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Abstract. We address the generic problem of random search for a point-like target on a line. Using the
measures of search reliability and efficiency to quantify the random search quality, we compare Brownian
search with Lévy search based on long-tailed jump length distributions. We then compare these results
with a search process combined of two different long-tailed jump length distributions. Moreover, we study
the case of multiple targets located by a Lévy searcher.

1 Introduction

Searching for randomly located targets is a central prob-
lem in many branches of the sciences comprising all scales
from the smallest to the largest: examples include chem-
ical reactions, in which a molecule has to find a reactive
target such as the search of transcription factor proteins
for a specific binding spot on a DNA chain [1,2], the ques-
tion of molecular signal detection [3–6], white blood cells
trying to locate intruding pathogens [7], spider monkeys
searching for food in a tropical forest [8], human rescue
operations [9], the hunt for submarines [10] and, more
mathematically, algorithms for finding the minima in a
complex search space [11].

In society the development of search strategies like the
search for land mines, castaways or victims of avalanches
belongs to the realm of operations research [12,13]. In ecol-
ogy and biology understanding the foraging of biologi-
cal organisms forms part of the new discipline of move-
ment ecology [14,15]. Prominent examples for the latter
are wandering albatrosses searching for food [16–18], ma-
rine predators diving for prey [19,20], and bees collecting
nectar [21]. Within this context the Lévy Flight Hypoth-
esis (LFH) attracted considerable attention [22]: it pre-
dicts that under certain mathematical conditions scale-
free jump processes called Lévy flights (LFs) [23] minimise
the search time [16,17,24]. The LFH implies that, for in-
stance, for a bumblebee searching for rare flowers the flight
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lengths should be distributed according to a power law.
This prediction is completely different from the paradigm
put forward by Pearson more than a century ago who
proposed to model the movements of biological organ-
isms by simple random walks [25]. Pearson’s theory entails
that the movement lengths are distributed according to a
Gaussian distribution, contrasting the Lévy stable form
underlying the LFH. Both Lévy and Gaussian dynamics
represent fundamentally different, pure classes of stochas-
tic processes.

However, in complex biological reality animals, or
humans, may not search according to a simple, pure
stochastic process, as other factors may come into play.
For example, they often have a limited perception while
moving with high speed. In this case a more promising
search strategy is to switch between a slow recognition
mode during which targets can be found and fast relo-
cations [26–28]. These intermittent search strategies can
combine different types of motion such as Brownian, bal-
listic motion, or LFs [29–34]. They may also include var-
ious distributions for the switching times from one phase
to another [35]. The optimal search strategy then depends
on the specific types of motion and the dimension of the
search space [28,35–37].

For real world problems it is furthermore crucial that
a searcher does not only eventually find a target but also
that the search is successful within a limited time span, for
instance, if the search is a rescue operation or if a starving
animal searches for food to survive. This means that the
search needs to be efficient. However, on top of this it often
must also be reliable in that a given target is not missed
out but found with sufficiently high probability [38,39].
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Fig. 1. Lévy searcher multiply hopping across (overshooting)
the two targets before eventually hitting the right target.

From a mathematical point of view, finding a single
target when hitting it (in the attempt of sweeping past
it) defines a first passage problem [40,41], which corre-
sponds to the situation where a searcher searches uninter-
ruptedly while continuously moving. On the other hand,
landing on a single target after a relocation process has
been completed can be formulated as a first arrival prob-
lem [38,39,42]. This distinction relates to the situation de-
scribed above, when a searcher does not perceive targets
while moving but only if it comes at rest exactly on the tar-
get, or sufficiently close to it (see Fig. 1). Calculating first
passage and first arrival times for stochastic processes are
well-defined mathematical problems, that, in certain cases
such as for Brownian motion and in one dimension, can
be solved exactly. Remarkable recent progress has been
reported for first passage problems, such as the universal-
ity of certain classes of mean and global mean first pas-
sage times [30,43,44]. Moreover, it has been discussed that
mean search times are not always meaningful, as they may
not be representative [45,46], or that they are vastly dif-
ferent from the most probably first passage time obtained
from the full distribution of first passage times [47,48].
However, these studies only address the problem of find-
ing single targets. For solving the problem of how to find
multiple targets other techniques are needed. The extreme
case of the time needed to find all targets in a given do-
main with certainty is called the covering time [49]. Re-
cent work has demonstrated that for a broad range of
stochastic processes on networks there holds a certain uni-
versality for the distributions of cover times [50]. Clearly,
first passage as well as arrival problems for finding sin-
gle targets and cover times for finding all of them define
extreme cases of search problems. We here consider the
case of a finite number of targets and explicitly calcu-
late the splitting probabilities to locate one of the targets.
This setting is distinct from the previously studied case of
equally spaced targets in a system with periodic boundary
conditions [35,51].

The structure of our paper is as follows: in Section 2
we briefly review two important applications of search
theory to biology. The first one is the problem to un-
derstand the foraging of biological organisms. Within this
context we also elaborate on the role of Lévy walks , which,
apart from subdiffusive processes and Lévy flights, define
a special case of continuous time random walks, that in
turn are the central topic of this Special Issue. The sec-
ond one is the problem of search along DNA chains by
DNA binding proteins. Section 3 starts by introducing

two basic quantities for judging the quality of a mathe-
matical search problem, namely, the search reliability and
the search efficiency. In Section 4 these two quantities are
calculated explicitly for the single-target first arrival prob-
lem of the two fundamental stochastic processes of pure
Brownian motion and a pure LF search process, the lat-
ter both with and without a bias. Here we review known
results in the literature. Section 5 generalises this the-
ory to single-target search by a combination of two Lévy
stable processes, which yields a new result. In Section 6
we address the problem of search for more than one tar-
get by a pure stochastic process. As a specific example,
we consider Brownian and Lévy search of two targets by
calculating the first arrival density, the search reliability,
and the search efficiency. We conclude with a brief out-
look in Section 7. In Appendix A we collect a number of
technical results.

2 Search research: two examples from biology

2.1 Search for food by biological organisms

The advantage of random search based on random walks
with long-tailed, scale-free jump length distributions was
postulated by Shlesinger and Klafter already in 1986 [22].
The groundbreaking moment for the popularisation of
this concept came with the 1996 article by Viswanathan
and colleagues: In this study the flight times of alba-
trosses were recorded during their foraging excursions in
the South Atlantic [16]. It was found that the distribu-
tion of flight times obeyed an asymptotic power law �t−2.
Assuming that the birds move with a constant average
speed one can associate these flight times with the re-
spective power law distribution �|x|−2 of flight lengths.
This suggests that the albatrosses were searching for food
by performing Lévy flights . For more than a decade al-
batrosses were thus considered to be the most prominent
case study of animal foraging by LFs. This work spawned
a large number of related studies suggesting that many
other animals like goats and deer [52,53], bumblebees [17],
spider monkeys [8], marine predators [19,20], and micro-
zooplankton [54] also perform Lévy search [24]. Heavy-
tailed distributions were also found to be characteristic
for human movement dynamics [55,56]. The discussion of
the LF nature of the flight of the albatross recently saw
an interesting twist. While a re-analysis of the albatross
flights showed that they generally are not LFs [57], strong
evidence was presented according to which LFs are indeed
a search pattern for individual albatrosses [58].

The mathematical underpinning for the relevance
of long-tailed probability laws was provided in the
works starting with Lévy [59] as well as Gnedenko and
Kolmogorov [60]. Their work showed that specific types of
power laws, the Lévy alpha stable distributions [59,61–63],
obey a generalised central limit theorem. Their result
thus generalises the conventional central limit theorem
for Gaussian distributions, which explains why Brownian
motion with a Gaussian probability distribution is univer-
sally observed in a huge variety of physical phenomena.
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But, Gaussian tails decay faster than power laws, which
implies that for Lévy-distributed flight lengths there is
a larger probability to yield long flights than for flight
lengths obeying Gaussian statistics. The generalised cen-
tral limit theorem then guarantees that for sufficiently
many steps in the Lévy flight a well defined limit distri-
bution for the probability distribution emerges. The only
difference is that this Lévy stable law is not universal as
the Gaussian, but characterised by a specific alpha stable
index [59–63]. Intuitively, Lévy flights with their chance of
long, decorrelating jumps should be better suited to scan
a large space for randomly distributed targets than Brow-
nian motion. In turn Brownian search should outperform
Lévy motion when the targets are dense. This is the ba-
sic idea underlying the LFH mentioned above [17]. The
motivating question is: What is the best statistical strat-
egy to adapt in order to search efficiently for randomly
located, sparse objects? The LFH stipulates that Lévy
motion provides an optimal search strategy for sparse,
randomly distributed, immobile, revisitable targets in un-
bounded domains [17,24].

To be precise we note that there exist two formu-
lations of continuous time random walk processes with
long-tailed, scale-free relocation distributions. One per-
tains to Lévy flights, these are fully Markovian processes
in which the jumps occur instantaneously, separated with
a well defined sojourn time. In exchange the mean squared
displacement of Lévy flights diverges [61–64]. This diver-
gence is remedied in the Lévy walk model, in which a
spatiotemporal coupling between relocation lengths and
waiting times exists, such that long jumps are penalised
by long waiting times [63–67]. In fact a specific Lévy
walk model was investigated by computer simulations in
the analysis leading to the LFH [17]. Remarkably, in the
limit of sparse food both Lévy walk and flight dynamics
lead to the same optimal Lévy stable exponent α = 1
for the distribution of relocation lengths [17,34]. We also
note that a rigorous mathematical proof of the LFH to
date remains elusive, while empirical tests are debated in
literature [18,68–72].

2.2 Search along DNA chains

To activate or downregulate individual genes on the
genome, in biological cells specific DNA-binding proteins
need to locate and then bind to designated binding sites
on the DNA chain. For long it had been assumed that a
good estimate for the associated binding rate is the cele-
brated Smoluchowski result for molecular aggregation [73].
In vitro experiments for the search rate of the Lac repres-
sor protein remarkably showed a rate that was larger by
around two orders of magnitude [74]. Building on ear-
lier work of Adam and Delbrück [75] and Richter and
Eigen [76], the so-called facilitated diffusion model was de-
veloped by Berg and von Hippel, and coworkers [77–79].
The main idea of the facilitated diffusion model is the pos-
sibility that the searching protein may not only diffuse in
the bulk volume of the reaction container, but it may also
intermittently associate with the DNA chain and perform

a random sliding motion on it. Hereby the linear topology
of the DNA leads to a transient dimensional reduction of
the random search, effecting a similar advantage as the in-
termittent search model discussed above. Namely, the one-
dimensional search makes sure that the target, if close-by,
will be located with high probability. Significant oversam-
pling due to the recurrent motion of one-dimensional dif-
fusion is avoided by the intermittent volume excursions,
that decorrelate the position of the protein before it re-
binds to the DNA. Indeed, this approach to good approx-
imation explains the observed speedup compared to the
Smoluchowski limit, see the recent review [80].

In single molecule measurements the various search
modes can be verified directly or indirectly, for in-
stance, the existence of the one-dimensional sliding mo-
tion [81–83], association-dissociation events leading to the
change between sliding and bulk diffusion [84], interseg-
mental transfer between different segments of DNA [85],
and the role of the three-dimensional DNA conforma-
tions [86]. A number of theoretical studies highlight the
role of the intermittency of the search for the efficiency
of the process. Thus, Halford and Marko [87], Coppey
et al. [88], Erskine et al. [89], Givaty and Levy [90], and
Klenin et al. [91] considered the competition of one- and
three-dimensional diffusion. Slutsky and Mirny [92] argue
that the one-dimensional search needs to consist of search
and recognition modes such that the protein can slide
sufficiently fast while retaining its binding selectivity. In-
cluding intersegmental transfers or jumps of the protein
between chemically remote but physically close segments
of the DNA chain further improves the search efficiency,
especially when the three-dimensional search mode is re-
pressed, for instance, at certain salt conditions [34,93,94].
Interestingly, in the limit of long DNA chains and suffi-
ciently fast reorganisation of the DNA conformation, in-
tersegmental jumps effect an LF search by the binding
protein [34]. In fact, this may be the only example for an
LF, which is not hampered by a diverging second moment:
as the jumps are long-tailed in terms of the chemical dis-
tance measured along the backbone of the DNA molecule,
but are local in the real, embedding space, this divergence
is physically meaningful.

Intersegmental jumps may even assist in avoiding
“roadblocks” in the form of other non-specifically DNA-
bound proteins [95,96]. A concise overview over the vari-
ous facilitated diffusion search modes is given in [97]. More
recent progress includes the formulation of facilitated dif-
fusion for the in vivo case of living bacteria cells [2] and
the inclusion of effects of the DNA sequence [98–100]. Fi-
nally, effects of the crowded cytoplasm of living cells were
considered by different approaches in [101,102]. A path in-
tegral formulation of the downregulation of one gene by
the product of a steering gene, including the stochasticity
of the regulation process [103] was given in [104]. A note-
worthy result of that study is that the efficiency of the
protein search for its target binding site crucially depends
on the initial distance from this target [104], a result that
is consistent with the so-called rapid search hypothesis
based on bioinformatics research [1].
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We note that while there exists full experimental ev-
idence for the intermittent search of DNA binding pro-
teins, the showcase examples of Lac repressor proteins or
EcoRV restriction enzymes are in fact not universal, and
many proteins simply occur at sufficiently high concen-
trations and no significant improvement over pure three-
dimensional diffusion to locate their binding site would be
expected [105,106]. Yet for those proteins whose number
per cell is small, facilitated diffusion is essential [107].

3 Defining search reliability and search
efficiency

As mentioned above, the key quantities to characterise
the success of a search strategy are the reliability and effi-
ciency. The former quantifies the probability whether the
search process is ever successful, the latter is a measure for
how long the search takes. We define the search reliabil-
ity as the cumulative probability P of the first arrival to
reach the target. In terms of the survival probability S (t)
(of not hitting the target up to time t), we thus write
P = 1 − S (∞) [40,41]. Expressing the survival probabil-
ity in terms of the first arrival time density ℘fa(t), we thus
find the relation

P = 1 − S (∞) =
∫ ∞

0

℘fa(t)dt. (1)

Using the Laplace transform, defined through

℘fa(s) =
∫ ∞

0

℘fa(t)e−stdt, (2)

we find the relation [38]

P = lim
s→0

℘fa(s). (3)

The search reliability depends on the exact type of the ran-
dom search process as well as the geometrical details (di-
mension, distance from the starting position to the target,
etc.). The arrival time density ℘fa(t) can be determined
from the (fractional) Fokker-Planck equation of the search
process, equipped with a sink term [38,39,42].

For search in one dimension by LFs without a bias
the search reliability is unity if α > 1 and zero oth-
erwise [38,39,42], which is consistent with previous re-
sults [108]. For search in the presence of a bias (water
stream for marine searchers, winds for airborne foragers,
etc.) the search reliability can vary between zero and
unity [38,39], which is similarly true also for Brownian mo-
tion [40]: when the bias pushes a searcher away from the
target the search reliability is exponentially suppressed by
a Boltzmann-like factor [40]. A search reliability of unity
does not necessarily imply recurrence of the motion. For
instance, LFs with α = 1 in one dimension and Brownian
motion in two dimensions are recurrent but their search
reliability is zero.

The second quantity of interest is the search efficiency.
Most of the theoretical studies consider a probabilistic
searcher with a limited radius of perception. Motivated

by [109], in this case two basic definitions of the search
efficiency are considered to be either

Efficiency1 =
visited number of targets

number of steps
, (4)

or
Efficiency2 =

visited number of targets
distance travelled

. (5)

The first definition applies especially to saltatory search,
where a searcher moves in a jump-like fashion and is able
to detect the target only around the landing point after
a jump. The second definition is adapted to cruise mo-
tion, during which the searcher keeps exploring the search
space continuously during the whole search process. An
example for the former scenario is given by a regulatory
protein that moves in three-dimensional space and occa-
sionally binds to the DNA of a biological cell until it finds
its binding site. The latter scenario would correspond to an
eagle or vulture whose excellent eyesight permits them to
scan their environment for food during their entire flight.
For LFs, equation (4) presents a natural choice while equa-
tion (5) is better suited for processes like Brownian motion
and finite-velocity Lévy walks.

In what follows we focus on the limit of sparse tar-
gets. Concretely, we consider a single or a finite number
of targets. For a single target and saltatory motion we
argued that the efficiency should be defined from equa-
tion (4) with proper averaging [38,39]. In our continu-
ous time model the number of steps is naturally substi-
tuted by the time of the process. We choose the following
averaging [38,39]

E =
〈

1
t

〉
=

∫ ∞

0

℘fa(s)ds (6)

over the inverse search times. This choice appears more
meaningful than taking an average of the form 1/〈t〉,
as the latter would produce a zero efficiency when the
mean search time diverges. Our definition (6) instead pro-
nounces short and intermediate search times.

4 Search of a single target by a single Lévy
flight searcher

Below we use the search reliability and efficiency to char-
acterise search strategies of the motion governed by two
Lévy stable processes and search by a single Lévy stable
process for more than one target. Before, we recall the
main properties of the search of a single Lévy searcher in
an environment without and with an external bias, as well
as the limit of a Brownian searcher.

The properties of an LF search process can be cal-
culated from a space-fractional Fokker-Planck diffusion
equation [64] for the non-normalised density function
f(x, t) [42],

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂ |x|α − ℘fa(t)δ(x − x1), (7)

where the target, represented as a δ-sink, is located at
x = x1. The generalised diffusion coefficient has physical
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dimensions [Kα] = cmα/s. We assume that at t = 0 the
searcher is placed at x = x0, that is, f(x, 0) = δ(x − x0).
The δ-sink effects the condition f(x1, t) = 0 [34,42]. In
equation (7) the fractional derivative ∂α/∂|x|α on an infi-
nite axis is conveniently represented in terms of its Fourier
transform [64]

∫ ∞

−∞
eikx ∂α

∂|x|α f(x, t)dx = −|k|αf(k, t). (8)

Integrating over the coordinate x in equation (7) yields
the survival probability S (t). Its negative time derivative
then delivers the probability density of first arrival [42],

℘fa(t) = − d

dt

∫ ∞

−∞
f(x, t)dx. (9)

The density function f(x, t) can be determined from equa-
tion (7) by application of combined Laplace and Fourier
transforms, defined in terms of

f(k, s) =
∫ ∞

0

dt e−st

∫ ∞

−∞
dx eikxf(x, t). (10)

The solution reads [42]

f(k, s) =
eikx0 − ℘fa(s)eikx1

s + Kα|k|α . (11)

Integrating this result over k yields
∫ ∞

−∞
f(k, s)dk = f(x = 0, s) = 0, (12)

and thus

W (x1 − x0, s) − W (0, s)℘fa = 0, (13)

where W (x, t) is the solution (Green’s function) of equa-
tion (7) without the sink term and reads

W (x, s) =
∫ ∞

−∞

eikx

s + Kα|k|α dk (14)

in Laplace space. Hence the probability of first arrival be-
comes

℘fa(s) =

∫ ∞

−∞
dk

eik(x1−x0)

s + Kα|k|α∫ ∞

−∞
dk

1
s + Kα|k|α

. (15)

We now use this result together with our definitions equa-
tions (3) and (6) to assess the random search dynamics by
a pure Brownian and LF searchers for a single target.

4.1 Brownian search

If the search is performed by a Brownian searcher in equa-
tion (7) we take α = 2 and the first arrival density can be
computed analytically. In Laplace space it reads

℘fa(s) = exp
(
−|x1 − x0|

√
s

K2

)
. (16)

Fig. 2. Relative search efficiency for LF search for a single
point-like target as a function of the stable index α accord-
ing to equation (19), displayed for the initial searcher-target
separations x0 = 1 (green dashed curve), x0 = 10 (red dot-
ted curve), and x0 = 1000 (blue continuous curve). We take
Kα = 1.

Back-transformed, we find in real time that

℘fa(t) =
|x1 − x0|√

4πK2t3
exp

(
− (x1 − x0)2

4K2t

)
. (17)

This is the well known Lévy-Smirnov density [41]. The
search reliability (3) in this case is P = 1 and the efficiency
reads

E2 =
2K2

(x1 − x0)2
. (18)

4.2 First arrival for Lévy searcher

The first arrival density ℘fa(s) for an LF searcher in
Laplace space can be computed in terms of Fox’ H-
functions [39]. From the small s limit of this function one
can see that for α ≤ 1 the search reliability is P = 0, that
is, the search is unsuccessful with probability one, due to
the diverging first absolute moment 〈|x|〉 of this process.
For α > 1, 〈|x|〉 is finite and the reliability is P = 1. By
integration of the corresponding H-function expression in
Laplace space one gets a simple equation for the search
efficiency [39]

Eα =
αKα

|x1 − x0|α
∣∣∣cos

(πα

2

)∣∣∣ Γ (α), (19)

for 1 < α < 2. The exact shape of the relative efficiency
Erel = Eα/Eopt, where Eopt is the maximal (optimal) value
of Eα for a given value of the index α, is displayed in
Figure 2. In particular, for short initial distance x0 to the
target, the Brownian strategy is superior.
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Fig. 3. Dependence of the search reliability P for a biased
LF on the generalised Péclet number Peα, for the indicated
values of the stable index α. Positive values of Peα correspond
to uphill search.

4.3 Lévy search in the presence of a bias

The dynamic equation (7) can be generalised for search in
the presence of different external potentials. Even a simple
bias, stemming from, for instance, an underwater current
for marine predators or wind in the case of airborne for-
agers, changes the search performance significantly [38,39].
The space-fractional Fokker-Planck equation then reads

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂|x|α − v
∂f(x, t)

∂x
− ℘fa(t)δ(x − x1).

(20)
Here v denotes the external, constant bias of dimension
[v] = cm s−1, and the rest of the terms are the same as
in equation (7). The search reliability in this case depends
solely on a single parameter, the generalised Peclét num-
ber [38,39]

Peα =
v|x1 − x0|α−1

2Kα
. (21)

In Figure 3 the search reliability is shown as a function of
Peα for various values of α. The target can be either in an
uphill or downhill location relative to the starting point of
the searcher. Positive values of Peα correspond to the up-
hill scenario, in which the searcher has to fight the bias in
order to reach the target. In this scenario the reliability in-
creases with decreasing stable index α (as long as α > 1).
In contrast, for the downhill scenario LFs are less reliable
than Brownian motion, because LFs allow overshoots or
leapovers [110] and, hence, an LF searcher may be even-
tually lost [39]. More details about the search properties
by LFs in the presence of an external bias can be found
in References [38,39].

The exact nature of the external potential landscape
creating the bias field influences the search properties. In
reference [111] the fractional Fokker-Planck equation for
search processes was considered for different point sink
strengths for free diffusion, diffusion with a constant bias,

and for an harmonic external potential. A finite strength
of the sink describes a finite probability of absorption. The
results for the arrival time density in reference [111] are
consistent with our results in [38,39].

5 Search by a combination of two Lévy
processes

What happens when we combine two search strategies?
This question was analysed previously in terms of a frac-
tional Fokker-Planck equation for the DNA search on a
long DNA chain in reference [34], combining Brownian
and LF search. In the language of search processes used
here this process was further studied in reference [112]. In
this section we analyse the intermittent motion with two
different LF search strategies governed by the dynamic
equation

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂|x|α +Kμ
∂μf(x, t)

∂|x|μ −℘fa(t)δ(x), (22)

which can be directly derived from the corresponding con-
tinuous time random walk model. Here, we introduced the
two stable indices α and μ, and the target position is fixed
at x = 0. The two diffusion coefficients Kα and Kμ mea-
sure the relative frequency with which jump lengths are
drawn from the corresponding stable laws with indices α
and μ. The remaining variables have the same meaning as
before. The first arrival density takes on the form, similar
to (15),

℘fa(s) =

∫ ∞

0

cos kx0

s + Kαkα + Kμkμ
dk

∫ ∞

0

1
s + Kαkα + Kμkμ

dk

=

∫ ∞

0

cos k

stμ + pkα + kμ
dk

∫ ∞

0

1
stμ + pkα + kμ

dk

, (23)

where tμ = |x0|μ/Kμ is a time scale of LFs with the index
μ, and we define

p =
Kα

Kμ
xμ−α

0 . (24)

Analogously to the case of a single LF searcher, if both
α > 1 and μ > 1 the search reliability is unity, P = 1
(the motion is recurrent). Vice versa, if both values are
less than or equal to unity, then P = 0. Thus, only the
case α < 1 and μ > 1 is of interest. The search reliability
then reads (see Appendix A):

P =
sin

(
π(1−α)

μ−α

)

2
√

π

× H12
31

⎡
⎣ 2

p
1

μ−α

(
1, 1

2

) (
1−α
μ−α , 1

μ−α

) (
1
2 , 1

2

)
(

1−α
μ−α , 1

μ−α

)
⎤
⎦ , (25)
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Fig. 4. Search reliability P for two combined LF searchers
with stable indices α and μ as function of α, for p = 1 and
different values of μ.

which is a generalisation of equation (16) in reference [112]
for the search reliability of combined Lévy and Brownian
motion.

Figure 4 illustrates the influence of the competing sta-
ble index μ on the search reliability P , shown as function
of α. While the qualitative behaviour for μ < 2 stays the
same as for Brownian search (μ = 2) [112], the cumu-
lative probability of finding the target decreases with μ
once α < 1. If α is kept constant while μ is varied be-
tween 1 and 2 then the search reliability increases from 0
to some value lower than 1 (not shown here). This re-
sult can be rephrased in terms of the classical problem
whether a process is recurrent or transient [62]: a recur-
rent motion revisits the points in the domain of interest,
in our notations it corresponds to P = 1. We can see that
the combination of recurrent motion (P = 1 for LFs with
μ > 1) with transient LFs with α ≤ 1 (P = 0) leads to
search reliabilities between 0 and 1, that is, the combined
motion is transient with P > 0. This is one of the central
results of this paper, and it is consistent with our findings
for combined Lévy-Brownian search [112], compare also
the discussion in reference [34].

Following the parametrisation in result (23) we plot
the search efficiency Eα,μ (see Appendix B) for the dual
LF search as function of the dimensionless parameter p
in Figure 5, for the case α < μ < 2. For α > 1, Eα,μ

converges to the efficiency Eα of a single LF searcher with
index α in the limit p → ∞, that is, Eα>1,μ ∼ p. For
α = 1 we find E1,μ ∼ p/ ln p. These two asymptotics are
the same as for the combined Lévy-Brownian search [112].
However, for α < 1 the asymptotic power law changes to
the expression Eα<1,μ ∼ p(μ−1)/(μ−α). The derivation of
these power laws can be found in Appendix B.

The comparison of the strategies for different α values
and μ = 1.5 for different values of the initial distance
x0 is shown in Figure 6. We see that for small x0 the
optimal strategy is Brownian (α = 2), while for larger
x0 it changes to values smaller than 2. This behaviour

Fig. 5. Search efficiency Eα,μ, normalised versus the single-
LF efficiency Eμ as function of the parameter p for the search
by two LFs. Continuous lines show the numerical results.
Dashed lines represent the corresponding asymptotics derived
in Appendix B.

Fig. 6. Search efficiency Eα,μ, normalised versus the efficiency
E2,μ, of two Lévy processes with indices α and μ as function of
α for fixed x0 and μ = 1.5. We choose Kα = 1 and Kμ = 1.

is analogous to the combination of Brownian and Lévy
strategies in reference [112]. The search for a nearby target
should be more local in comparison to the search for far
away targets.

6 Search for two and multiple targets
by a single Lévy searcher

In this section we return to the case of a single Lévy
searcher but consider the situation with multiple, point-
like targets. We first consider two targets, placed at x1

and x2. Then the dynamic equation for the process
becomes (7)

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂ |x|α − ℘fa1(t)δ(x − x1)

− ℘fa2(t)δ(x − x2). (26)
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Integrating over the position x it follows, analogously to
the above, that

℘fa1(t) + ℘fa2(t) = − d

dt

∫ ∞

−∞
f(x, t)dx. (27)

The decrease of the survival probability is thus due to the
flux into either of the two targets. Equation (26) can be
solved in Fourier-Laplace space, producing

f(k, s) =
eikx0 − ℘fa1(s, x0)eikx1 − ℘fa2(s, x0)eikx2

s
.

(28)
The inverse Fourier transform can now be taken in the
same way as above. As we here have two conditions of the
form f(x = x1, s) = f(x = x2, s) = 0, this inversion is
related to position x1 and x2 of the sinks, and we find the
set of linear equations

W (x1 − x0, s) − ℘fa2W (x1 − x2, s) − ℘fa1W (0, s) = 0,

W (x2 − x0, s) − ℘fa1W (x2 − x1, s) − ℘fa2W (0, s) = 0.
(29)

The density of first arrival is the sum of fluxes to both
targets,

℘fa(s) = ℘fa1(s) + ℘fa2(s). (30)

Let us use the simplified notation

W (xi − xj , s) = Wij =
∫ ∞

−∞
dk

eik(xj−xi)

s + Kα|k|α , (31)

with W (0, s) = W0. Then the first arrival density becomes

℘fa(s) =
W10 + W20

W12 + W0
. (32)

Similarly, the splitting first arrival densities are

℘fa1(s) =
W10W0 − W20W12

W 2
0 − W 2

12

(33)

and
℘fa2(s) =

W20W0 − W10W12

W 2
0 − W 2

12

. (34)

These expressions can be generalised to the case of mul-
tiple targets. The corresponding dynamic equation reads

∂f(x, t)
∂t

= Kα
∂αf(x, t)

∂|x|α −
∑

i

℘fai(t)δ(x − xi), (35)

where ℘fai(t) is the splitting first arrival density to target i,
and xi is the position of target i. The formal solution in
Fourier-Laplace space reads

f(k, s) =
eikx0 − ∑

i ℘fai(s, x0)eikxi

s + Kα|k|α . (36)

Similarly to the case with two targets this leads to the
system of linear equations

℘fajW0 +
∑
i�=j

Wij℘fai = Wj0. (37)

This system of n equations with n unknowns has a unique
solution which allows one to define all the splitting first
arrival densities ℘faj(t) as well as the first arrival density
℘fa(t) =

∑
j ℘faj(t). The matrix of coefficients in this sys-

tem of equations is symmetric. Interestingly, if the targets
form an equidistant set, xi − xj = (i − j)Δ with the con-
stant spacing Δ, the matrix of coefficients is the Toeplitz
matrix [113].

6.1 Brownian search for two targets

Let us start with the splitting probabilities for Brownian
search. In the corresponding case α = 2 [39]

Wij =
∫ ∞

−∞
dk

eik(xi−xj)

s + K2k2

=
π√
sK2

exp
(
−

√
s/K2|xi − xj |

)
. (38)

Hence,

℘fa(s) =
e−|x1−x0|

√
s/K2 + e−|x2−x0|

√
s/K2

e−|x1−x2|
√

s/K2 + 1
. (39)

There exist two different cases. In the first case both tar-
gets are on the same side of the starting point (x0 < x1 <
x2 or x0 > x2 > x1). In the second case the starting point
is located between the targets (x1 < x0 < x2).

Let us consider the first case for x0 < x1 < x2. Then,

℘fa(s) =
e−(x1−x0)

√
s/K2 + e−(x2−x0)

√
s/K2

e−(x1−x2)
√

s/K2 + 1

= e−(x1−x0)
√

s/K2 , (40)

or, after Laplace back transformation,

℘pa(t) =
x1 − x0

2
√

πK2t3
exp

(
− (x1 − x0)2

4K2t

)
. (41)

We see that the coordinate x2 of the second target disap-
pears from the expression of the first arrival probability
density and we arrive at the result for a Brownian parti-
cle on a semi-infinite axis, as it should, see equations (16)
and (17): for the Brownian walker first arrival and first
passage are identical, the walker cannot pass the closer
target to reach the second target.

In the second case x1 < x0 < x2 from equation (39) it
follows that

℘fa(s) =
e−(x0−x1)

√
s/K2 + e−(x2−x0)

√
s/K2

e−(x2−x1)
√

s/K2 + 1
. (42)

To compare this solution with the expression for the fluxes
in [40] (Eqs. (2.2.10) therein), we note that the latter
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can be rewritten in our notation as

℘fa(s) = ℘fa1(s) + ℘fa2(s)

=
sinh

(
(x2 − x0)

√
s

K2

)
+ sinh

(
(x0 − x1)

√
s

K2

)

sinh
(
(x2 − x1)

√
s

K2

)

= 2
sinh

(
(x2 − x0)

√
s

K2

)
+sinh

(
(x0 − x1)

√
s

K2

)

(1+e−(x2−x1)
√

s/K2)(e(x2−x1)
√

s/K2 − 1)

= 4
sinh

(
(x2−x1)

√
s

K2
2

)
cosh

(
(x1+x2−2x0)

√
s

K2
2

)

(1 + e−(x2−x1)
√

s/K2)(e(x2−x1)
√

s/K2 − 1)

=
e(

x1+x2
2 −x0)

√
s/K2 + e−(x1+x2

2 −x0)
√

s/K2

e0.5(x2−x1)
√

s/K2(1 + e−(x2−x1)
√

s/K2)
. (43)

The latter expression is equivalent to equation (42) af-
ter division of both denominator and numerator by
exp(0.5(x2 − x1)

√
s/K2). For the Brownian case our re-

sults thus coincide with those from literature.

6.2 Long time asymptotics and splitting search
reliabilities of an LF for two targets

We now derive the splitting probabilities and splitting
search reliabilities for the case of LF search for two targets.
The values of the search reliabilities can be found from the
asymptotics of ℘fa(s) in the limit s → 0 (or t → ∞), for
the derivation see Appendix C:

℘fa(s) ≈ 1 − Λ(α)(s/Kα)1−
1
α

2
× (|x1 − x0|α−1 + |x2 − x0|α−1 − |x2 − x1|α−1

)
,

(44)

where

Λ(α) =
αΓ (2 − α)
π(α − 1)

sin
(πα

2

)
sin

(π

α

)
. (45)

Due to Minkowski’s inequality the combination of abso-
lute values in the brackets of equation (44) is always non-
negative. From that expression one can see that the search
reliability P = ℘fa(s → 0) = 1. Now, let us consider the
splitting densities. For the first arrival to the first target
(see Appendix C), we find

℘fa1(s) ≈
[
− |x1 − x0|α−1+|x2 − x0|α−1+|x2 − x1|α−1

+ Λ(α)|x2 − x0|α−1|x2 − x1|α−1(s/Kα)1−1/α
]
/C (46)

where we use the abbreviation

C = 2|x2−x1|α−1+Λ(α)|x2−x1|2α−2(s/Kα)1−1/α. (47)

Fig. 7. Search reliability P1 of hitting target x1 as a function
of the initial release position x0. The two targets are located
at x1 = −3 and x2 = 3, respectively.

Then the splitting search reliability to find the first target
becomes

P1 =
−|x1 − x0|α−1 + |x2 − x0|α−1 + |x2 − x1|α−1

2|x2 − x1|α−1

=
1
2

+
|x2 − x0|α−1 − |x1 − x0|α−1

2|x2 − x1|α−1
. (48)

Similarly, for the second target

P2 =
−|x2 − x0|α−1 + |x1 − x0|α−1 + |x2 − x1|α−1

2|x2 − x1|α−1

=
1
2
− |x2 − x0|α−1 − |x1 − x0|α−1

2|x2 − x1|α−1
. (49)

We see that P1 + P2 = 1 as it should be. Assuming
x0 < x1 < x2 we see that for the Brownian case, α = 2,
the probability P2 equals zero whereas for α < 2, P2 �= 0.
It can also be shown that for x0 < x1 < x2 one always
has P2 < P1. Thus, expressions (48) and (49) are a consis-
tent generalisation of the classical result for the splitting
probabilities on an interval (Eq. (2.2.11) in Ref. [40]).

Figure 7 shows the dependence of the search reliability
for the first target P1 as function of the starting position.
For the Brownian case the probability to find the first
target is unity if the starting position is to the left of both
targets, zero if the start is to the right, and it changes
linearly with in-between starting points. This behaviour
naturally changes for LF searchers due to the possibility to
overshoot the target. The LF searcher may miss the closest
target and hit the one beyond. In the limit of faraway
searcher release, x0 → ±∞, the searcher can hit either
target with a likelihood of 1

2 , which can be proven by
taking the corresponding limit in equations (48) and (49).
If α decreases from two to unity, that is, when the jump
lengths get increasingly longer tailed while the motion is
still recurrent, the probabilities P1 and P2 approach 1

2 .
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Fig. 8. Splitting search reliability P1 for hitting target x1 as
function of x2 − x1. The starting position is fixed at x0 = 1.
The targets at x1 and x2 are placed symmetrically around 0.

We also see that the search reliability for hitting the closest
target drops with decreasing α, while the chance to hit the
further target increases.

In Figure 8 we fix the starting position x0 and change
the distance between the targets to show the behaviour
of the search reliability P1 (see the sketch in the inset of
the figure). Negative distances correspond to the inverted
order of targets, that is, target 1 is located to the right,
while target 2 is the left one. Values of x2 − x1 = ±2
correspond either to the situation when x2 coincides with
x0 or x1 with x0, hence, P1(−2) = 1, P1(2) = 0 for any α.
For the Brownian case α = 2 the splitting search reliability
to find the target x1 is unity when x0 ≤ x1 < x2 or
x0 ≥ x1 > x2. In the cases x0 ≤ x2 < x1 and x0 ≥ x2 > x1

the search reliability to find the target x1 is zero. When
the starting position is located between targets x1 and x2,
the splitting search reliability for the furthermost target
increases. In the limit x2 − x1 → ∞ the probability to hit
both targets is the same and tends to 1

2 . Similarly to the
situation in Figure 7 we see that LF search always provides
the possibility to hit both targets, and the likelihood for
this to happen approaches 1

2 for α → 1.

6.3 Search efficiency

In Figures 9 and 10 the target search efficiency is plotted
as a function of the starting position x0. The efficiency ex-
hibits a symmetry with respect to the midpoint between
the targets at positions x1 and x2. When the starting po-
sition is moved towards one of the targets, the search effi-
ciency rapidly increases. If the starting position is between
the targets, the search efficiency of the Brownian search
exceeds that of LFs. However, once the targets are fur-
ther apart (Fig. 10) the midpoint between the targets is
comparatively far from both targets and the LF strategy
becomes advantageous again. In both cases if the searcher
starts far to the right or far to the left from both targets

Fig. 9. Search efficiency as function of the starting position x0.
The targets are located at x1 = −3 and x2 = 3, respectively.

Fig. 10. Search efficiency as function of the starting posi-
tion x0. The targets are located at x1 = −10 and x2 = 10,
respectively.

then LF search is more efficient than Brownian. The split-
ting search efficiency of hitting a single target, for instance,
the second target (Fig. 11), behaves similarly to the search
efficiency to hit either target if the searcher starts to the
right of the first target. Naturally, if it starts from the
position of the first target, the efficiency of reaching the
second one is 0. We note again that if the searcher needs
to overshoot one target in order to reach the second target
(the region to the left of the first target in Fig. 11), the
splitting search efficiency of Brownian motion is 0 because
of the absence of overshoots. In contrast LFs are able to
do this, and the splitting search efficiency increases with
decreasing α.

Search strategies with different α are compared for
fixed initial and target positions in Figure 12. As in refer-
ence [38] one can see that for small distances from at least
on of the targets Brownian search is more efficient than
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Fig. 11. Splitting search efficiency of hitting target x2 as func-
tion of the starting position x0. The targets are located at
x1 = −3 and x2 = 3, respectively.

Fig. 12. Search efficiency as function of α, x1 = −3, x2 = 3.
x0 = 1 and 2 correspond to the starting position between the
targets. The rest of the x0 value are to the right from the right
one.

any type of LFs. However, once the searcher starts further
away the longer jumps are a more efficient option. For the
same distance |x2 − x0| the search efficiency differs, de-
pending on whether one starts on the same half-line with
the other target or not. Surprisingly for some α values the
efficiency of target search for x1 < x0 < x2 can be smaller
than for x1 < x2 < x0 for the same x2 − x0 (curves for
x0 = 1 and x0 = 5 in Fig. 12).

7 Conclusions

Here we summarised the basic features of LF search for
rare targets as well as developed further generalisations
of the LF search model. Thus we considered search by a
combination of two LF search processes and the search for

multiple targets. Some common patterns can be deduced
from all these processes. Namely, in those cases when the
target search is easy (for instance, the searcher starts close
to the target or the targets, or the target is in a down-
hill position relative to the starting point of the searcher)
the pure Brownian search strategy beats any LF process,
or a combined strategy, with respect to both search re-
liability and efficiency. However, once the targets are far
away, or the search should go in an upstream direction,
LF search with its substantial probability of long jumps
becomes more successful.

Interestingly, the search properties of combined search
strategies cannot be devised from the features of con-
stituent processes. This fact can be clearly demonstrated
if one Lévy process has a power-law exponent α ≤ 1,
while the second process has an exponent μ > 1. The
first process alone is not capable of locating the target in-
dependently of how long the search is, that is, both the
search reliability and efficiency are zero. The second pro-
cess alone eventually locates the target with certainty (in
the absence of a potential, which could drive a searcher in-
finitely away from the target), that is, the second process
is recurrent. Non-trivially, the combined process will have
a finite search reliability. Our results also show that this
effect as well as other search properties stay qualitatively
the same in the limiting case when one of the two search
processes is Brownian.

As discussed above the generalisation of our approach
for the case of many targets leads to similar conclusions
regarding successful search strategies. However, some new
questions appear in this case. One of the most important
is the classical question of splitting probabilities [40]. In
the case of two targets we generalise a well-known expres-
sion for splitting probabilities of Brownian motion for the
case of LF search. The generalised expression reflects the
important difference between the continuous exploration
of Brownian motion and the jump-like behaviour of LFs.
The latter leads to leapovers across a target and, thus,
allows the searcher to hit either target from any starting
position.

LF search is an idealised process. From a physical point
of view the divergence of the second moment of LFs can
be avoided by the spatiotemporal coupling offered by Lévy
walks – at the expense of the relatively straightforward
analytical accessibility. From a biological point of view the
assumption that the jump length statistic is not affected
by an external bias may be questionable, and some penalty
in terms of a thermodynamic efficiency concept should be
introduced. However, many of the insights obtained for
the simple LF model will, to some extent, also be present
in the Lévy walk case, for instance, the question of optimal
search for extremely rare targets leads to the same optimal
value for the stable index. In a similar way, we believe that
other properties such as the splitting behaviour will carry
over to more complex search processes. We hope that the
results presented here will indeed inspire such research.
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Appendix A: Analytical solution for search
reliability of two combined LF processes
with stable indices α ≤ 1 and μ > 1

We start with the solution (23) of equation (22). If both
stable indices are larger than one, then P = 1. If both are
smaller or equal to one, then P = 0. Hence we concentrate
here on the case when α < 1 and μ > 1. The search
reliability for this case reads

P = ℘fa(s = 0) =

∫ ∞
0

cos k
pkα+kμ dk∫ ∞

0
1

pkα+kμ dk
=

I1

I2
, (A.1)

where

I2 =
∫ ∞

0

k−αdk

p + kμ−α
=

1
μ − α

p−
1

μ−α
π

sin
(
π 1−α

μ−α

) (A.2)

and

I1 =
1

p(μ − α)

∫ ∞

0

k−α cos kH11
11

⎡
⎣ k

p
1

μ−α

(
0, 1

μ−α

)
(
0, 1

μ−α

)
⎤
⎦ dk

=
√

π2−α

p(μ − α)
H12

31

⎡
⎣ 2

p
1

μ−α

(
1+α

2 , 1
2

)
,
(
0, 1

μ−α

)
,
(

α
2 , 1

2

)
(
0, 1

μ−α

)
⎤
⎦ .

(A.3)

Hence

P =
sin

(
π(1−α)

μ−α

)

2
√

π

× H12
31

⎡
⎣ 2

p
1

μ−α

(
1, 1

2

)
,
(

1−α
μ−α , 1

μ−α

)
,
(

1
2 , 1

2

)
(

1−α
μ−α , 1

μ−α

)
⎤
⎦ . (A.4)

Appendix B: Asymptotic behaviour
of the search efficiency for μ > 1 and p → ∞
The search efficiency can be expressed through dimension-
less units and the timescale of the process with stable in-
dex μ as follows

Eα,μ =
1
tμ

∫ ∞

0

℘fa(p, s)d(stμ), (B.1)

where tμ = xμ
0/Kμ is the time scale of LFs with stable

index μ.

B.1 α > 1

For α > 1 and μ > 1 both LFs have a finite search relia-
bility. In the limit p → ∞ LFs with exponent α dominate
the search process, hence, the efficiency should take the
form of expression (19).

B.2 α < 1

In this case the convergence of expression (23) is due to
the term kμ. Hence the latter cannot be neglected as for
α > 1. Let us change the variables in equation (B.1) as
stμ = pνu and k = pγκ, where ν and γ will be specified
below. Then from equation (B.1) we get

Eα,μtμ = pν

∫ ∞

0

du

∫ ∞

0

cos(pγκ)
pνu + p1+αγκα + pμγκμ

pγdκ
∫ ∞

0

1
pνu + p1+αγκα + pμγκμ

pγdκ

.

(B.2)
We choose ν and γ such that

ν = 1 + αγ = μγ, (B.3)

that is,

γ =
1

μ − α
, ν =

μ

μ − α
. (B.4)

Then equation (B.2) takes the form

Eα,μtμ = pν

∫ ∞

0

du

∫ ∞

0

cos(pγκ)
u + κα + κμ

dκ

∫ ∞

0

1
u + κα + κμ

dκ

. (B.5)

The integral in the denominator converges for all posi-
tive u, does not depend on p, and has an upper bound at
u = 0,

f(u) =
∫ ∞

0

1
u + κα + κμ

dκ ≤ f(0)

=
∫ ∞

0

1
κα + κμ

dκ. (B.6)

As for the integral in the numerator, since p 
 1 the
main contribution comes from small κ. We thus neglect κμ

in comparison with κα and use the approach from Ap-
pendix B in reference [112]. Hence, for the search efficiency
we get

Eα,μtμ ≈ pν

∫ ∞

0

du

f(u)

∫ ∞

0

cos(pγκ)
u + κα

dκ

∼ pν

∫ ∞

0

du

f(u)

∫ ∞

0

dτe−uτ 1
τ1/α

lα

(
pγ

τ1/α

)
,

(B.7)

where

y = pγ/τ1/α,

τ = pγα/yα,

dτ = − 1
α

pγα

yα+1
dy. (B.8)
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Thus

Eα,μtμ ∼ pν−γ+γα

∫ ∞

0

du

f(u)

∫ ∞

0

dy exp
(
−upγα

yγα

)
y−αlα (y)

= pν−γ+γα

∫ ∞

0

dylα (y) y−α

∫ ∞

0

du

f(u)
exp

(
−upγα

yγα

)

= pν−γ

∫ ∞

0

dylα (y)
∫ ∞

0

e−tdt

f

(
yαt

pγα

)

∼ pν−γ ∼ p(μ−1)/(μ−α), for p → ∞, (B.9)

due to relation (B.6), that is, for α < 1

Eα,μ ∼ p
μ−1
μ−α . (B.10)

B.3 α = 1

For α = 1 we can use equation (B.5) with ν = μ
μ−1 and

γ = 1
μ−1 , such that

Eα,μtμ = pν

∫ ∞

0

du

∫ ∞

0

cos(pγκ)
u + κ + κμ

dκ

∫ ∞

0

1
u + κ + κμ

dκ

= pν

∫ ∞

0

du
f(u)
f1(u)

.

(B.11)

For the integral in the numerator, similar to the case α < 1
(Appendix B.2) the main contribution comes from small
κ values due to p 
 1. Hence we can neglect κμ in com-
parison with κ. Thus

f(u) =
∫ ∞

0

cos(pγκ)
u + κ + κμ

dκ �
∫ ∞

0

cos(pγκ)
u + κ

dκ = g(pγu),

(B.12)

where g(z) can be expressed through sine and cosine inte-
grals Si(z) and Ci(z) as

g(z) = −Ci(z) cos(z) − (Si(z) − π/2) sin(z), (B.13)

Si(z) =
∫ z

0

sin y

y
dy, (B.14)

Ci(z) =
∫ ∞

z

cos y

y
dy. (B.15)

The function in the denominator for small arguments u
depends on u as f1(u) ∼ − lnu. Equation (B.11) can be
rewritten in the form

Eα,μtμ = p
μ

μ−1

∫ 1

0

du

f1(u)
g

(
p

1
μ−1 u

)

+ p
μ

μ−1

∫ ∞

1

du

f1(u)
g

(
p

1
μ−1 u

)
. (B.16)

For the second term in the latter expression one can use
the asymptotic of g(z) ∼ 1/z2 for pu 
 1 since p 
 1 (see

Eq. (5.2.35) in Ref. [114]). This implies that the contribu-
tion from the second term decreases with increasing p at
large p values.

The first term can be rewritten as

p
μ

μ−1

∫ 1

0

du

f1(u)
g(p

1
μ−1 u) = p

∫ p
1

μ−1

0

dy

f1

(
y/p

1
μ−1

)g(y).

(B.17)
The upper bound of this term is given by (f1(y) is a
monotonously decreasing function of y)

p

∫ p
1

μ−1

0

dy

f1

(
y/p

1
μ−1

)g(y) <
p

f1(1)

∫ ∞

0

dyg(y), (B.18)

as g(y) is integrable on [0,∞) and we can replace the upper
limit p of the integral with ∞ at p 
 1. Thus, the first
term in equation (B.16) does not grow faster than p. To
get a lower bound for the growth limit of large p we use
the first mean value theorem [115] and a small argument
asymptotic f1(u) ∼ − ln u, yielding

p

∫ p
1

μ−1

0

dy

f1

(
y/p

1
μ−1

)g(y) =
p

f1

(
y∗/p

1
μ−1

)
∫ p 1

μ−1

0

dyg(y)

∼ p

− ln
(
y∗/p

1
μ−1

)
∫ ∞

0

dyg(y), (B.19)

where 0 < y∗ < p
1

μ−1 . Hence

Eα,μtμ ∼ p

ln p
, (B.20)

which is confirmed by numerical simulations.

Appendix C: Derivation of long time
asymptotics for two targets

The first arrival density reads

℘fa(s) =
W10
W0

+ W20
W0

W12
W0

+ 1
. (C.1)

For the ratio Wij/W0 the limit of small s was calculated
in Appendix A of reference [112]:

Wij(s)
W0(s)

≈ 1 − Λ(α)s1− 1
α |xj − xi|α−1 (C.2)

Correspondingly,

℘fa(s) ≈
2−Λ(α)(s/Kα)1−1/α

(|x1−x0|α−1+|x2−x0|α−1
)

2−Λ(α)(s/Kα)1−1/α|x2−x1|α−1

≈ 1 − Λ(α)
2

(s/Kα)1−1/α

× (|x1 − x0|α−1 + |x2 − x0|α−1 − |x2 − x1|α−1
)
,

(C.3)
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℘fa1(s) =
W20W12 − W10W0

W 2
12 − W 2

0

=

(
W20
W0

)2

− W10
W0(

W12
W0

)2

− 1

≈
(
1 − Λ(α)(s/Kα)1−1/α|x2 − x0|α−1

) (
1 − Λ(α)(s/Kα)1−1/α|x2 − x1|α−1

)
−

(
1 − Λ(α)(s/Kα)1−1/α|x1 − x0|α−1

)

(1 − Λ(α)(s/Kα)1−1/α|x2 − x1|α−1)
2 − 1

≈ −|x1 − x0|α−1 + |x2 − x0|α−1 + |x2 − x1|α−1 + Λ(α)|x2 − x0|α−1|x2 − x1|α−1(s/Kα)1−1/α

2|x2 − x1|α−1 + Λ(α)|x2 − x1|2α−2(s/Kα)1−1/α
. (C.5)

where

Λ(α) =
αΓ (2 − α)
π(α − 1)

sin
(πα

2

)
sin

(π

α

)
. (C.4)

Due to Minkowski’s inequality the combination of the ab-
solute values in the brackets is always non-negative. From
that expression one can see that the search reliability is
P = 1. Now, let us consider the splitting densities. The
probability to hit the first target can be written as

See equation (C.5) above.

The second splitting probability density ℘fa2 can be com-
puted in exactly the same way and produces a result,
which can be written by swapping x1 and x2 in the last
expression (C.5).
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