = σξ (t ), (2)

driven by the white (δ-correlated) noise

〈ξ (t )ξ (t ′)〉 = δ(t − t ′), (3)

with zero mean, 〈ξ (t )〉 = 0. Inertial effects can typically be
neglected for long-time diffusion of standard tracer particles.
The diffusion coefficient is connected to the noise intensity as

D = σ 2/2, (4)

and we suppose that the Stokes-Einstein-Smoluchowski rela-
tion holds,

D = μkBT , (5)

where kBT is the thermal energy. The general solution of the
stochastic differential Eq. (2) is

x(t ) = x0e
−λt +

∫ t

0
dt ′σξ (t ′)e−λ(t−t ′ ), (6)

where 1/λ is the relaxation time. Performing averaging over
both noise realizations ξ (t ) and initial positions x0 (denoted
by the angular brackets) the solution for the second moment
of displacement with respect to initial position (the standard
MSD; see also Sec. II A 3) becomes〈

(x(t ) − x0)2
〉
= 〈

x2
0

〉
(1 − e−λt )2 + σ 2

2λ
(1 − e−2λt ). (7)

Constructing from the Langevin Eq. (2) the time-
independent Fokker-Planck equation for the equilibrium (sub-
script “eq”) probability density of particle positions (see, e.g.,
Refs. [1,5–7]),

D
d2Peq(x)

dx2
= d

dx

[
−μ

dU (x)

dx
Peq(x)

]
, (8)

we find its solution as the Boltzmann distribution,

Peq(x) =
√

λ

πσ 2
exp

(
−λx2

σ 2

)
=

√
μk

2πD
exp

[
−μU (x)

D

]
.

(9)

Using this steady-state displacement distribution, the thermal
value for the particle displacement at equilibrium is

〈
x2

eq

〉 =
∫ +∞

−∞
x2Peq(x)dx = σ 2

2λ
= μkBT

λ
= kBT

k
, (10)

due to energy equipartitioning [22]. This allows us to rewrite
Eq. (7) in the form〈

(x(�) − x0)2
〉
= 2

〈
x2

eq

〉
(1 − e−λ�)

+ (〈
x2

0

〉 − 〈
x2

eq

〉)
(1 − e−λ�)2. (11)

Using the general solution (6) the pair correlation function
for positions of the particle performing the OU process is

〈x(t ′)x(t ′′)〉 = (〈
x2

0

〉 − 〈
x2

eq

〉)
e−λ(t ′+t ′′ ) + 〈

x2
eq

〉
e−λ|t ′−t ′′ |. (12)

For the time-averaged MSD—defined for a stochastic process
x(t ) via [65–67]

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t )]2dt, (13)

and denoted below by the overline—the integration of Eq. (13)
using Eq. (12) yields, after averaging over an ensemble of N

trajectories,

〈
δ2(�)

〉 = N−1
N∑

i=1

δ2
i (�), (14)

that〈
δ2(�)

〉 = 2
〈
x2

eq

〉
(1 − e−λ�)

+ (〈
x2

0

〉 − 〈
x2

eq

〉)
(1 − e−λ�)2 1 − e−2λ(T −�)

2λ(T − �)
. (15)

Here, the lag time is� andT denotes the length of the trajectory
(observation time).

For x0 = 0 the expressions for the time-averaged MSD for
standard and fractional BMs were derived in Eqs. (3) and (13)
of Ref. [72]. We refer the reader also to Ref. [41] for derivations
of the time-averaged MSD of harmonically-confined particles
(see Sec. III A in Ref. [41]), the fourth-order correlation func-
tion of particle positions, and the statistical uncertainty of time-
averaged MSD realizations (see Appendix A of Ref. [41]). The
statistical uncertainty mentioned here is the square root of the
EB parameter computed below.

1. Equilibrium initial conditions

When the initial particle positions x0 are chosen to satisfy
the equilibrium distribution (9), one gets〈

x2
0

〉 = 〈
x2

eq

〉
. (16)

Therefore, the second terms in Eqs. (11) and (15) disappear
and the pair correlator (12) becomes exponential,

〈x(t ′)x(t ′′)〉eq = 〈
x2

eq

〉
e−λ|t ′−t ′′ |. (17)

In this scenario, the particles are equilibrated in the potential
before starting their motion and the ensemble- and time-
averaged MSDs coincide in the entire range of lag times
(diffusion is fully ergodic, see Sec. II B for details).

The behavior of the MSD is illustrated in Figs. 2(a) and 2(b).
For equilibrated starting conditions (the green curves in the
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(a)
(b)

FIG. 2. Ensemble- and time-averaged MSDs for the OU process with equilibrium and nonequilibrium initial particle positions x0, plotted
versus (lag) time. The linear and ballistic asymptotes of Eqs. (21) and (22) and the plateau values of Eqs. (19), (23), and (24) are the dashed
lines. Parameters: T = 102, λ = 1, σ = 1, 〈x2

0 〉 = 103〈x2
eq〉 (panel a) and 〈x2

0 〉 = 105〈x2
eq〉 (panel b).

plot) at short times the MSD of Eq. (7) and time-averaged
MSD of Eq. (15) grow nearly unperturbed as σ 2t ≈ 2Dt . After
a characteristic timescale,

t 	 t� ∼ 1/λ, (18)

the MSD and time-averaged MSD start approaching the sta-
tionary (subscript “st” below) plateau value,〈

(x − x0)2
st,eq

〉 = 〈
δ2

st,eq

〉 = σ 2/λ = 2
〈
x2

eq

〉
. (19)

2. Nonequilibrium initial conditions

The MSD and time-averaged MSD develop very differently
and nonergodically if initial positions x0 are not equilibrated,
as illustrated in Figs. 2(a) and 2(b). In particular, if we start
strongly out-of-equilibrium, where〈

x2
0

〉 	 〈
x2

eq

〉
, (20)

both ensemble- and time-averaged MSDs after the unconfined
initial linear growth can have a region of ballistic diffusion.
Specifically, in this limit the Taylor expansion of Eqs. (11) and
(15) at short lag times gives, respectively,〈

(x(�) − x0)2
〉
≈ σ 2� + λ2

〈
x2

0

〉
�2 (21)

and 〈
δ2(�)

〉
≈ σ 2� + λ

〈
x2

0

〉
�2/(2T ). (22)

Here, we consider long traces λT 	 1 and strongly nonequi-
librium starting positions, Eq. (20). From Eqs. (21) and (22)
we find that the ballistic region for the MSD starts much earlier
than that for the time-averaged MSD. The latter becomes
ballistic at the lag time at which the second term in Eq. (22)
starts to dominate over the short-time Fickian motion. This
ballistic regime is pronounced for larger 〈x2

0 〉 values, as
expected: it describes rapid relaxation to the bottom of the
potential well (1).

For starting positions close to the equilibrium Eq. (10),
the ballistic regime can almost disappear in the time-averaged
MSD, while the ensemble-averaged MSD still exhibits roughly
ballistic growth over a substantial time range. The evolution

of the ensemble- and time-averaged MSDs for nonequilibrium
starting conditions is illustrated in Figs. 2(a) and 2(b) by the
blue and red curves, respectively. At intermediate times, these
quantities relax quite differently: both their magnitudes and
scaling exponents can be substantially different. This may have
severe implications for different averaging protocols employed
in single-particle tracking experiments monitoring tracers in
confining potentials; see Sec. III.

We also observe that after a region of ballistic MSD
growth—if the trajectories are long enough—a stationary
regime is reached. When the conditions λ� 	 1 and � 
 T

are satisfied, the steady-state plateaus for the ensemble- and
time-averaged MSDs follow from Eqs. (11) and (15) as〈

(x − x0)2
st

〉 ≈ 〈
x2

0

〉 + 〈
x2

eq

〉
(23)

and 〈
δ2

st

〉
≈ 2

〈
x2

eq

〉 +
〈
x2

0

〉 − 〈
x2

eq

〉
2λT

. (24)

The two averages are equal only for equilibrium starting
conditions, Eq. (19). As the stationary time-averaged MSD
in Eq. (24) depends on the trace length T , the plateaus of
the ensemble- and time-averaged MSDs can differ strongly
for nonequilibrium starting conditions; see Fig. 2. Finally,
at the very end of particle trajectories, the ensemble- and
time-averaged MSDs coincide, as they should [67]. At the very
last point � = T both averages reach the plateau Eq. (23); see
Fig. 2. Interestingly, the time-averaged MSD reveals a rapid
increase at � → T that becomes sharper for longer traces (not
shown).

In Fig. 3 we illustrate the reproducibility of individual
realizations δ2

i for different trace lengths. As expected, the
spread of trajectories reduces with the trace length, reflecting
the reciprocal dependence EB(T ) ∼ 1/T , as we observe for
short lag times [see Eq. (26) and the discussion below]. The
spread of time-averaged MSD magnitudes is minimal at short
lag times �. Also similar to BM, the spread of δ2

i (�) grows
with the lag time, reaching maximal irreproducibility at � →
T , due to the naturally worsening statistics [41,66,67].
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FIG. 3. Trajectory-to-trajectory variations of time-averaged
MSDs for the OU process, obtained for traces of T = {103, 104, 105}
steps from computer simulations of Eq. (2) with integration time
step dt = 0.01. The respective ensemble averages of Eq. (14) are
the thick curves for each T . Initial positions are normally distributed,
with Peq(x0) = exp (−x2

0/2)/
√

2π (with λ = 1 and σ = √
2). The

asymptote (24) is the dashed line. We show N = 102 traces for each
length T to demonstrate a decreasing spread of time-averaged MSDs
for longer traces. Also note that the statistics is best at � 
 T , as
expected.

3. Definitions: Standard MSD versus
displacement increments average

Note that for the nonshifted second moment, 〈x2(t )〉,
the plateau value is only half as high as compared to
Eq. (19), that is 〈x2(t → ∞)st,eq〉 → σ 2/(2λ). Therefore,
in the steady-state a spurious factor of two emerges be-
tween the ensemble- and time-averaged displacements; see
Refs. [41,72,80,104,106,129]. The definition of Eq. (7) “cures”
this apparent inconsistency and restores the equality of both
averages in the long-time limit Eq. (19). We also refer the reader
to the Discussion section in Ref. [72] for some alternative
definitions of time averaging.

Moreover, for diffusion in any potential (including con-
fining ones), the standard definition of the MSD involves a
translationally noninvariant initial position x0 that may lead
to seemingly paradoxical results. One of them is, e.g., the
factor of two difference between the stationary ensemble and
time-averaged MSDs in Eq. (24). For nonstationary motion in a
potential, such as the OU process, for arbitrary initial position
a viable definition may involve increments along the trajectory
〈(x(t + �) − x(t ))2〉. In harmonic potentials this yields〈

(x(t + �) − x(t ))2
〉 = 2

〈
x2

eq

〉
(1 − e−λ�)

+ (〈
x2

0

〉 − 〈
x2

eq

〉)
(1 − e−λ�)2e−2λt ,

(25)

that after averaging over time t is evidently identical to 〈δ2(�)〉
in Eq. (15). So, the increments of particle displacements in
Eqs. (25) and (15) may be chosen for comparison particle
diffusive characteristics in confining potentials. For the
OU process, the definition (25) for the ensemble-averaged
displacements yields results identical to the time-averaged
MSD Eq. (15) and thus ergodic diffusion is realized at all

times, see also Ref. [33]. Practically, however, the definition
of Eq. (25) is rarely being used.

We therefore aim at pointing the attention of the experimen-
tal community performing single-particle tracking in external
potentials to this conceptual difference in the displacement
definitions. The standard MSD in Eq. (11) involves the initial
particle position and yields an inequality of the ensemble-
and time-averaged MSDs. In contrast, the increment-based
definition Eq. (25) gives rise to ergodic diffusion, as expected
for the OU diffusion process. In what follows, we use the
canonical definitions for the ensemble- and time-averaged
MSDs, Eqs. (7) and (13), as well as the for EB Eq. (26), and
we study the consequences.

B. Ergodicity-breaking parameter

A by-now well-established measure of nonergodicity of a
stochastic process x(t ) is the ergodicity breaking parameter,
EB. It quantifies the irreproducibility of individual time-
averaged MSDs as a function of lag time �. The EB parameter
is defined via the fourth moment of time-averaged particle
displacements as [66–68,130]

EB(�, T ) =
〈(

δ2(�, T )
)2

〉/〈
δ2(�, T )

〉2
− 1. (26)

This parameter delivers statistically most reliable information
for short lag times, � 
 T , as the time-averaged MSD it-
self [67,79,84]. We first consider equilibrium distributions of
initial positions of the OU particles. In this case, diffusion
remains Gaussian and the fourth moment of the time-averaged
displacements for solution of Eq. (6) can be computed using the
Isserlis-Wick theorem for zero-mean processes. The derivation
of

〈(
δ2(�)

)2〉
in Eq. (26) is based on splitting the four-point

correlator into the sum of products of two-point correlators
Eq. (12); see Appendix A. Below, we present analytical
and computer simulation results for EB of the OU process,
EBOU. Note that for other-than-parabolic confinements the EB
calculations can be harder (not considered here). For BM the
probability distribution of time-averaged MSDs as well as its
higher moments—skewness and kurtosis—were computed re-
cently [69]; see also Refs. [41,70,131]. For other Gaussian (and
slightly nonergodic) processes—such as scaled [83,84] and
fractional [68,73] BMs—the EB parameter was also evaluated.

1. Equilibrium initial conditions

For the OU process we compute the EB parameter sep-
arately for 0 < � < T/2 and T/2 < � < T , denoting the
respective quantities EBOU,< and EBOU,>. A similar procedure
of interval division was employed for computing higher-order
moments of free BM [69]. For the equilibrium initial particle
positions (16) the EB parameter becomes (see Appendix A for
derivations)

EBOU,eq,<(�, T ) = −1 + e−2λT

[2(eλ� − 1)λ(� − T )]2

× (
e2λ� − 4e3λ� + 6e4λ� − 4e5λ� + e6λ�

+ 4e2λT {−1 + λ[−2�(1 + λ�) + T + λT 2]}
+ 8eλ(�+2T ){1 + λ[3� + 2�2λ − T (2 + λT )]}
+ 4e2λ(�+T ){−1 + λ[�2λ − 2�(2 + λT )

+ T (3 + λT )]}) (27)
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and

EBOU,eq, >(�, T ) = −1 + e−2λ(�+T )

[2(eλ� − 1)λ(� − T )]2

× {
e4λ� − 4e5λ� + 4e6λ� + e4λT

+ 2e2λ(�+T )(−1 + 2�λ − 2λT )(1 + 2�λ − 2λT )

− 4e3λ�+2λT [−1 + 2λ(� − T )(−1 + 2λ� − 2λT )]

+ 4e2λ(2�+T )[−1 + λ(� − T )(−2 + λ� − λT )]
}
.

(28)

These expressions for EB and its first derivative over lag time
are continuous at � = T/2, similar to Eqs. (32) and (33) below
for free BM [69].

For short lag times, �/T 
 1, and toward the end of the
trajectory, (T − �)/T 
 1, expansion of Eqs. (27) and (28)
for conditions of weak confinement yields, respectively,

EBOU,eq,<(�) ≈ 4�/(3T ) − λ�2/(6T ) (29)

and

EBOU,eq, >(�) ≈ 2 − 4λ(T − �)/3. (30)

Here, the limit of long traces λT 	 1 was employed, similar
to the condition used to obtain the MSD expansions given by
Eqs. (21) and (22). The stationary value of EB follows from
Eq. (27) in the limit λ� 	 1 and for measurement times much
longer than the correlation time, T 	 1/λ, namely,

EBOU,eq,st(T ) ≈ 3/(λT )  1/T . (31)

This plateau value was predicted for the case of general Gaus-
sian processes before, see Eq. (60) in Ref. [41], similarly to the
limiting value of EB=2 in the limit � → T . Note, however,
that neither general analytical formulas for the EB parameter
were presented in Ref. [41], nor the effect of equilibrium versus
nonequilibrium initial in positions was examined there, which
is our main focus here. Therefore, for very long trajectories the
EB parameter for the OU-particle approaches zero, indicating
an intrinsic ergodicity of the process. This is true both at short
lag times in Eq. (29) and in the stationary regime (31), featuring
the same functional form EB(T ) ∝ 1/T as BM [67,69], free
and confined fractional BM [71,72], scaled BM [81,84], and
(in some limits) heterogeneous diffusion processes [80,81].
The leading behavior in Eq. (31) involves two timescales, 1/λ

and T .
For free BM the EB parameter (or reduced variance, κ2/κ

2
1 )

was evaluated in Ref. [69] via the first two cumulant moments
[6], κ1 and κ2. For lag times in the domains 0 < � < T/2 and
T/2 < � < T —denoted by subscripts “<” and “>” below—
the expressions for EB are, respectively,

EBBM,<(�) = �(4 − 5�/T )

3T (1 − �/T )2
(32)

and

EBBM, >(�) = 11(�/T )2 − 6(�/T ) + 1

3(�/T )2
. (33)

At short lag times, �/T 
 1, the canonical result for the linear
growth of EB(�) follows from Eq. (32) as [41,67–69,73]

EBBM(�) ≈ 4�/(3T ). (34)

FIG. 4. Ergodicity breaking parameter for the OU process versus
lag time, plotted for the parameters of Fig. 2 at equilibrium starting
conditions, Eqs. (27) and (28). The results of numerical integration of
the fourth moment in Eq. (A3) are the data points. The results for free
BM, Eqs. (32) and (33), is the dashed green curve. The short-time
asymptote of Eq. (34), the stationary plateau of Eq. (31), and the
expansion of Eq. (30) at � → T = 102 are the dashed black lines.

In the end of the traces, the universal value EB = 2 is
approached, with the expansion at � → T (see also Ref. [41]),

EBBM(�) ≈ 2 − 4(T − �)/(3T ). (35)

Figure 4 presents the evolution of EB(�) as obtained from
our analytical and numerical calculations. The green color in
Figs. 4 and 5 reflects equilibrium starting conditions, as in
Figs. 1 and 2. We observe that at short lag times the particles
diffuse unperturbed, with EB growth similar to that of free BM,
as expected. After a characteristic time �� ∼ 1/λ, EB starts
developing a stationary plateau. For longer trajectories the
plateau region occupies a more substantial fraction of lag times;
see Fig. 5. For short lag times and in the stationary regime
EB(T ) in simulations scales as 1/T , supporting theoretical
Eqs. (29) and (31), see the plot and the inset in Fig. 5.

For long lag times, at � → T a rather rapid growth of
EB(�) takes place, from the stationary value given by Eq. (31)
to the value EB = 2 at � = T . This terminal EB value at
� = T is the same for (free and confined) BM and fractional
BM [69,71,72]. For longer trajectories the EB plateau of
Eq. (31) decreases, and thus the approach to the limiting
value EB = 2 at � → T becomes sharper. Interestingly,
the OU-particles diffuse “more ergodically” than Brownian
particles, i.e., EBOU(�) < EBBM(�) for the same� andT . For
quasistationary diffusion (at intermediate lag times and long
trajectories) EBOU can be dramatically smaller than EBBM; see
Fig. 5.

Our theoretical predictions are in excellent agreement with
the results of stochastic simulations of Eq. (2) in the entire
range of lag times. Figure 5 illustrates the variation of EB(�)
for varying T for initial particle positions being at equilibrium,
Eq. (9). Note that to capture the rapid EB increase from the
plateau value at intermediate lag times to EB = 2 at � → T ,
a denser lag-time sampling was implemented.
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FIG. 5. Computer simulations results for the EB parameter of
harmonically-confined particles with equilibrium initial conditions,
plotted for the parameters of Fig. 3. The trajectory lengths are
T = {101, 102, 103} and the integration step is δt = 0.01 (mention
the 102-factor for the abscissa axis). Asymptotic behavior for free BM
given by Eq. (34) and the plateaus of Eq. (31) are the dashed lines.
Averaging over N = 103 traces was performed. The inset shows EB
values at the minimal lag time �1 = 0.01 plotted versus the trace
length T , together with the Brownian asymptote of Eq. (34).

2. Nonequilibrium initial conditions

For arbitrary and nonequilibrium initial particle conditions,
the analytical derivation of EB is considerably harder; see
Appendix B. The general analytical results for EB are provided
in Eqs. (B4) and (B5). We start with a simpler case of fixed
and nondistributed x0 values; see Fig. 6. The analytically
predicted initial linear growth of EB with the lag time as for
free BM, Eq. (34), a sublinear growth of EB(�) at intermediate
lag times, stationary EB values for even larger � values,
Eq. (B12), and, finally, the behavior EB(� → T ) in the end of
the trajectory, Eq. (B13), are all in quantitative agreement with
the results of computer simulations. We find that for larger
x0 the EB plateau becomes smaller—compare the curves in
Fig. 6 for different x0—as Eq. (B12) predicts. In contrast,
for small x0 values the results for EB are close to those for
equilibrium starting positions, compare the data points and
the green curve in Fig. 6. Note that in Fig. 6 no ballistic
EB(�) growth at intermediate lag times is found. The reason is
that for fixed starting positions

〈
x4

0

〉 = 〈
x2

0

〉2
and thus the terms

quadratic in the lag time in Eq. (B6) give rise to a reduction of
EB in this range of lag times.

EB behaves very differently for strongly nonequilibrium
P (x0) distributions; see Fig. 7. We find that EB first grows
linearly with the lag time, similarly as for BM, Eq. (34). At
intermediate lag times, a region of a quadratic growth can
emerge, as Eq. (B6) predicts. This faster-than-linear EB(�)
growth is reminiscent of that for the ensemble and time-
averaged MSDs in Sec. II A and Fig. 2. After the ballistic

FIG. 6. Results for EBOU from stochastic computer simulations
at varying initial positions x0 (given in the legend). The results of
Fig. 5 for normally-distributed x0 for T = 103 are shown as the full
green curve. The full analytical results Eqs. (B4) and (B5) are the full
solid curves. The red-green color scheme for the solid curves reflects
equilibrated and out-of-equilibrium initial packages and ensembles of
particles, as in Fig. 1. The initial Brownian-like growth of EB Eq. (34)
is the black dashed line at short lag times. The EBst plateaus for large
x0 given by Eq. (B12) are the red dashed horizontal lines. The terminal
values EB(� → T ) given by Eq. (B13) are as the short red dashed
lines at � → T . The value EB = 2 is the short blue horizontal line in
the right top corner. Parameters: λ = 1, σ = 1, dt = 0.01, T = 103,
and N = 103.

regime of EB, a stationary plateau emerges for long trajecto-
ries, with the value Eq. (B8). Finally, in the end of the trajectory,
EB starts to increase and at � → T it rapidly drops to a value
given by Eq. (B11).

For strongly nonequilibrium initial positions, as described
by Eq. (B7), the plateaus and terminal values of EB can
considerably exceed unity. This emphasizes the importance of
higher moments in the analysis of particle spreading; see also
Ref. [73]. Results of computer simulations of harmonically-
confined particles for a heavy-tailed distribution of initial
positions are presented in Fig. 7. For this analysis the Student-T
distribution

Tν (x0) = �[(ν + 1)/2]√
νπ �[ν/2]

×
(

1 + [x0/x̄0]2

ν

)− ν+1
2

(36)

was employed. In Eq. (36), the lengthscale for initial displace-
ments is x̄0 and �[x] is the � function. One feature of Tν is the
fact that when the number of degrees of freedom ν → 4 the
ratio of the fourth moment,

〈
x4

0

〉 =
∫ +∞

−∞
x4

0 Tν (x0) dx0, (37)

to the squared second moment of Tν (kurtosis),

K = 〈
x4

0

〉/〈
x2

0

〉2 = 3(ν − 2)/(ν − 4), (38)
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FIG. 7. EBOU for initial positions from the Student-T distribution
Eq. (36), as obtained from simulations. The green curve is the solution
for equilibrium initial conditions, similar to Fig. 6, with respective
asymptotes. The full analytical Eqs. (B4) and (B5) computed with the
moments for P (x0) = Tν (x0) are the red solid curves (nonequilibrium
initial conditions). Approximate relations for the Brownian growth
at short lag times Eq. (34) and the quadratic growth given by the
second term in Eq. (B6) are the black dashed lines. The stationary
plateau values Eq. (B8) are the red horizontal lines, for respective
model parameters. The expansion Eq. (B11) near the terminal EB
values is the short dashed black curves at � → T . The values of EB
Eq. (B10) are the short blue dashed lines at � → T . Parameters are the
same as in Fig. 6, except σ = 100, λ = 1. Averaging was performed
over N = 103 initial positions for the selected ensemble of x0 values
yielding the kurtosis value closest to the analytical result Eq. (38).

as well as the excess kurtosis,

Kex = K − 3 = 6/(ν − 4), (39)

diverge. Thus, at ν → 4 the higher-order moments contribute
stronger to EB; see general Eqs. (B4) and (B5).

As a consequence, the evolution of EB(�) for long-tailed
P (x0) differs dramatically from that observed for fixed particle
starting positions, compare Figs. 7 and 6, respectively. In
particular, in Fig. 7 we present the results for initial positions
according to Eq. (36). We find a good agreement between
theory and simulations in the entire range of lag times, for
indices ν of the distribution Tν (x0) far from the critical value,
see the curve for ν = 5 in Fig. 7. As ν → 4 we encounter some
deviations at intermediate lag times, as expected, see the curve
for ν = 4.1 in Fig. 7. As Fig. 7 illustrates, EB for P (x0) with〈
x4

0

〉 	 〈
x2

0

〉2
is overall much larger than EBBM (except for very

short lag times and at � → T ).
Note that considerably larger σ values were chosen in Fig. 7

to shift the region of the expected quadratic regime of EB(�)
growth toward longer lag times. This, in turn, allowed us to
keep the number of simulations points manageable and still
observe all characteristic EB regimes for T = 103, used for

most other results. The final ensemble of initial x0 points
used for averaging in simulations for Fig. 7 was chosen from
105 samples of N = 103 points generated from Eq. (36). The
selection criterion for the best x0-set was the closest value of
the excess kurtosis, Eq. (39).

C. Einstein relation: Ensemble- and time-averaged
displacements

The concept of linear response relates the first-order mo-
ment of particle displacements in the presence of small constant
forces f to the second moment in the absence of a force
[47,65,94,95,132,133]:

〈x(t ) − x0〉f =
f

〈
[x(t ) − x0]2

〉
f =0

2kBT
. (40)

This relation was checked for a number of anomalous diffusion
processes in the past [65,67,76,77]. For the first moments of the
ensemble- and time-averaged displacements in the presence of
a force, we find

〈x(�) − x0〉f = (f μ/λ − 〈x0〉)(1 − e−λ�) (41)

and〈
δ1(�)

〉
f

= 1

T − �

∫ T −�

0
〈[x(t + �) − x(t )]1〉dt

=
(

f μ

λ
− 〈x0〉

)
(1 − e−λ�)

1 − e−λ(T −�)

λ(T − �)
. (42)

The second moments of the ensemble and time averages
without force follow from Eqs. (11) and (15), respectively.
We thus find that for the OU particles Eq. (40) is valid for the
ensemble-averaged displacements if the initial positions satisfy
the conditions 〈x0〉 = 0 and 〈x2

0 〉 = 〈x2
eq〉. In this case, using

Eqs. (10) and (5), we get 〈(x(�) − x0)2〉 = σ 2λ−1(1 − e−λ�).
For the time-averaged moments, the linear response relation
is generally not valid because the first moment Eq. (42)
explicitly depends on T , whereas the second-order force-free
moment Eq. (15) at the same conditions does not,

〈
δ2(�)

〉 =
σ 2λ−1(1 − e−λ�). The Einstein relation of type Eq. (40) for
the time-averaged moments only hold at � → T .

III. DISCUSSION AND CONCLUSIONS

Despite the fact that the OU process is omnipresent in
physical models and has been studied exhaustively over almost
a century, we revealed and quantified a number of interesting
and novel features of this process. They can be crucial for
the analysis, interpretation, and understanding of experiments
and computer simulations of diffusion in harmonic and other
confining potentials.

A. Summary of key results

First, we demonstrated that nonequilibrium initial condi-
tions for the stationary OU process may give rise to large
discrepancies of the ensemble- and time-averaged MSDs
following their standard definitions, see Eqs. (11) and (15),
even in quasistationary domain of lag times. In the simple
case of equilibrium starting conditions, however, the ensemble-
and time-averaged MSDs are identical over the entire range
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of times. As expected, they start linearly and saturate at long
times at the plateau σ 2/λ. For initially-equilibrated particles
full equivalence of ensemble and time averages is found.

For nonequilibrium initial conditions, the positions x0 can
either be fixed for all the particles or distributed. In the first
scenario, the value of x0—the off-center position with respect
to the bottom of the well—controls the timescale after which
both the ensemble- and time-averaged MSDs can acquire a
region of quadratic growth. We found that the initial linear
increase is identical for both of these observables, namely,
≈ σ 2�. The subsequent quadratic growth can, however, be
very different. For sufficiently long traces and substantial trap
stiffness—such that λT 	 1—the MSD starts the ballistic
regime earlier and reaches the plateau with the magnitude
independent on the trace length T .

The time-averaged MSD approaches a smaller plateau, with
the value that depends on the trajectory length. The saturation
to the plateau for the ensemble- and time-averaged MSDs takes
place at lag times � ∼ 1/λ. The quadratic regime and the
dramatic discrepancies of the ensemble- and time-averaged
MSDs prior to and in the plateau regime can extend for a
prolonged period of time. Toward the very end of the trajectory,
as � → T , the ensemble-averaged MSD stays constant, while
the time-averaged MSD grows rapidly and reaches the MSD
plateau value. For progressively longer trajectories, this growth
of the time-averaged MSD is increasingly abrupt.

Second, we quantified the behavior of EB in the entire
range of lag times and for all choices of initial conditions.
This parameter quantifies the amplitude variation of individ-
ual time-averaged MSD realizations. For equilibrium starting
conditions, EB first grows with the lag time as for free BM,
EB(�) ≈ 4�/(3T ). For lag times � � 1/λ the EB parameter
starts to reach a plateau with the stationary value EBst ≈
3/(λT ). The longer the trajectory, the longer is the time span
over which this plateau is found. For � � T/2 the ergodicity
breaking parameter starts a fast growth and reaches the terminal
value EB=2 at � = T . We mention here that for the OU
process EBOU(�) is always smaller than EBBM(�), as one
might expect intuitively.

For nonequilibrium fixed off-centered initial particle condi-
tions, for small x0 the behavior of EB is similar to that for
equilibrium conditions. For large x0 values, after an initial
Brownian-like growth, EB(�) saturates at a plateau with the
value much smaller than for equilibrium starting positions.
Specifically, the plateau value scales as ∝ 1/〈x2

0 〉. Toward the
end of the trajectory, EB increases slightly, and ultimately
rapidly drops to a constant value that has the same scaling
with x0 as the stationary EB plateau itself.

For nonequilibrium distributed initial positions, the behav-
ior of EB(�) is more involved. Namely, for a long-tailed P (x0)
after the initial Brownian-like regime, a region of quadratic

growth of EB emerges. After this regime, at intermediate
lag times, a stationary EB plateau is found, while EB →
〈x4

0 〉/〈x2
0 〉2 − 1 at � → T . Therefore, we demonstrated that

for starting particle positions obeying a distribution P (x0) with
〈x4

0 〉 	 〈x2
0 〉2

both the stationary plateau value and terminal
value EB(� = T ) can be much greater than unity.

B. Relation to single-particle tracking experiments

We expect that our theoretical predictions can be tested
in single-particle tracking experiments in optical traps, such
as optical tweezers. In particular, the behavior of EB(�) for
different initial tracer conditions can potentially be probed in
vitro or even inside live cells. For these purposes, the width of
the optical traps should be set large enough so particle motions
are restricted minimally. This can be achieved via reducing
the trap stiffness, that is ∼0.01 . . . 1 pN/nm [22,103,121]
(depending, i.e., on laser power (k is linearly growing [117]),
laser wavelength, particle size, and bead refractive index
[115,134]). For a larger range of weakly-confined but still
trackable particles one can examine the behavior of the time-
averaged MSD and EB in a broader lag-time domain. Thereby,
one can study the distinct behaviors and scaling regimes for
these observables for various particle starting conditions, both
equilibrium and nonequilibrium (fixed and distributed).

The features of these results can then be compared to
severely restricted, almost jiggling motions of the tracers in
strong traps [102]. The question here is whether the overall
features of motion of trapped particles will measurably change
with the stiffness of optical traps, and whether weak-trapping
regime is realizable. Finally, extending the current approach
to unveil the time-averaged and ergodic properties of the
fractional OU process may be an interesting and challenging
problem for the future.
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APPENDIX A: FOURTH MOMENT OF TIME-AVERAGED DISPLACEMENTS

Here, the derivations of Eqs. (27) and (28) in the main text for the EB parameter given by Eq. (26) are presented. For this, we
compute the fourth moment of particle displacements,

〈
(δ2(�, T ))2

〉 = 1

(T − �)2

∫ T −�

0
dt1

∫ T −�

0
dt2〈[x(t1 + �) − x(t1)]2[x(t2 + �) − x(t2)]2〉, (A1)
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where the integrand is the sum of nine terms, viz.

〈[x(t1 + �) − x(t1)]2[x(t2 + �) − x(t2)]2〉
= 〈x2(t1 + �)x2(t2 + �) − 2x2(t1 + �)x(t2 + �)x(t2) + x2(t1 + �)x2(t2) − 2x(t1 + �)x(t1)x2(t2 + �)

+ 4x(t1 + �)x(t1)x(t2 + �)x(t2) − 2x(t1 + �)x(t1)x2(t2) + x2(t1)x2(t2 + �) − 2x2(t1)x(t2 + �)x(t2) + x2(t1)x2(t2)〉.
(A2)

For equilibrium initial conditions of the particles, the ensemble averages in Eq. (A2) can be computed using the two-point
correlation function in Eq. (17), yielding

〈
(δ2(�))2

〉 = 1

(T − �)2

(
σ 2

2λ

)2 ∫ T −�

0
dt1

∫ T −�

0
dt2[2(1 + 2e−2λ|t1−t2|) + (1 + 2e−2λ|t1+�−t2|)

+ (1 + 2e−2λ|t1−t2−�|) − 4(e−λ� + 2e−λ|t1−t2|e−λ|t1+�−t2|) − 4(e−λ� + 2e−λ|t1−t2|e−λ|t1−�−t2|)

+4(e−2λ� + e−2λ|t1−t2| + e−λ|t1+�−t2|e−λ|t1−t2−�|)]. (A3)

The evaluation of
〈
(δ2(�))2

〉
is then reduced to computing only four different integrals, separately in the lag-time regions

0 < � < T/2 and T/2 < � < T, denoted below by the respective subscripts. The double integration of Eq. (A3) in the two
domains gives, respectively,〈

(δ2(�, T ))2
<

〉
= σ 4

4λ2

[
4

(
1 − 1

λ2(T − �)2

)
(1 − e−λ�)2 + 8

λ(T − �)
+ 4(T − 2�)

λ(T − �)2
(1 + e−2λ�)

− 8(2T − 3�)

λ(T − �)2

(
1 + λ� − λ�

2
e−λ�

)
e−λ� + e−2λT

λ2(T − �)2
(1 − 4eλ� + 6e2λ� − 4e3λ� + e4λ�)

]
(A4)

and〈
(δ2(�, T ))2

>

〉
= σ 4

4λ2

[
4(1 − 4e−λ� + 2e−2λ�) + 8(1 − e−λ�)

λ(T − �)
− 1 − e−2λ(T −�)

λ2(T − �)2
(4 − 4e−λ� + e−2λ� − e−2λ(2�−T ) )

]
. (A5)

We checked that both the EB parameter constructed from the fourth-order moments Eqs. (A4) and (A5), according to Eq. (26),
as well as the EB derivative with respect to the lag time are continuous at � = T/2.

APPENDIX B: EB PARAMETER FOR NONEQUILIBRIUM INITIAL CONDITIONS

For nonequilibrium initial particle conditions, the pair-correlation function of Eq. (12) is no longer a function of the difference
of two time moments only, as in Eq. (17). The expression for the four-point correlator of positions in Eq. (6) is therefore more
complicated, involving the fourth and second moments of the initial positions,

〈x(t ′)x(t ′′)x(t ′′′)x(t ′′′′)〉 = e−λ(t ′+t ′′+t ′′′+t ′′′′)
[〈

x4
0

〉 − 6
〈
x2

0

〉(σ 2

2λ

)
+ 3

(
σ 2

2λ

)2
]

+
[〈

x2
0

〉(σ 2

2λ

)
−

(
σ 2

2λ

)2
](

e−λ(t ′+t ′′)e−λ|t ′′′′−t ′′′|

+ e−λ(t ′+t ′′′ )e−λ|t ′′′′−t ′′ | + e−λ(t ′+t ′′′′ )e−λ|t ′′′−t ′′ | + e−λ(t ′′+t ′′′ )e−λ|t ′′′′−t ′| + e−λ(t ′′+t ′′′′ )e−λ|t ′′′−t ′|

+ e−λ(t ′′′+t ′′′′ )e−λ|t ′′−t ′ |) +
(

σ 2

2λ

)2

(e−λ|t ′′−t ′|e−λ|t ′′′′−t ′′′ | + e−λ|t ′−t ′′′ |e−λ|t ′′−t ′′′′ | + e−λ|t ′−t ′′′′ |e−λ|t ′′−t ′′′ |
)

.

(B1)

For equilibrium normally distributed initial positions x0 the four-point correlator can be obtained using the Isserlis-Wick theorem,

〈x(t ′)x(t ′′)x(t ′′′)x(t ′′′′)〉eq = (〈x(t ′)x(t ′′)〉〈x(t ′′′)x(t ′′′′)〉 + 〈x(t ′)x(t ′′′)〉〈x(t ′′)x(t ′′′′)〉 + 〈x(t ′)x(t ′′′′)〉〈x(t ′′)x(t ′′′)〉)eq

=
(

σ 2

2λ

)2

(e−λ|t ′′−t ′|e−λ|t ′′′′−t ′′′ | + e−λ|t ′−t ′′′|e−λ|t ′′−t ′′′′ | + e−λ|t ′−t ′′′′ |e−λ|t ′′−t ′′′ |), (B2)

as for a Gaussian process at equilibrium, 〈
x4

0

〉
eq = 3

〈
x2

0

〉2
eq = 3[σ 2/(2λ)]2. (B3)

For nonequilibrium initial conditions and with four-point correlator Eq. (B1) the derivation of EB is much more cumbersome.
The exact results for arbitrary starting conditions are (using Wolfram Mathematica)

EBOU,<(�, T ) = {−1 + [
4e2λ(4�+T )σ 4 + 16e7λ�+2λT σ 2

(
σ 2(−2 + 2λ� − λT ) + 2λ(1 − 2λ� + λT )

〈
x2

0

〉)
+ e2λ(�+T )

(−6σ 4 + 24λσ 2
〈
x2

0

〉 − 8λ2
〈
x4

0

〉)
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+ 4e3λ�+4λT
(
σ 4(17 + 2λ(11� + 8�2λ − T (5 + 4λT ))) + 4λσ 2(−3 + λ� − 3λT )

〈
x2

0

〉 − 4λ2
〈
x4

0

〉)
+ 4eλ(�+4T )

(
σ 4(1 + 2λ(� + T )) − 4λσ 2(−1 + λ(� + T ))

〈
x2

0

〉 − 4λ2
〈
x4

0

〉)
+ e4λ�

(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉) − 4e5λ�
(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ 6e6λ�

(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉) − 4e7λ�
(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ e8λ�

(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉) + e4λT
(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ 8e5λ�+2λT

(
σ 4(−5 + 17λ� − 15λT ) + 2λ2σ 2(−17� + 15T )

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ 8e3λ�+2λT

(
3σ 4(1 + λ� − λT ) − 6λσ 2(2 + λ� − λT )

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ e4λ(�+T )

(
σ 4(−29 + 8λ(2�2λ + T (5 + 2λT ) − �(7 + 4λT ))) + 4λσ 2(5 − 4λ� + 4λT )

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
− 2e2λ(3�+T )

(
σ 4(−33 + 52λ� − 36λT ) + 4λσ 2(9 − 26λ� + 18λT )

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
− 8e2λ(2�+T )

(
σ 4(2 + 11λ(� − T )) − 2λσ 2(7 + 11λ(� − T ))

〈
x2

0

〉 + 6λ2
〈
x4

0

〉)
+ e2λ(�+2T )

(−2σ 4(23 + 4λ(�(5 + 4λ�) + T − 2λT 2)) + 8λσ 2(3 + 2λ� + 6λT )
〈
x2

0

〉 + 24λ2
〈
x4

0

〉)]/
[
(−1 + eλ�)2((−e2λ� + e3λ� + e2λT )

(
σ 2 − 2λ

〈
x2

0

〉) + eλ(�+2T )(σ 2(−1 − 4λ� + 4λT ) + 2λ
〈
x2

0

〉))2]}
(B4)

and

EBOU,>(�, T ) = {−1 + [
4e6λT σ 4 + e2λ(�+T )

(−6σ 4 + 24λσ 2
〈
x2

0

〉 − 8λ2
〈
x4

0

〉)
+ e2λ(3�+T )

(
σ 4(26 + 40λ(T − �)) + 8λσ 2(−1 + 10λ(� − T ))

〈
x2

0

〉 − 8λ2
〈
x4

0

〉)
+ e4λ�

(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉) − 4e5λ�
(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ 6e6λ�

(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉) − 4e7λ�
(
3σ 4 − 12λσ 2

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
+ e8λ�

(
3σ 4 − 12λσ 2〈x2

0

〉 + 4λ2〈x4
0

〉) + e4λT
(
3σ 4 − 12λσ 2〈x2

0

〉 + 4λ2〈x4
0

〉)
+ 8e5λ�+2λT

(
σ 4(−3 + 13λ(� − T )) − 2λσ 2(2 + 13λ(� − T ))

〈
x2

0

〉 + 4λ2〈x4
0

〉)
− 4eλ(�+4T )(σ 4(3 + 6λ� − 6λT ) − 12λσ 2(1 + λ� − λT )

〈
x2

0

〉 + 4λ2〈x4
0

〉)
+ 8e3λ�+2λT

(
3σ 4(1 + λ� − λT ) − 6λσ 2(2 + λ� − λT )

〈
x2

0

〉 + 4λ2〈x4
0

〉)
+ e4λ(�+T )(σ 4(−29 + 8λ(� − T )(−3 + 2λ� − 2λT )) + 4λσ 2(5 − 4λ� + 4λT )

〈
x2

0

〉 + 4λ2〈x4
0

〉)
− 4e3λ�+4λT

(
σ 4(−9 + 2λ(� − T )(1 + 8λ� − 8λT )) + 4λσ 2(1 − 5λ� + 5λT )

〈
x2

0

〉 + 4λ2
〈
x4

0

〉)
− 8e2λ(2�+T )

(
σ 4(2 + 11λ(� − T )) − 2λσ 2(7 + 11λ(� − T ))

〈
x2

0

〉 + 6λ2
〈
x4

0

〉)
+ 2e2λ(�+2T )

(
σ 4(−3 + 4λ(� − T )(7 + 4λ� − 4λT )) − 4λσ 2(5 + 14λ(� − T ))

〈
x2

0

〉 + 12λ2
〈
x4

0

〉)]/
[
(−1 + eλ�)2

(
(−e2λ� + e3λ� + e2λT )

(
σ 2 − 2λ

〈
x2

0

〉) + eλ(�+2T )
(
σ 2(−1 − 4λ� + 4λT ) + 2λ

〈
x2

0

〉))2]}
.

(B5)

Equations (B4) and (B5) correspond to the lag-time regions 0 < � < T/2 and T/2 < � < T , respectively. Here, we also checked
that at � = T/2 the EB parameter and its derivative over the lag time are continuous. For normally-distributed initial x0 positions,
when condition (B3) is satisfied, the general expressions in Eqs. (B4) and (B5) yield Eqs. (27) and (28) in the main text.

We now consider some limiting cases of the general Eqs. (B4) and (B5). For short lag times (� 
 T ) and long enough
trajectories (λT 	 1) the Taylor expansion of Eq. (B4) for distributed starting positions yields

EBOU,<(�) ≈ 4�

3T
+ �2

24T 2

[
−4λT − 20λ

〈
x2

0

〉
σ 2

+ 6λ2

σ 4

(〈
x4

0

〉 − 〈
x2

0

〉2)]
. (B6)

Therefore, the leading order of EB for short lag times is the same as for BM, as expected. At later lag times, for strongly
nonequilibrium positions x0, that is when

〈
x4

0

〉 	 〈
x2

0

〉2
and

〈
x2

0

〉 	 σ 2/(2λ), (B7)

a quadratic regime of EB(�) may emerge due to the second term in Eq. (B6). This behavior is expected, e.g., for long-tailed
distributions P (x0). The plateau value of the EB parameter can be found via expansion of Eq. (B4) for distributed x0 and long
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traces,

EBOU,st ∼ 1[
4λT + 2λ

〈
x2

0

〉/
σ 2

]2

[
48λT − (

1 − 2λ
〈
x2

0

〉/
σ 2)2 + 24λ

〈
x2

0

〉/
σ 2 + 4λ2(〈x4

0

〉 − 〈
x2

0

〉2)/
σ 4]. (B8)

For equilibrium starting conditions given by Eq. (16), Eqs. (29) and (31) in the main text follow from general Eqs. (B6) and
(B8), respectively, for long traces when

λT 	
〈
x2

0

〉
σ 2/(2λ)

, (B9)

as expected.
For OU-particles with starting positions distributed strongly out of equilibrium—when conditions of Eq. (B7) are satisfied and

λT 
 1—the stationary plateau Eq. (B8) can be simplified to

EBOU,st ∼ 〈
x4

0

〉
/
〈
x2

0

〉2 − 1. (B10)

It depends only on the ratio of the fourth and second moments of a chosen P (x0). In this limit, the stationary value of EB depends
only weakly on T , in contrast to the equilibrium result of Eq. (31). Expansion of Eq. (B5) at � → T —when conditions of
Eq. (B7) are satisfied—yields

EBOU, >(�) ≈
( 〈

x4
0

〉
〈
x2

0

〉2 − 1

)
− (T − �)2σ 2

〈
x4

0

〉
〈
x2

0

〉3 . (B11)

For equilibrium starting conditions of Eq. (16) the general expressions of Eq. (B5) reduce at � → T to Eq. (30), with EB=2
at � = T , as it should. Note that the first term in Eq. (B11) also reduces to EB = 2 when initial positions are distributed at
equilibrium.

For nonequilibrium but fixed starting positions, when
〈
x4

0

〉 = 〈
x2

0

〉2
, the stationary EB plateau value follows for long traces

λT 	 1 from Eq. (B4) at intermediate lag times (for which still λ� 	 1) as

EBOU,st ∼ 6σ 2/
(
λ
〈
x2

0

〉)
. (B12)

For fixed starting conditions the terminal EB value at � → T follows from Eq. (B8) in the limit 〈x2
0 〉 	 σ 2/(2λ) as

EB(� = T ) ≈ 2σ 2/
(
λ
〈
x2

0

〉)
. (B13)
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