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Abstract

Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such
particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active
microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How
do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence
of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport
of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport
regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a
generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which
viscoelastic effects are included.
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Introduction

After the publication of Albert Einstein’s theory of Brownian

motion in 1905 [1], Jean Perrin reported the first systematic

microscopic studies of individual diffusing particles in 1908 [2].

Today, modern single particle tracking techniques routinely reveal

insight into the stochastic motion of submicron tracers in aqueous

solutions at unprecedented resolution, thus allowing one to directly

observe the transition from initial ballistic to diffusive Brownian

motion [3] and to resolve the effects of hydrodynamic backflow

[4]. Measuring the passive and driven motion of microprobes has

become a standard means to characterize soft matter [5].

Particular attention is currently paid to the relaxation and

diffusion dynamics in dense colloidal systems [6,7] and inside

living biological cells [8,9].

The intracellular fluid (cytosol) of biological cells is a superdense

[10] aqueous solution containing biomacromolecules such as

proteins and RNA at volume fractions of up to 40%, a state often

referred to as macromolecular crowding [11,12]. Indeed, the state

of crowding in the cytosol effects severe changes of the diffusion

behavior of submicron particles [8,13,14]. Thus, anomalous

diffusion of the form S½dr(t)�2T~S½r(tzt0){r(t0)�2T^tb with

0vbv1 is observed in living cells for the passive motion of single

biopolymers, endogenous granules, viruses, and artificial tracer

particles [15–21]. Compared to normal Brownian motion with

b~1, these particles therefore subdiffuse [22]. Such anomalous

dynamics presents a challenge to the development of controlled

uptake of drugs and nanoparticles and their intracellular delivery

by molecular motors for therapeutic processes [23].

What happens to the active motion of particles in the cytosol

which are driven by molecular motors [24–32], see Figure 1? Will

the overall dynamics of the coupled motor-cargo system be

affected by the superdense state of the cytosol, and how? In fact,

anomalously fast diffusion was observed in living cells for the active

motion of viruses, microbeads, and endosomes [16,17,33]. When

the motors normally transport their cargo with some mean velocity

in a given direction, ballistic superdiffusion with b~2 is measured

[16]. However, various subballistic power exponents 1vbv2 are

also found [17,33]. Here we come up with a mesoscopic physical

approach for molecular motors in the cytosol of living cells and

show that our predictions are in agreement with the experimen-

tally observed behavior. The simplest explanation for the

experimental fact that transport by motors along intracellular

microtubuli yields subballistic superdiffusion (1vbv2), is provid-

ed by the sublinear scaling Sdx(t)T~Sx(tzt0){x(t0)T!taeff of

the mean position x along a single microtubule, with an effective

scaling exponent 0:5vaeffv1. Then, assuming quenched disorder

in microtubuli orientations without a preferred direction yields

b~2aeff which will range in the subballistic superdiffusive regime.

Can normal and anomalous transport with various b co-exist and

be mediated by the same motors in the same cell? Which role is

played by the size of the cargo, and what determines the precise

behavior of such active transport and its efficiency? These are the

questions we answer in this article.
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A well-established physical approach to anomalous transport

phenomena is based on the intrinsic viscoelasticity [5,34–37] of

complex fluids such as the cytosol. Depending on its size and

speed, a nanoparticle may feel different effective viscosities in the

macroscopic limit of normal diffusion which may be enhanced by

a factor of hundred to several thousands with respect to the

viscosity of pure water [38–40]. Transient regimes of anomalous

diffusion become biologically important when the corresponding

spatial length scale is comparable to the linear size of cells,

typically several micrometers. The viscoelastic nature of the

cytosol and other dense solutions has been verified in several

experiments [19,20,41,42].

Results

Ratchet Model of Molecular Motors
We study the interplay of the viscoelastic environment of the

cytosol with the action of a molecular motor and its cargo. A well-

established model of Brownian motors of the kinesin family is

based on the continuous diffusion of a Brownian particle in a

potential landscape, which randomly fluctuates in time between

two realizations, V1(x)'V2(x), depending on the internal state of

the motor, that is undergoing active conformational fluctuations

[25–29,31,32]. These conformational fluctuations are caused by

the binding of negatively charged ATP molecules to the motor

(state 1) and the reactions of ATP hydrolysis and dissociation of

products (ADP and phosphate group) making up state 2 within a

minimalist modeling framework. The potentials V1,2(x) describe

the free energy profiles leading the motor molecule in the

corresponding conformational states along a microtubule. Since

microtubules are periodic dipolar structures with period L&8 nm,

the potentials reflect this periodicity, V1,2(xzL)~V1,2(x): More-

over, V1(xzL=2)~V2(x) within our two-state motor model, such

that two potential switches occur during one cyclic turnover of the

motor enzyme (power-stroke or ‘‘hand-over-hand’’ mechanism)

and advance the motor by one period L. The motor direction is

determined by the polarity of the microtubules, reflected in

the space inversion asymmetry of the potentials. We use the

harmonic mixing model [32] with V1(x)~{U0 cos (2px=L){
U1 sin (4px=L), see the upper inset in Figure 2. This potential has

a metastable state within each period. Thermal fluctuations play a

positive role, allowing the motor to avoid getting trapped in such

metastable states on its search for the potential minimum after

each conformational change due to ATP binding and ATP

hydrolysis.

Within the power-stroke idealization, the maximal mean

velocity of the motor due to the fluctuations between the potentials

V1,2(x) becomes v~Lnturn, where nturn is the typical motor

turnover rate. The latter is composed of the conformational

transition rates n1,2 according to n{1
turn~n{1

1 zn{1
2 . As the simplest

approach based on the widely applied flashing ratchet model

[26,29,31,32,43], we assume that these transition rates do not

depend on the transport coordinate x. Such an ideal motor would

consume one ATP molecule (with an energy amount of 0:5 to 0:62
eV or 20 to 25 kBT at room temperature, kB being the Boltzmann

constant) while transferring a cargo over the distance L. The

corresponding energy Ein(t) invested into the temporal increase of

the potential energy of the motor during repeating turnover cycles

of the ‘catalytic wheel’ [44] can be calculated as a sum of potential

energy jumps DV(x(ti)) occurring at random instants of time ti

marking cyclic conformational transitions V1?V2?V1?::: [45].

Furthermore, apart from delivering a cargo over a distance dx(t),
the motor can perform useful work, Wuse(t)~f0dx(t), against

some constant force f0 opposing its direction of motion. Ensemble

averaging over many trajectory realizations, we obtain the

thermodynamic efficiency Rth~SWuse(t)T=SEin(t)T. In the long

time limit this is a time-independent quantity in the normal

transport regime, where both SEin(t)T and SWuse(t)T are

proportional to time. If f0~0, the thermodynamic efficiency is

Figure 1. Molecular motors moving along a microtubule in the
crowded cytoplasm. A large cargo is subject to viscoelastic drag,
effecting dramatic changes in the transport dynamics.
doi:10.1371/journal.pone.0091700.g001

Figure 2. Normal transport for large cargo particles, large
potential amplitude and small turnover rate, in the absence a
of constant loading force, f0~0. Single motor transport (full line) is
almost perfectly locked to the potential fluctuations (broken red line
depicting a renewal process counting the number of potential
fluctuations in units of L=2) occurring with mean turnover frequency
nturn~112 Hz, in a potential (top inset) with amplitudes U0~0:25 eV
(U0~1 in dimensionless units) and U1~0:162 eV (DV~0:7 eV), for
L~8 nm. A particle with an effective radius 300 nm (like a magnetic
endosome [33]) experiences asymptotically for t&tmax&22:4 sec an
effective viscous friction enhanced by a factor of ~ggeff~104 with respect
to water. The bottom inset shows that on the relevant transient time
scale the free particle subdiffuses with anomalous diffusion coefficient
Da&368 nm2=s0:5 . Initially, diffusion is normal. The time-average over a

single trajectory, Sdx2(t)TT~ 1
T{t

Ð T{t

0 ½x(tzt0){x(t0)�2dt0 , is shown for
T~0:1 sec and compared with the theoretical subdiffusive ensemble-
averaged result (red line). See Methods.
doi:10.1371/journal.pone.0091700.g002
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zero, and all the input energy will be dissipated as heat. In order to

characterize the energetic performance of a molecular motor in

such a situation, we introduce the delivery efficiency D defined as

the ratio of delivery distance d to the product of delivery time t
and the average number of turnover cycles SNturnT (number of

ATP molecules consumed). D thus has the meaning of a mean

delivery velocity per input energy amount (in dimensionless units).

The goal is to deliver cargo over a certain distance as quickly as

possible using the smallest amount of energy. Thus, ideally

d~L SNturnT and SNturnT~nturnt. Therefore, Dideal~

d=(tSNturnT)~L2nturn=d, which linearly increases with the

turnover frequency at some fixed d . However, we expect the

delivery efficiency to deviate from this idealization.

Both the motor and its cargo are subjected to friction and

random thermal forces from the environment. For normal viscous

Stokes friction, the frictional drag force is ffr(t)~{g0 _xx(t), where

g0 is the friction coefficient. It is proportional to the medium’s

viscosity f and the particle size. For a sphere of radius a, g0~6paf.

If we assume that the linker between the motor and its cargo is

rigid, we can model their coupled motion as that of a point particle

moving under an effective frictional force. In this way, one

accounts for the cargo size simply by adjusting the effective

friction. The dynamics for such a simplified motor is then defined

by the Langevin equation

g0 _xx(t)~{
LV (x,t)

Lx
{f0zj0(t), ð1Þ

where j0(t) is a Gaussian random thermal force with zero mean,

which is completely characterized by its autocorrelation

function. The fluctuation-dissipation relation Sj0(t)j0(t0)T~
2kBTg0d(t{t0) ensures that the description is compliant with

the laws of thermodynamics, so that no directional motion can

emerge when V (x,t) is time-independent and fixed to either V1(x)
or V2(x). The prototype motor model (1) has been investigated in

great detail within a Markovian setting, using various model

potentials and a different number of motor substates [25–

27,29,32,43].

Viscoelastic Environment
The above ratchet model is appropriate to describe the motor

dynamics at dilute solvent conditions in vitro. Our focus here is

different, as we want to study the motor action in living cells,

where the following experimental facts have been established:

Even in the absence of cargo the effective friction coefficient for

the motor is enhanced by a factor of 100 to 1000 in the cytosol

compared with the one in water [28,38]. This phenomenon is due

to the superdense state of the cytosol, crowded with various

biopolymers. Concurrently, the diffusing nanoparticles themselves

experience a medium with an effectively enhanced viscosity, that

can exponentially depend on the particle size [39,40]. Moreover,

numerous experiments reveal [20,33,36,37] that the complex

shear modulus G�(v) of the cytosol displays a power law scaling

G�(v)!(iv)a, a ranging between 0.2 and 0.9 for frequencies in

the range from inverse milliseconds to several hundred inverse

seconds [5,9,20,33,37]. This reflects the viscoelastic nature of the

cytosol, which needs to be taken into account for molecular motors

[17,33,34,46–51]. To explicitly consider viscoelastic effects for

cargo particles is even more pressing given the experimental results

revealing viscoelasticity-induced subdiffusion of free, passively

moving submicron particles [17,20,21,41,42], whose size is

comparable to typical, larger cargo such as vesicles. This implies

that: (i) the dynamics must be described by a frequency-dependent

friction corresponding to a viscoelastic memory for the friction

term with a power-law kernel [34] f(t)!t{a, such that (ii) the

diffusion of free particles becomes anomalously slow Sdx2(t)T!ta

with 0vav1 on the corresponding time scales from milliseconds

to minutes. This is a mesoscopic, transient effect. However, it

becomes very important for transport processes in living cells as

they occur on exactly the physiologically relevant time and length

scales. Consequently, the Langevin equation (1) for the motor’s

velocity must be extended to the generalized Kubo-Langevin form

g0 _xx(t)~{
LV (x,t)

Lx
{f0zj0(t)

{

ðt

{?
gm(t{t0) _xx(t0)dt0zjm(t), ð2Þ

where gm(t)!f(t), and jm(t) represents colored thermal

Gaussian noise with autocorrelation function Sjm(t)jm(t0)T~

kBTgm(jt{t0j), as demanded by thermodynamics (absence of

directed transport in a static periodic potential Vi(x)) and the

Kubo second fluctuation-dissipation theorem [52]. On physical

grounds, a memory cutoff always exists for gm(t) such that on a

sufficiently long intermediate time scale the kernel has the scaling

property gm(t)!t{a. This ensures that the effective friction

coefficient g0zgeff with geff~
Ð?

0
gm(t)dt is finite, but strongly

enhanced over g0, in compliance with previous studies of

molecular motors [28]. There exists also a short time cutoff,

corresponding to the largest vibrational frequency of the medium

contributing to the friction. Given the upper and lower cutoff, one

can approximate the memory kernel gm(t) by a finite sum of

exponentials [34,53] and the generalized Langevin equation (2)

can be derived from a corresponding multi-dimensional Markov-

ian Maxwell-Langevin model of viscoelastic dynamics [34], see

Methods for details. On the basis of this theoretically and

experimentally well-founded approach the results herein were

obtained from numerical analysis.

Perfectly Normal Transport
The first major surprise is that even carrying large cargo

particles like magnetic endosomes with radius about 300 nm our

model motor can operate by an almost perfect power stroke

mechanism in the normal transport regime, as demonstrated in

Figure 2. For this, the binding potential amplitude should be

sufficiently large, DV~0:70 eV, and the turnover rate sufficiently

small, nturn e100 Hz, both reasonable values for this motor-cargo

system. This almost perfect dynamics occurs in spite of the fact

that the free cargo alone subdiffuses, Sdx2(t)T~2Data=C(1za), on

a transient time scale between tmax=~gg
1=(1{a)
eff (see Methods)

and tmax with a subdiffusion coefficient as small as

Da&3:68|10{16m2=s0:5 for ~ggeff~104, tmax~22:4 sec, and

a~0:5, an experimentally relevant value we consider in this

work. This normal transport regime is possible as viscoelastic

subdiffusion is ergodic [8,34,53]. Moreover, for a sufficiently large

potential barrier DV separating spatial periods of the potential the

particle has enough time trel to relax and settle down sufficiently

close to the potential minimum. Thus, it can be advanced by a

half-period at each switch of the potential, despite the power-law

character of the relaxation dynamics, if only the time scale

separation condition trel%tturn%tesc is satisfied. This condition is

easy to fulfill for realistically small turnover frequencies n and

realistic DV~15 to 30 kBTroom since the mean escape time grows

exponentially fast with the barrier height, tesc! exp (DV=kBT).
The occurrence of such normal transport is consistent with most

observations on molecular motors. Thus we accomplished our first

How Molecular Motors Work in the Crowded Environment of Living Cells
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goal, to explain the active normal transport of particles, that

otherwise subdiffuse when they are not attached to a motor.

However, the model motor considered here is actually assumed to

be a little too strong. It has a stalling force of about 15 pN, almost

twice the typical value, see below. Let us therefore consider a

somewhat weaker binding potential and faster enzyme turnover

rates to see the origin of anomalous transport for such a large

cargo.

Anomalous Transport
Indeed, when we decrease the potential amplitude by 2=3, and

consider an increasing turnover frequency in the presence of an

opposing (external drag) force f0, which further reduces the

effective barrier height, an anomalous transport regime

Sdx(t)T!taeff with 0vaeffv1 is enforced, see Figure 3,a. The

thermodynamic efficiency in this strongly anomalous transport

regime is rather small, see Figure 3,b. Moreover, it becomes an

algebraically decaying function of time [50,51], Rth(t)!1=t1{aeff .

This happens because Wuse(t)!Sdx(t)T!taeff scales sublinearly

with time, while the input energy is consumed at a constant rate.

This means that asymptotically most of the input energy is used to

overcome the dissipative influence of the environment character-

ized by the massively enhanced effective viscosity. Concurrently,

the useful work performed against the force f0 always remains

finite and the stalling force f s
0 is also about the same as for normal

diffusion ratchets. This finding agrees with typical experimental

values of 7 to 8 pN for the stalling force of kinesin motors [28].

The slower the motor turnover is, the larger the effective transport

exponent aeff becomes, along with a higher motor efficiency. The

efficiency displays almost a parabolic dependence on the force f0,

Rth!f0(1{f0=f s
0 ) in this regime. A similar dependence was

derived for fluctuating tilt viscoelastic ratchets [50,51]. The stalling

force is not only roughly proportional to the barrier height, but

also depends on the frequency of the potential switches.

Smaller Cargo Size
Depending on the cargo size and the binding potential

amplitude the transport can become more normal and thermo-

dynamically highly efficient even for a large turnover frequency, as

Figure 4 illustrates for nturn~1:12 kHz. This is about the maximal

turnover frequency which can be expected for molecular motors.

For this, the potential amplitude should be sufficiently large and

the cargo smaller in size. Here, we reduced ~ggeff to 103 with the

same tmax~22:4 sec. Hence, assuming that the effective viscosity

of the medium remains unchanged, ga~geff t
a{1
max becomes reduced

by a factor of ten, which corresponds to a cargo with one tenth of

the size, that is, of some 30 nm radius. However, if we were taking

into account its dependence on the particle size [38–40], this value

of ~ggeff should in fact be attributed to a somewhat larger particle.

The subdiffusion coefficient is enhanced accordingly,

Da&3:68:10{15 m2=s0:5. Furthermore, to show that the fractional

friction strength ga and the subdiffusion coefficient Da are

characteristic for the transport properties rather than geff and

tmax separately, we also considered the case with ~ggeff~104 and

tmax~2240 sec yielding the same Da, see data with U0~1:0 in

Figure 4. For the largest potential amplitude in Figure 4 the

thermodynamic efficiency is appreciably high, up to 45% for the

studied case. This is very surprising: The transport efficiency in the

anomalous regime can be temporally almost as high as the

maximal efficiency of kinesin motors in the normal regime (about

50%). For this potential amplitude, however, our motor is stronger

than a typical kinesin motor. It has a stalling force of about 15 pN,

see Figure 4. The effective exponent aeff is about 0:87 at the

maximum corresponding to f0&10 pN. However, the transport

is anomalous and the efficiency decays algebraically as

Rth(t)!t{0:13. For increasing loading force f0 the anomalous

diffusion exponent aeff becomes smaller and the thermodynamic

efficiency drops faster as function of time. This means that the

optimal value of the force f0 corresponding to the maximum of Rth

slowly shifts towards smaller values, as if the motor became

gradually ever more tired, and more quickly exhausted for a

higher load. Upon reduction of the barrier height by a factor of

3=4 the transport is still close to normal for f0~0. Moreover, the

thermodynamic efficiency can still be temporally rather high at

optimal load. However, aeff now drops faster with f0. A stronger

reduction of the potential amplitude, by one half, leads immedi-

ately to the emergence of a low efficiency, strongly anomalous

transport regime, even for f0~0 (Figure 4). Still, a strong

reduction of the turnover frequency down to nturn~100 Hz will

recover the normal transport regime for a sufficiently small f0 in all

cases considered. The transport of even smaller particles is clearly

normal for realistic parameters.

Delivery Performance
For vanishing loading force f0~0 thermodynamic efficiency is

zero, even in the normal transport regime. We proposed above

that the performance of molecular motors such as kinesin should

be characterized by the energetic efficiency D of the cargo delivery

over a certain distance d . We calculated the above-defined

delivery efficiency D in Figure 5 as function of the turnover

frequency nturn for several different delivery distances d , potential

amplitudes U0, and fractional friction coefficients ga. Remarkably,

for a small cargo (smaller geff in Figure 5) the calculated

delivery efficiency follows the ideal power-stroke dependence,

D~L2nturn=d in the entire range of realistic turnover frequencies.

Even for a relatively large cargo, Figure 3, but for much smaller

turnover frequencies the transport is close to this ideal normal

regime. It is expected to be normal already for nturn~10 Hz. Such

Figure 3. Anomalous transport of large cargo particles at lower
potential amplitude, larger turnover rates, and in the presence
of loading force f0. (a) Effective anomalous transport exponent aeff

and (b) thermodynamic efficiency Rth while working against a constant
force f0 near the end point of the simulations (0:224 sec or 106 in
dimensionless units). The thermodynamic efficiency decays over time as
Rth(t)!1=t1{aeff . The analysis considers the same particles as in Figure 2,
but here the potential height is reduced by factor of 2=3. Ensemble
averaging is performed over 103 particles and random realizations of
potential flashes. The inset in (a) shows the dependence of aeff on the
mean enzyme turnover frequency for f0~0.
doi:10.1371/journal.pone.0091700.g003
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a small frequency is, however, not accessible to numerical analysis.

In the anomalous regime, with increasing turnover frequency the

delivery efficiency reaches a maximum at nmax and then decreases.

The anomalous transport becomes less efficient for nwnmax and

nmax shifts to smaller values with increasing delivery distance d.

We speculate that in the cell economy this effect can become

relevant for the optimization of the metabolic budget.

Discussion

We proposed a simple basic model which reconciles experi-

mental observations of both normal and anomalous transport by

highly processive molecular motors in biological cells. Our model

presents an immediate generalization of a well-known two-state

model of normally diffusing molecular motors by accounting for

the viscoelastic properties of the intracellular fluid. It not only

explains how molecular motors may still operate by a power-stroke

like mechanism while carrying a large cargo which subdiffuses

when left alone, but also why and how an anomalous transport

regime emerges for even larger cargo. It is crucial for this

explanation that viscoelastic subdiffusion and anomalous transport

possess finite moments of residence times in any finite spatial

domain. Thus, there exist time scales for sliding down towards the

potential minimum within one period of the flashing ratchet

potential, for the escape to another potential well, and for the

mean turnover time of the potential flashes. When the time scales

are well separated, the transport is normal. However, when the

sliding time scale starts to interfere with the turnover time, or the

interwell potential barrier is lowered so that backsteps can occur,

the transport becomes anomalous. These qualitative basic features

are expected to survive in more complex models of molecular

motors operating in viscoelastic environments.

Specifically, we showed that transport by molecular motors

becomes anomalous for large cargo particles with large fractional

friction coefficient ga when the enzyme turnover is fast, and the

binding potential amplitude DV is not sufficiently large. Larger

potential amplitude DV for a fixed spatial period leads to faster

relaxation of the motor particle to a new potential minimum after

each potential switch and thus to more normal transport behavior.

The enhancement of ga in contrast leads to slower relaxation

which asymptotically follows a power law decay t{a. For this

reason, to secure the occurrence of normal transport the condition

n{1
turn&trel must be well assured, with time scales separated by

several orders of magnitude. Since the potential curvature can be

estimated as k~(2p=L)2DV , and the anomalous relaxation rate as

[53] trel~(ga=k)1=a, one can see that the ratio ga=DV is important

to determine the scale of trel. Even if the transport of a large cargo

is anomalous for DV&0:47 eV in Figure 3, the reduction of ga

rapidly enforces normal transport, similarly to the reduction of

nturn. Therefore, for realistic turnover frequencies the molecular

transport by kinesins is expected to be normal for vesicles of a

typical radius of 30 nm, and possibly up to 100 nm. Anomalous

transport emerges for above cargos with radius 300 nm or larger.

This explains why the same molecular motors can mediate both

normal and anomalous transport in living cells depending on the

cargo size. The occurrence of an anomalous transport exponent is

thus reconciled with the normal transport behavior for small cargo

at lower turnover frequencies.

Our research provokes a number of follow-up questions. Thus,

what happens if we relaxed the assumption of a rigid motor-cargo

linker molecule? In that case, the large subdiffusing cargo is

elastically coupled to a molecular motor, that possibly still operates

normally in the absence of cargo. We are currently investigating

this generalization for realistic spring constants of the linker.

However, qualitatively the results remain very similar. Another

question is prompted by the experimental results in Ref. [33],

suggesting that the motors can collectively transport several

magnetosomes jointed into a chain. A generalization of our non-

Markovian model to such collectively operating motors would be

important for our understanding of large-cargo transport in living

cells.

Our model presents a good starting point for future research

and further generalizations. Understanding how molecular motors

perform in the viscoelastic cytosol of living cells despite the

subdiffusion of the free cargo is compelling. Our findings open

new vistas to the old problem of intracellular trafficking,

reconciling seemingly conflicting results for the motor-cargo

Figure 4. Dependence of (a) the effective transport exponent
aeff and (b) the thermodynamic efficiency Rth on the load f0, for
three different potential amplitudes and for turnover frequen-
cy nturn~1:12 kHz. Ensemble averaging is done over 103 particles and
random realizations of potential flashes, ~ggeff~103 , tmax~22:4 sec, or
~ggeff~104 and tmax~2240 sec (with the same ga , see Methods).
Matching of the results for two sets with the same amplitude U0~1:0
indicates that ga is the characteristic quantity, rather than geff and tmax

separately. Efficiency is calculated at the end point of simulations 106

corresponding to t~0:224 sec.
doi:10.1371/journal.pone.0091700.g004

Figure 5. Delivery efficiency D as function of the turnover
frequency nturn. In the ideal power-stroke regime, Dideal~L2nturn=d .
For small nturn our results agree with this simple dependence (broken
lines).
doi:10.1371/journal.pone.0091700.g005
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dynamics under different conditions. Finally, our results will be of

crucial importance for the design of new technologies of motor-

driven particles and drug delivery in the crowded cytosol of cells.

We are confident that our findings will prompt a series of new

experiments on the dynamics of molecular motors under realistic

conditions in living cells.

Methods

The numerical approach to integrate the generalized Langevin

equation (2) with a power-law memory kernel rests on the

approximation of the memory kernel by a sum of exponentials

[34,53],

gm(t)~
XN

i~1

ki exp ({nit): ð3Þ

The rate constants ni and elastic constants ki are chosen to obey

a fractal scaling [54], ni~n0=bi{1, ki!na
i , with a dilation

parameter bw1, and a shortest memory time n{1
0 in the hierarchy.

Due to the scaling property gm(ht,n0)~h{agm(t,hn0) this choice

indeed provides a power law regime, gm(t)!t{a on time scales

n{1
0 %t%tmax~bN{1=n0, with small superimposed logarithmic

oscillations. Physically, this corresponds to representing a visco-

elastic environment by auxiliary Brownian quasi-particles with

coordinates xi. They are coupled to the central Brownian particle

by elastic constants ki and subjected to the thermal noises and

frictional forces with viscous frictional constants gi~ki=ni[34],

g0 _xx~f (x,t){
XN

i~1

ki(x{xi)zj0(t) ,

gi _xxi~ki(x{xi)z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gikBT

p
ji(t) , ð4Þ

where f (x,t)~{LV (x,t)=Lx{f0, and ji(t) are uncorrelated

white Gaussian noises of unit intensity, Sji(t
0)jj(t)T~dijd(t{t0),

which are also uncorrelated to j0(t). To have a complete

equivalence with equations (2), (3), the initial positions xi(0) are

sampled from a Gaussian distribution centered around x(0),

Sxi(0)T~x(0) with variance S½xi(0){x(0)�2T~kBT=ki. We set

ki~n0geff

b1{a{1

b(i{1)a½bN(1{a){1� ð5Þ

and use b~10 which leads to a maximal relative error with respect

to the exact power-law of less than 4% [50], for a~0:5, on

relevant intermediate time scale. The effective relative friction

coefficient ~ggeff~geff=g0&1 is used as a parameter in our

simulations. The parameter n0 controls the matching accuracy of

our model with the model of fractional Langevin dynamics (the

memory kernel gm(t)~gat{a=C(1{a)) at short to intermediate

times, where initially for times t%tin~(g0=ga)1=(1{a) [51] the free

diffusion is normal, Sdx2(t)T~2D0t with D0~kBT=g0 in accor-

dance with the Einstein-Stokes relation. At longer times,

anomalous diffusion emerges, Sdx2(t)T~2Data=C(1za) with

Da~kBT=ga. The number N of auxiliary quasi-particles controls

the maximal range of subdiffusive dynamics, after which diffusion

becomes again normal, Sdx2(t)T~2Deff t, for t&tmax~bN{1=n0

with Deff~kBT=(geffzg0). The fractional friction coefficient is

ga~geff t
a{1
max =r, where r~

Ca(b)

C(1{a)

b1{a

b1{a{1
½1{b{N(1{a)� is a

numerical coefficient of the order of unity, r&1:07 for N§6,

a~0:5, and b~10, with Ca(b)&1:3[53]. An interesting observa-

tion is that in terms of tmax and ~ggeff , tin~tmax=~gg
1=(1{a)
eff . Therefore,

the effective viscosity ~ggeff defines the time range of subdiffusion,

from tmax=~gg
1=(1{a)
eff to tmax, independently of b, and N! For

example, for ~ggeff~103 and a~0:5 one expects that subdiffusion

will extend over 6 decades in time. In the simulations, we scale

length in units of L and time in units of t0~L2g=(4p2U0), where

U0 was taken equal to U0~0:25 eV (or about 10 kBTroom with

fixed temperature). The time step was dt~0:01 and tmax was

varied from 106 to 107. The ratio U1=U0 was fixed to 0:65. Four

different values of U0 were used: U0~1, 3=4, 2=3, and 1=2. The

largest one corresponds to the largest potential barrier DV
separating two potential periods of about 28 kBTroom&0:7 eV,

2=3 to about 18:7 kBTroom&0:47 eV, and the smallest one to

14 kBTroom&0:35 eV. The larger U0 the more efficiently the

motor works, as the probability of thermally activated backsteps is

exponentially suppressed with DV=kBT . This is necessary to

provide an ideal power-stroke operation at small turnover

frequencies. However, the energy released from the hydrolysis of

one ATP molecule will not be sufficient to perform one cycle of

operation in the case DV0~0:7 eV because of the energy derived

from the hydrolysis of one ATP molecule does not exceed 0:62 eV.

In such a case, to drive a cycle of two potential flashes one needs

an input energy of at least 0.7 eV (0.35 eV per one conformational

change, about one half of potential barrier separating potential

periods, see upper inset in Figure 2).

The power exponent of anomalous diffusion was fixed to a~0:5
to interpolate between a~0:4 for an intact cytoskeleton [33,46]

and a~0:56 [33] when the actin filaments are disrupted. For the

radius a~300 nm of a single magnetic endosome [33] one

estimates g0&5:65:10{9 N:s=m in water of viscosity

f~10{3 Pa:s. This yields t0&2:24:10{7 s. Furthermore, we use

n1~n2 in the simulations. Hence, n~n1=2, and the frequency

n1~5:10{4 corresponds to n&1:12 kHz. This is about the

maximal possible turnover frequency for molecular motors [28].

For an effective particle ten times smaller, t0&2:24:10{8 s and

n1~5:10{5 would correspond to the same physical turnover

frequency. For a magnetic endosome we estimate ~ggeff~104,

n0~0:1 and take N~8, which yields tmax&22:4 sec and

Da&3:68:10{16 m2=s0:5, of the same order of magnitude as in

experiments for a cargo consisting of several such endosomes [33].

Alternatively, with a smaller ~ggeff~103 for n0~1 and N~9, Da is

by a factor of ten larger, Da&3:68:10{15 m2=s0:5, at the same

tmax. One obtains the same Da by simultaneously increasing ~ggeff to

~ggeff~104 and tmax to tmax~2240 sec (N~11).
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