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Abstract
Low-dimensional, many-body systems are often characterized by ultraslow
dynamics. We study a labelled particle in a generic system of identical particles
with hard-core interactions in a strongly disordered environment. The disorder is
manifested through intermittent motion with scale-free sticking times at the
single particle level. While for a non-interacting particle we find anomalous
diffusion of the power-law form 〈 〉 ≃ αx t t( )2 of the mean squared displacement
with α< <0 1, we demonstrate here that the combination of the disordered
environment with the many-body interactions leads to an ultraslow, logarithmic
dynamics 〈 〉 ≃x t t( ) log2 1 2 with a universal 1 2 exponent. Even when a char-
acteristic sticking time exists but the fluctuations of sticking times diverge we
observe the mean squared displacement 〈 〉 ≃ γx t t( )2 with γ< <0 1 2, that is
slower than the famed Harris law 〈 〉 ≃x t t( )2 1 2 without disorder. We rationalize
the results in terms of a subordination to a counting process, in which each
transition is dominated by the forward waiting time of an ageing continuous time
process.
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1. Introduction

Understanding effects due to many-body interactions represents one of the fundamental
problems in physics and chemistry [1]. A generic model combining many-body interactions
with the stochastic motion of the individual particles in the system is single file motion, in
which diffusing particles with hard core, excluded volume interactions move in one dimension.
The resulting collisions between the particles in the single file severely alter the Brownian law
performed by any of the particles in the case when no excluded volume interactions were
present. As shown by Harris in 1965, the motion of a labelled tracer particle in a single file of
particles is characterized by the square-root scaling

≃x t K t( ) (1)2
1 2

1 2

of the mean squared displacement [2]. Theoretically and numerically, single file diffusion was
studied extensively [3–13], in particular, regarding the effects of physical parameters such as
the particle density, the system size, or external forcing. The so-called harmonization approach,
which maps the long-time dynamics for such systems onto the motion of harmonically coupled
beads with spring constants determined by the systemʼs equation of state, shows that after
integrating out all other particle co-ordinates, the motion of the labelled tracer particle is
described by a fractional Langevin equation [14].

Wei et al in a seminal study provided direct experimental evidence for the single file law
(1) of colloidal particles in circular groves and corroborated the asymptotically Gaussian
distribution of the labelled particleʼs position [15]. Channels for the study of single file motion
can also be established by means of optical tweezers [16] to study the crossover from the initial
free motion of the particles before collisions take place, to the single file regime with the t1 2

scaling (1) of the mean squared displacement [17]. Earlier, single file diffusion was also
discovered in zeolites—so-called molecular sieves—by pulsed field gradient NMR methods
[18]. Single file motion in micro- and nanochannels is studied in view of potential technological
applications [19, 20]. One of these applications is promoted to be the slow release of drugs from
nanochannel containers [20]. In biological contexts, single file motion arises in the transport of
molecules through membrane channels [21].

Here we address the fundamental question of how disorder of the surrounding medium
affects the dynamics of an interacting many-body system. In our prototype physical model the
disorder leads to a single particle sticking time density of power law form with exponent α. In
this scenario we demonstrate that while a single, non-interacting particle in the presence of
annealed disorder performs anomalous diffusion characterized by the power-law 〈 〉 ≃ αx t t( )2 of
the mean squared displacement with α< <0 1, the additional many-body effects lead to the
emergence of ultraslow, logarithmic motion of the form

≃x t t( ) log . (2)2 1 2

Mathematically, we will show that we can understand this result from subordination of the
many-body Harris result (1) in absence of the disorder to the dynamics of a counting process in
an ageing system [22], leading to the universal1 2 exponent of the ensuing logarithmic law (2).
The remarkable slowing-down in our system, due to the conspiration of disorder and strong
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particle interactions, represents a generic effect for ultraslow dynamics in low-dimensional
many-body systems. Such logarithmic time evolution is indeed experimentally observed in
numerous experimental many-body studies, for instance, for DNA local structure relaxation
[23], frictional strength [24], grain compactification [25], glassy systems [26], relaxation in
Andersson insulators [27] and electron-glasses [28], paper crumpling under a heavy piston [29],
as well as magnetization, conductance, and current relaxations in superconductors, spin glasses,
and field-effect transistors [30].

2. Scale-free sticking times and single file dynamics

To introduce our system, let us start with a simple physical example. Imagine a single colloidal
particle diffusing in a narrow fluidic channel. Its mean squared displacement 〈 〉 ≃x t t( )2 will
display the linear time dependence characteristic of Brownian motion. In contrast, if the same
particle is made viscid by functionalization with ‘sticky’ ends and the channel surface
complementarily coated, its motion will exhibit intermittent pausing events caused by transient
binding to the channel surface with diffusive unbinding. The distribution of pausing durations τ
of the particle motion due to the sticking events is of power-law form ψ τ τ≃ α− −( ) 1 with

α< <0 1 in a certain temperature window, leading to the subdiffusive behaviour [31]

≃ αx t t( ) . (3)2

This scenario of interrupted motion belongs to the family of the Scher–Montroll–Weiss
continuous time random walk [32, 33], a renewal process with independent successive waiting
times. The subdiffusion (3) emerges due to the divergence of the mean waiting time

∫τ τψ τ τ〈 〉 = ∞
( )d

0
[34–36].

Such stochastic dynamics with a power-law form for the distribution ψ τ( ) of sticking
times τ and α< <0 1 are indeed observed for the single tracer particle motion in the cytoplasm
[37] and in membranes [38] of living cells, as well as in reconstituted actin networks [39].
Moreover, they determine the blinking dynamics of single quantum dots [40] and the dynamics
involved in laser cooling [41]. Physically, the form ψ τ( ) may arise from comb models [42] or
random energy landscapes [43]. The divergence of the mean sticking time leads to ageing
phenomena [45] and weak ergodicity breaking [46], with deep consequences for, inter alia,
cellular processes [36, 47].

Biomolecules are intrinsically heterogeneous and the fabrication of nanosystems often
includes surface roughness. It is therefore a natural step to consider the scenario of single file
diffusion in a disordered environment. As our guiding example we consider the situation of a
colloidal particle in a channel and ask what will happen if we surround this colloidal particle
with identical particles (figure 1)? As the channel is narrow, individual particles cannot pass
each other, thus forming a single file [2, 3, 48, 49]. When the colloidal particles and the channel
walls are not coated this system serves as a prototype for strongly interacting classical particles
in one dimension and displays the characteristic Harris scaling (1) of the mean squared
displacement of the labelled particle [2, 3, 48, 49]. However, when we use functionalized,
sticky particles, the motion of each individual particle becomes successively interrupted by
sticking times τ distributed according to the law ψ τ( ). When the distribution ψ τ( ) is scale free
in the case α< <0 1, our scaling arguments and extensive simulations show that the motion of
the labelled sticky tracer particle becomes slowed down dramatically and assumes the square-
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root logarithmic dynamics (2). We also find that even when a characteristic sticking time τ〈 〉
exists, as long as α< <1 2 the motion of the labelled particle is still anomalous, 〈 〉 ≃ γx t t( )2

with a non-universal, α-dependent dynamic exponent γ < 1 2. When α > 2, we return to the
regular universal 1 2 Harris scaling exponent.

3. Motion rules for the single file system

Let us now describe our simulation scheme. A single walker is updated following the simple
continuous time random walk rules: on our one-dimensional lattice, jumps occur to left and
right with equal probability, and the waiting times between successive jumps are drawn from
the probability density

ψ τ α

τ τ τ
=

+ α⋆ ⋆ +( )
( )

1
, (4)

1

where τ⋆ is a scaling factor with unit of time. As noted above, ψ τ( ) given by equation (4)
occur, for instance, for the motion in random energy landscapes [43]. In this particular scenario
site-independence of the waiting time density corresponds to the motion in an annealed free
energy landscape (the landscape is evolving on a time scale faster than τ⋆). However, we again
emphasize that ψ τ( ) of the power-law form above occur in several other physical systems (see
section 2). Practically, the waiting times become τ τ= −α⋆ −r[ 1]1 , where r is a uniform
random number from the unit interval. After each jump the walkerʼs clock is updated,
algorithmically, τ→ +T T , where initially T = 0. For the scale-free case, α< <0 1, i.e.,
infinite average waiting time τ〈 〉, we obtain subdiffusive transport, Γ α〈 〉 = +α

αx t K t( ) 2 (1 )2

[35]. Here, τ Γ α= −α
α⋆K a [2( ) (1 )]2 is the anomalous diffusion coefficient with a the lattice

spacing. For α > 1, τ〈 〉 is finite and we recover normal diffusion.

Figure 1. Schematic of a narrow channel containing a single file of N colloidal particles
(blue). In our description we are interested in the stochastic motion of the labelled tracer
particle (red), which is otherwise identical with its neighbours. Regular particles in a
bare channel (top) perform single file motion characterized by Harris’ law
〈 〉 ≃x t t( ) .2 1 2 For the case of functionalized, sticky particles (bottom) the motion
becomes ultraslow, 〈 〉 ≃x t t( ) log ( )2 1 2 .
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For the case of a single file of many excluded-volume walkers the motion of individual
particles is updated in a similar fashion, with the convention that any jump leading to a double
occupancy of lattice sites is cancelled. More specifically, the simulation steps are:

(i) Assign initial positions to all the N particles (indexed by i = 1,…, N). We position the
labelled particle at the middle lattice point and randomly distribute equally many particles
to the left and right. Each particle carries its own clock with timer Ti, and all clocks are
initiated simultaneously, Ti = 0.

(ii) Draw an independent random waiting τi from equation (4) for each particle and add this to
the timer, τ→ +T Ti i i.

(iii) Determine the particle j with the minimal value =T Tmin { }j i and move particle j one step
with probability 1 2 to the left or right, unless the chosen site is already occupied by
another particle or is outside the finite interval of our simulations. In this case cancel
the move.

(iv) Add a new waiting time τ j chosen from ψ τ( ) to the timer of particle j, i.e., τ→ +T Tj j j,
and return to (iii).

This algorithm is repeated until a designated stop time. The simulations presented herein,
based on these simple update rules, were at the computational limit of a contemporary 3GHz
workstation.

The above motion scenario used in our stochastic simulations directly reflects the local
nature of the physical problem (figure 1). Namely, when we follow individual, sticky particles
in the channel, each binding and subsequent unbinding event will provide a different, random,
waiting time. The waiting time densities for different particles are assumed to be independent.
As rationalized by our picture of the sticky particles in the channel, physically this corresponds
to the assumption that a particleʼs waiting time is set by properties of the local environment and
that the local environment in between collisions cannot transfer ‘knowledge’ of the motion of
one walker to another one. It is only when colliding that two particles affect one another. Our
choice of cancelling moves when a particle collides with another particle comes from the
underlying assumption, that overall the noise coming from a neighboring single file particle
does not significantly distinguish itself from the noise of the heat bath, say water molecules, that
would otherwise take up the space of the particle. Note that since we are in the overdamped
limit the particles do not carry momentum that could be transferred in collisions. In a
continuous model for the single file motion the motion rules would be less restrictive.

4. Results and subordination arguments

For the case of the power-law waiting time distribution (4) with exponent α > 2, we show
results from extensive simulations based on above motion rules in figure 2. Our results
reproduce the classical Harris scaling (1) of Brownian particles with scaling exponent 1 2. The
fitted exponents from the simulations in figure 2 are 0.49 ± 0.01 for α = 2.2 and 0.48 ± 0.01 for
α = 3.2, thus corroborating our simulations approach. We note that the lattice sizes were
throughout this study chosen sufficiently large as to avoid finite size effects, i.e., the levelling
off of the mean squared displacement.
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4.1. Infinite mean sticking time with 0 < α < 1

Let us now turn to the case of interest with a diverging mean sticking time τ〈 〉 corresponding to
the range α< <0 1 of the scaling exponent. Simulations results are depicted in figure 3. Note
that we plot the square of the mean squared displacement versus time, such that according to
the logarithmic time evolution (2) of the mean squared displacement derived from a scaling
argument below, we would expect a linear dependence using linear-log scales. Indeed, the
numerical results support the universal square root-logarithmic time evolution at long times for
all exponents α (see also inset). The only asymptotic dependence on α is that of the prefactor in
figure 3.

To understand and quantify the systemʼs dynamics we now obtain the mean squared
displacement for the labelled particle from a scaling argument. First, however, recall that for the
standard case of a Poissonian (exponential) sticking time distribution between jumps of the
labelled particle in the single-file system, the long-time dynamics belongs to the class of
fractional Langevin motion with Hurst exponent =H 1 4 [5, 14]. For later argumentation we
use a scaling argument to obtain the Harris law by using fractional Langevin results. We first
notice that the time in between collisions is estimated as τ ϱ= D1 ( )c

2 , i.e. it is the time it takes
to diffuse a distance equal to the average interparticle distance, ϱ1 . We now coarse-grain the
dynamics in terms of τc using the fact that τ=t n c, where n is the number of collisions. The
position, x(n), of the tracer particle after taking n such steps is Δ= ∑ =x n x( ) i

n
i1 , where Δxi is a

random number taking the values ϱ±1 with equal probability. The Δxiʼs are strongly anti-

Figure 2. Mean squared displacement 〈 〉x t( )2 for a single file system governed by the
waiting time distribution (4) with the scaling exponents α = 2.2 and 3.2. In both cases
the mean squared displacement follows the Harris 1 2 scaling (dashed line) for long
times. Parameters: scaling factor τ =⋆ 1, lattice size L = 600, number of particles
N = 201, so that the particle density is ϱ = ≈N L 0.3. The mean squared displacement
was averaged from ×3.5 103 simulations.
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correlated, Δ Δ〈 〉 ∼ − − −x x i j| |i j
3 2, for fractional Brownian motion: if a particle finds itself to

the left of its equilibrium position after a number of steps it is more likely to go right, due to
collisions with its neighbours, in subsequent steps. Using this result we find that:

∑ Δ Δ
ϱ

= ∼
=

x n x x C n( )
1

, (5)
i j

n

i j
2

, 1
2

1 2

with a prefactor π=C 2 [10]. The fact that we have 〈 〉 ∝x n n( )2 rather than ∝ n is due to
the strong anti-correlation of the increments. If we plug τ=n t c into equation (5) we recover
the Harris result, equation (1) with correct prefactors [10].

Consider now the case of the functionalized, sticky particles and channel walls causing a
non-Poissonian single file dynamics. The dynamics of the system is then characterized by
motility periods, separated by blockage events when immobile neighbours are encountered, see
figure 4. For scale-free waiting time distributions of the form (4) these blockage events are long
compared with the duration of the motility periods, and thus the blockage events dominate the
long time dynamics. In effect, at a given large time t, the number of jumps, n, which is larger
than the step length, ϱ1 , and thus contributes to the sum in equation (5), is smaller for power-
law distributed waiting times compared to the case of exponential waiting time densities. In our
scaling approach, we take this into account by converting the number of such steps n to the time

Figure 3. Squared mean squared displacement (grey) for a labelled particle in a single
file governed by the waiting time distribution (4) with α< <0 1. Note the logarithmic
abscissa. Black solid lines are fitted to 〈 〉 =x t c t t( ) log ( )2

0 with fitting parameters c
and t0, see equation (2). Inset: square of the MSD divided by t tlog ( )0 as a function of
time t. Our scaling argument predicts a horizontal line (black line) for long times, in
good agreement with simulations (grey). Parameters: ensemble size 5 × 103, lattice size
100, number of particles N = 31.
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t measured by the laboratory master clock. This translation from the number of steps n to t is
referred to as subordination [50]. Formally, if we denote by Hn(t) the probability that the tracer
particle has taken n steps up to time t, we invoke the transformation

∫∑= ⟶
∞

x t x n H t C n H t n( ) ( ) ( ) ( )d . (6)
n

n n
2 2

0

1 2

Here we assumed that the subordinator Hn(t) is slowly varying in n to replace the sum by an
integral.

To proceed, we employ a scaling argument to relate n with laboratory time t in the limit of
many jumps (long times). As argued above, the rate limiting step for the motion of the labelled
particle is the time needed for a blocking neighbour to resume its motion. This time corresponds
to the so-called forward waiting (recurrence) time, τ1, see figure 4 for an illustration. For
processes with ψ τ τ≃ α− −( ) 1 for large τ, see equation (4), one can obtain the probability density
for τ1, which is found to be [44, 45]

ψ τ πα
π τ τ

=
+

α

αt
t

t
( ; )

sin ( )
( )

, (7)1 1
1 1

Figure 4. Illustration of our scaling argument and the forward (recurrence) waiting time,
showing a particular realization of the trajectories of the tracer particle (red) and its
immediate neighbours (blue). The horizontal direction corresponds to the motion of the
particles along the x axis, the vertical line corresponds to the time axis. Impulses denote jump
events for the respective particles. Individual particle waiting times τ are drawn from the
waiting time distribution (4), see the marked black vertical lines. The forward waiting time,
τ1, is the time a particle needs to wait from colliding with a neighbour to the neighbour
resuming its motion. The neighbour, in turn, needs to wait for the next particle in the single
file, before it can progress further, etc. Our scaling argument (see section 4.1) is valid for
long times, so the local motion of particles between blocking neighbours is not rate limiting.
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where t is the current (laboratory) time. Note that the probability density for τ1 has a longer tail
ψ τ τ≃ α−( )1 1 1 than the underlying waiting time density, ψ τ τ≃ α− −( ) 1 , in the strong ageing
regime τ≫t 1.

6 However, for our system, the distribution of a single τ1 is not sufficient to
describe the time evolution of a tracer particle. The reason for this is, simply, that the tracer
particleʼs neighbour, in turn, needs to wait for its neighbours to move, etc (see figure 4). In the
long time limit we thus face a process, in which every step n is governed by the forward waiting
time characteristic of the blockage events. Such a process was considered recently, and there it
was shown that the average number of steps taken at time t scales as tlog [22]. Furthermore, the
spread (standard deviation) of the corresponding probability distribution was shown to grow
slower than tlog , implying that in the long time limit we may consider ≃n tlog as a
deterministic (scaling) relation between n and t.

The argument above leads us to the scaling ansatz for the subordinator Hn(t) in
equation (6) for the scale-free case with α< <0 1. Namely, the subordinator should be
expressed in terms of a scaling function f n t( log ). Imposing the normalization

∫ =∞
H t n( )d 1n0

, i.e., a jump necessarily occurs at some given time, we thus have the result

≃ −H t t f n t( ) (log ) ( log ) (8)n
1

valid in the limit of many jumps, ≫n 1 (which implies τ≫ ⋆t ). Combining this scaling form
with equations (5) and (6) after the change of variables →n n tlog we indeed obtain the
square-root logarithmic behaviour in equation (2). Interestingly, compared to the standard
square root scaling of Brownian single file motion, the scale-free waiting time process
introduces a logarithmic time. For the full range α< <0 1 we find the universal 1/2 scaling of
the logarithm. As we show in figure 3 this simple scaling argument combined with the results
from [22] indeed accurately captures the dynamics of the many-body continuous time random
walk system. We discuss this result further below.

4.2. Finite mean sticking time with α > 1

What happens when we turn to larger values of the anomalous exponent α, such that the
characteristic waiting time τ〈 〉 becomes finite? Similar to the observations in [22] it turns out
that we need to distinguish two cases. Let us start with the case α > 2. The results of [22]
suggest a deterministic, linear scaling between n and t. Thus, we require the scaling form

≃ −H t t f n t( ) ( )n
1 . In turn, this relates equation (5) to the time dependence

≃x t t( ) , (9)2 1 2

of the mean squared displacement and we recover the Brownian single file dynamics. This
characteristic 1 2 scaling corresponding to Harris’ law is confirmed in figure 2.

For the intermediate case, α< <1 2, the single file dynamics becomes rather subtle and
different to the case α > 27. Direct use of the results in [22] would imply that 〈 〉 ≃ α−n t 1,
suggesting the scaling ansatz ≃ α α− −H t t f n t( ) ( )n

1 1 , where the prefactor is again due to

6 This result is a consequence of the fact that for a scale-free distribution ψ τ( ) of waiting times ( α< <0 1),
typically longer and longer waiting times τ occur in the course of the process. More precisely, if a set of random
numbers τ j are drawn from ψ τ( ) in equation (4), and if τ= ∑T j j and τmax is the largest of all τ j, then τ Tmax is a
random variable with a probability density which is not concentrated on 0.
7 The behaviour discussed here is in contrast to the unbiased single particle continuous time random walk with

α< <1 2 which has a simple Brownian mean squared displacement, just as for α > 2.
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normalization. This approach would yield the mean squared displacement

≃ γ αx t t( ) , (10)2 ( )

with γ α α= −( ) ( 1) 2. As demonstrated in figure 5 (inset), this prediction for the scaling
exponents does not agree well with the simulations. One possible issue is that for this
intermediate case the spread of the number of jumps grows proportionally to the square root of
the variance, and there is no deterministic relation between n and t as for the cases α< <0 1
and α > 2 [22].

An improved argument turns out to be the following. Since the random walk is unbiased, a
given particle can equally well escape in either direction from an interval confined by two
blocking particles (see figure 4). Thus the labelled tracer particle only needs to wait for the
blocked neighbour that moves first, corresponding to the minimum of two waiting times drawn
from the forward waiting time density (7). The distribution of this minimum time will have the
tail [51]

∫ψ τ ψ τ ψ τ τ τ= ′ ′ ≃
τ

α
∞

− − −˜ ( ) 2 ( ) ( )d , (11)1 1 1 1 1 1
1 (2 2)

1

where we use the fact that in this case the distribution of the forward waiting time scales as
ψ τ τ τ≃ 〈 〉 α( ) 1 [ ]1 1 1 . The resulting mean squared displacement for the labelled particle thus

Figure 5. Mean squared displacement 〈 〉x t( )2 for a single file system with waiting time
distribution (4) in the intermediate regime, α< <1 2. The fitted scaling exponent γ
(inset) is compared to the predictions γ α α= −( ) ( 1) 2 (straight dashed line) and

γ α α= −min { ( ) 1, 0.5} (kinked dash–dotted line) derived in the text. For the cases
α = {1.1, 1.3, 1.5, 1.7, 1.9} the MSD was averaged over {750, 300, 750, 500, 450}
simulations runs. The system size was L = 4472 and the number of particles N = 1341,
except for α = 1.3 where we used L = 8944 and N = 2683. Thus, the density, N L, was
≈0.3 in all simulations.
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scales in the form of equation (10) where γ α α= −( ) 1 for α< <1 3 2 and γ α =( ) 1 2 for
α > 3 2. The saturation to the value γ α =( ) 1 2 can be understood as follows. The distribution
ψ τ˜ ( )1 1 with saling index α −2( 1) acts as waiting time distribution for the labelled particle. For a
regular single walker CTRW process, when this index exceeds unity, the process becomes
normally diffusive. Here, when the index α −2( 1) exceeds unity, the scaling index γ comes
back to the Brownian value 1 2.

As seen from figure 5 (inset), this argument indeed leads to an improved agreement with
the fitted exponents. Using the minimum of two waiting times instead of the direct
subordination will not alter the scaling of the mean squared displacement for α < 1, as the tlog
scaling was a result of the ageing of the waiting time distribution (i.e., its dependence on the
time at which the waiting began), a property that will be carried over in the distribution of the
minimum ψ̃1. The mean squared displacement scaling for α > 2 is also unchanged by the
modified argument above.

5. Discussion

We studied a physical model for the motion of interacting (excluded volume) particles in a
strongly disordered environment. Building on the physical scenario of recent experiments in
which sticky particles move along a complementary, functionalized surface, we assume that
each particle performs a continuous time random walk with a power-law waiting time
distribution ψ τ( ). Each particle carries an individual clock whose timer triggers motion
attempts according to this law ψ τ( ) and we attempt to move the particle whose timer expires
first. Thus, while the update of the timers for each particle is a renewal process, the excluded
volume interactions lead to strong correlations between the motion of the particles: when one
particle attempts to move and finds the neighbouring lattice site occupied, typically the
blocking particle is caught in a long waiting time period, and repeated attempts of motion by
the mobile particle will be required. In the long time limit, we demonstrated from scaling
arguments and extensive simulations that this many-body blockage scenario leads to an
ultraslow logarithmic time evolution of the mean squared displacement of a labelled particle
for ψ τ( ) with α < 1. The 1/2 exponent of the logarithm is universal for any α in that range.
When the environment is less strongly disordered and the waiting time exponent α > 1, the
associated characteristic waiting time τ〈 〉 is finite. However, similar to biased continuous time
random walk processes [52], there exists an intermediate regime for α< <1 2, which still
exhibits anomalous scaling: the mean squared displacement has a power-law scaling with
time, but the associated non-universal exponent is smaller than the value 1/2 for Brownian
(Harris) single file motion. Our analysis shows that the subordination scheme based on a
simple two-body correlation scheme needs to be replaced by higher order corrections. Only
when the waiting time exponent α exceeds the value 2, the process returns to Harris-type
single file motion with 〈 〉 ≃x t t( )2 1 2.

Our study demonstrates how the addition of environmental disorder to a system with
many-body interactions effects dramatic changes of the dynamics. While in a single body
system the same disorder simply changes the scaling exponent in the power-law of the mean
squared displacement, in the presence of the many-body interactions with mutual blocking
ultraslow motion emerges. This is a fundamental physical effect. If a similar disorder could be
engineered in microscopic systems, the ultraslow dynamics caused by the disorder might be of
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high technological interest. For instance, it might lead to a significant improvement of the
long-term retention of chemicals in engineered cylindrical nanochannels for usage in drug
delivery assays, contemporary versions of which are based on regular, Harris’ type single file
motion [20]. Moreover, if the magnitude of the disorder and thus the scaling exponent α of the
waiting time distribution can be externally controlled, similar to the temperature effect in [31],
even more versatile crossovers from single file type motion to regular motion may be
achieved [19].

In [53, 54] another continuous time random walk-based generalization of single file motion
was considered. However, their update rules for particles colliding with a neighbour are very
different. One way to view their process is that of a castling, i.e., particles are allowed to move
through each other (phantom particles), while the labels of the particles switch in this castling.
Thus the labels will stay in the same order in the file and the tracer following a specific label.
Alternatively, the rule can be stated as particles switching their clocks when they collide.
[53, 54] found that with this rule the generalized single file dynamics acquires the mean squared
displacement 〈 〉 ≃ αx t t( )2 2 for α< <0 1. This result is fundamentally different from our
ultraslow result (2) based on an actual physical model, as we explicitly consider excluded
volume effects [55]. In particular, different from the scenario studied in [55], we do not observe
any particle clustering.

Finally, we put the ultraslow time evolution discovered here in perspective to other
stochastic models with logarithmic growth of the mean squared displacement. The most famous
process is that of Sinai diffusion of a single particle in a quenched, random force field in one
dimension, leading to a tlog ( )4 scaling of the mean squared displacement [56]. Despite the
fundamental difference in the physical setting, ultraslow dynamics with very similar features—
such as the form of the weak ergodicity breaking—is found for a renewal continuous time
random walk with logarithmic waiting time distributions [58, 59]. Logarithmically slow time
evolution also occurs in the motion of a Markovian particle with exponential position-
dependence of the diffusion constant [57]. Our model is, to our knowledge, the first interacting
many-body system for which tracer particle dynamics show the characteristic tlog ( )1 2

dynamics. We expect our work to stimulate new research of the role of disorder in interacting
many-body systems.

An interesting question is to what extent the ultraslow dynamics in the disordered single
file system leads to the disparity between the mean squared displacement 〈 〉x t( )2 considered
here and its time averaged analogue used in the evaluation of many single particle tracking
experiments. Such weakly non-ergodic behaviour breaking known from subdiffusive systems
[36, 47] was indeed observed for other ultraslow systems [59] and, in a modified form, for the
diffusion process with exponential position-dependence of the diffusion constant [57]. This
effect in our disorder-generalized version of the single file system will be studied in detail in a
forthcoming work.
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