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Single particle tracking has become
a standard method, especially in
biophysics (1,2). With superresolution
microscopy, the motions of even indi-
vidual molecules in a live cell are
routinely tracked (1–3). The monitored
dynamics provides important clues on
the interactions of the probe particle
with the intracellular environment.

The results from such studies are
quite remarkable. First, they demon-
strate the existence of anomalous parti-
cle diffusion of the form hr2ixta with
as1 at often macroscopic times (1,2).
Second, the observed motion may turn
out to be pronouncedly nonstationary:
this causes the time-averaged mean
squared displacement d2, typically
evaluated from measured time series
of the particle trajectories, to behave
fundamentally differently from the
ensemble analog hr2i (4,5). In addition
to this, subdiffusive particle motion
may exhibit aging, that is, its dynamics
changes over time: typically, the parti-
cle slows down in the sense that in d2

the effective diffusivity decays with
the trace length t (5,6). However, in
the strongly nonequilibrium setting of
biological cells, reinforcing aging
may also emerge, when the power of
the t dependence is positive. The in-
equivalence d2shr2i and aging is not
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universal but is revealed in a growing
number of systems.

The observation of anomalous diffu-
sion and the nonstationary behavior
of the tracer dynamics in biological
systems calls for better strategies to
infer the relevant information from
measured particle trajectories. Many
groups worldwide are working on
this point, and many promising, com-
plementary data analysis methods
have already been developed; see, for
instance, Metzler et al. (2,6).

Concurrently, new surprises keep
coming. One phenomenon that is
stirring up the field of particle tracking
and stochastic process theory is so-
called ‘‘Brownian yet non-Gaussian
dynamics’’ (7). Reported from a large
number of soft matter and biologically
relevant systems, this term was coined
to classify dynamics combining a
linear growth in time of the mean
squared displacement, hr2ixt, with
the observation of non-Gaussian
probability density functions P(r,t)
for the particle spread. Over the
whole measured time and spatial
range, or intermittently in r or t,
one extracts the exponential form
Pðr; tÞxexpð�r=lðtÞÞ with the decay
length lðtÞ (7). Note that similar
behavior occurs in glassy systems (8).

For a spatially and temporally ho-
mogeneous system the central limit
theorem enforces the Gaussianity of
P(r,t), so this homogeneity needs to
be broken somehow. Brownian yet
non-Gaussian dynamics was explained
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theoretically first in terms of an expo-
nential distribution of diffusivities
p(K), over which a single Gaussian
Gðr; tÞ ¼ ð4pKtÞ�d=2 expð�r2=½4Kt�Þ,
d denoting spatial dimension, is
averaged, resulting in Pðr; tÞ ¼RN
0

pðKÞGðr; tÞdK (7). This is but the
by-now classical idea of superstatistics
(9). Other approaches to describe this
phenomenon assume a diffusing diffu-
sivity, such that on its trajectory the
particle experiences a perpetually
changing diffusivity (10,11). In this
model at longer times the diffusivity
averages to an effective value hKi,
and the Gaussianity of the motion
is restored, as shown by simulations
in Chubynsky and Slater (10). A
recent analytical study reconciles the
diffusing diffusivity picture with a sub-
ordination approach as well as the
superstatistical description (12). In
particular, it is shown in Chechkin
et al. (12) that the distribution p(K) cor-
responds to the short time behavior of
the particle motion, while a crossover
to a Gaussian behavior with effective
hKi is derived.

The careful study by Lampo et al.
(3) now examines anomalous yet non-
Gaussian dynamics by detailed single
particle tracking experiments, tracing
the motion of single protein-labeled
messenger RNA molecules in living
E. coli and S. cerevisiae cells. The au-
thors collect evidence for the variation
of the local diffusion coefficient within
individual mRNA trajectories as well
as a significant distribution of effective
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FIGURE 1 Probability density function P(r,t)

obtained from the diffusivity distribution p(Ka).

(Top to bottom) The stretching exponent is

d ¼ 2, leading to a superstretched Gaussian

(black line); d ¼ 1, producing the Laplace distri-

bution (blue line); and d ¼ 1/2, leading to a

stretched Gaussian (green line). A Gaussian

is also shown, for comparison (red line). Plots

obtained by numerical integration of P(r,t) for

t ¼ 1 (a.u.). To see this figure in color, go online.
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diffusivities in an ensemble of mRNA
trajectories. The surprise here comes
from the experimental fact that the
motion of labeled mRNA in living
cells has been described as ‘‘visco-
elastic subdiffusion’’, a Gaussian
process with anomalous timescaling,
Gaðr; tÞ ¼ ð4pKat

aÞ�d=2 expð�r2=
½4Kat

a�Þ (6). The characteristic of this
motion is the antipersistent displace-
ment correlation shown, e.g., in
Fig. S2b in Lampo et al. (3). However,
the extended analysis by Lampo et al.
(3) at longer times and, in particular,
of the probability density P(r,t), re-
veals that this is not the whole picture:
deviations from the pure viscoelastic
behavior with constant Ka appear,
and P(r,t) is a Laplace distribution.
Averaging the Gaussian Gaðr; tÞ over
an exponential distribution pðKaÞ of
the generalized diffusion coefficient
Ka, Lampo et al. (3) demonstrate that
an exponential (Laplace) distribu-
tion for P(r,t) with scaling variable
r=ta=2 emerges, and indeed fits the
data well. Thus, the diffusion of the
mRNA is clearly impacted by the inho-
mogeneity of the medium. This is an
important observation that will clearly
influence the field and lead experimen-
talists to reexamine previously studied
systems.

The simulations of protein crowded
lipid bilayer membranes studied in
414 Biophysical Journal 112, 413–415, Febru
Jeon et al. (13) demonstrate an
even more intricate phenomenology.
Namely, contrasting the viscoelastic
behavior with Gaussian Gaðr; tÞ in the
pure lipid bilayer, when protein crowd-
ing of the membrane becomes signifi-
cant the resulting probability density
of lipids turns out to be a stretched
Gaussian, Pdðr; tÞxexpð�c½r=ta=2�dÞ,
with values for the stretching exponent
d ranging from 1.3 to 1.6. This behavior
can be shown to emerge from a non-
exponential diffusivity distribution
of the form pðKaÞfexpð�½Ka=K

0
a�kÞ,

which leads to Pdðr; tÞ with d ¼
2k=½1þ k� (12).

Fig. 1 shows a numerical evaluation
of this scheme. Indeed, for k ¼ 1

the Laplace distribution consistently
emerges, while for k smaller or larger
than unity, the resulting probability
density Pdðr; tÞ is a stretched Gaussian
or becomes even broader than the
Laplace distribution (superstretched
Gaussian). Exactly how, on a diffusing
diffusivity level, such distributions
enter the formalism, remains to be
analyzed in detail. More generally,
how non-Gaussian distributions come
about from a potential conspiration of
the central limit theorem and large
deviations will be an issue of future
research.

Results like those reported on Brow-
nian yet non-Gaussian dynamics from
numerous systems (see Wang et al.
(7) and the references in Lampo et al.
(3)) or generalizations of this effect
as explored in Lampo et al. (3) and ad-
dressed above, make it clear that with
our experimental and numerical reso-
lution we need to consider explicit
inhomogeneities in the systems we
analyze, especially within biological
cells or tissues. The theoretical frame-
work for such inhomogeneous environ-
ments is currently being established.
However, equally important is the
awareness of looking for the right mea-
sures to explore the dynamic details of
a systems. Just looking at the mean
squared displacement is often insuffi-
cient. As shown in Lampo et al. (3),
the displacement distribution function
is an excellent quantity to analyze.
ary 7, 2017
There exists by now also a wide range
of other analysis tools, for instance, the
amplitude distribution of the time-
averaged mean squared displacement
d2 between individual trajectories, or
the test whether the system is aging,
and many others (2,6,13). Only a
detailed analysis can guarantee that
extracted parameters are physically
meaningful.

Biological cells will keep us busy
for some time to come. To understand
the implications of the massive inho-
mogeneity of crowders, cytoskeleton,
internal and external membranes, and
charges (together with the strongly
out-of-equilibrium character of many
cellular processes), packaging the
emerging sub- and superdiffusive pat-
terns into a quantitative model of cells
is a demanding task.

When I entered the field of stochas-
tic processes many people thought that
we are only left with improving details.
However, the opposite is true. In these
exciting days, novel experimental in-
sights teach us that theorists actually
have to sit down and come up with
novel models to explain the richness
of the systems of our interest. Experi-
mentalists, keep reporting unexpected
behaviors!
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1. Höfling, F., and T. Franosch. 2013. Anoma-
lous transport in the crowded world of bio-
logical cells. Rep. Prog. Phys. 76:046602.

2. Metzler, R., J. -H. Jeon, and A. G. Cherstvy.
2016. Non-Brownian diffusion in lipid mem-
branes: experiments and simulations. Bio-
chim. Biophys. Acta. 1858:2451–2467.

3. Lampo, T. J., S. Stylianidou,., A. J. Spako-
witz. 2016. Cytoplasmic RNA-protein parti-
cles exhibit non-Gaussian subdiffusive
behavior. Biophys. J. 112:532–542.

4. Jeon, J. -H., V. Tejedor,., R. Metzler. 2011.
In vivo anomalous diffusion and weak ergo-
dicity breaking of lipid granules. Phys. Rev.
Lett. 106:048103.

5. Weigel, A. V., B. Simon,., D. Krapf. 2011.
Ergodic and nonergodic processes coexist in
the plasma membrane as observed by single-
molecule tracking. Proc. Natl. Acad. Sci.
USA. 108:6438–6443.

6. Metzler, R., J. -H. Jeon, ., E. Barkai.
2014. Anomalous diffusion models and
their properties: non-stationarity, non-ergo-
dicity, and ageing at the centenary of single

http://refhub.elsevier.com/S0006-3495(16)34323-5/sref1
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref1
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref1
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref2
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref2
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref2
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref2
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref3
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref3
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref3
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref3
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref4
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref4
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref4
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref4
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref5
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref5
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref5
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref5
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref5
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6


New and Notable
particle tracking. Phys. Chem. Chem. Phys.
16:24128–24164.

7. Wang, B., J. Kuo, ., S. Granick. 2012.
When Brownian diffusion is not Gaussian.
Nat. Mater. 11:481–485.

8. Scott Shell, M., P. G. Debenedetti, and F. H.
Stillinger. 2005. Dynamic heterogeneity and
non-Gaussian behavior in a model super-
cooled liquid. J. Phys. Cond. Mat. 17:S4035.
9. Beck, C., and E. G. D. Cohen. 2003. Statis-
tical mechanics and its applications. Physica
A. 322:267–275.

10. Chubynsky, M. V., and G. W. Slater. 2014.
Diffusing diffusivity: a model for anoma-
lous, yet Brownian, diffusion. Phys. Rev.
Lett. 113:098302.

11. Jain, R., and K. L. Sebastian. 2016. Diffu-
sion in a crowded, rearranging environment.
J. Phys. Chem. B. 120:3988–3992.
Biophysical Jo
12. Chechkin, A. V., F. Seno, ., I. M. Sokolov.
2016. Brownian yet non-Gaussian diffusion:
from superstatistics to subordination of
diffusing diffusitivities. E-print arXiv:
1611.06202.

13. Jeon, J. -H., M. Javanainen, ., I. Vattulai-
nen. 2016. Protein crowding in lipid bilayers
gives rise to non-Gaussian anomalous lateral
diffusion of phospholipids and proteins.
Phys. Rev. X. 6:021006.
urnal 112, 413–415, February 7, 2017 415

http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref6
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref7
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref7
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref7
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref8
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref8
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref8
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref8
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref9
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref9
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref9
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref10
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref10
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref10
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref10
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref11
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref11
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref11
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref13
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref13
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref13
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref13
http://refhub.elsevier.com/S0006-3495(16)34323-5/sref13

	Gaussianity Fair: The Riddle of Anomalous yet Non-Gaussian Diffusion
	References


