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Abstract
Standard continuous time random walk (CTRW) models are renewal processes
in the sense that at each jump a new, independent pair of jump length and
waiting time are chosen. Globally, anomalous diffusion emerges through scale-
free forms of the jump length and/or waiting time distributions by virtue of
the generalized central limit theorem. Here we present a modified version of
recently proposed correlated CTRW processes, where we incorporate a power-
law correlated noise on the level of both jump length and waiting time dynamics.
We obtain a very general stochastic model, that encompasses key features of
several paradigmatic models of anomalous diffusion: discontinuous, scale-free
displacements as in Lévy flights, scale-free waiting times as in subdiffusive
CTRWs, and the long-range temporal correlations of fractional Brownian
motion (FBM). We derive the exact solutions for the single-time probability
density functions and extract the scaling behaviours. Interestingly, we find that
different combinations of the model parameters lead to indistinguishable shapes
of the emerging probability density functions and identical scaling laws. Our
model will be useful for describing recent experimental single particle tracking
data that feature a combination of CTRW and FBM properties.
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1. Introduction

Anomalous diffusion arises in a wide range of systems across disciplines and is usually
characterized in terms of the mean squared displacement (MSD)

〈[X (t) − X (0)]2〉 � t2H (1)

of a random variable X (t), where the anomalous diffusion or Hurst exponent H distinguishes
subdiffusion (0 < H < 1

2 ) from superdiffusion (H > 1
2 ) [1, 2]. Normal (H = 1

2 ) and
ballistic (H = 1) motion are contained as limiting cases. In general, stochastic modelling is
the approach of choice when the extent and complexity of a deterministic, multidimensional
system prohibits analytical, first principles treatment. The time evolution of a small subsystem
(for instance, the dispersion of a tracer particle in aquifers, a labelled molecule in a biological
cell or the price of an individual stock on the market) is described in terms of a stochastic
process X (t). Examples for anomalous diffusion of the form (1) range from the motion of
charge carriers in amorphous semiconductors [3] over the diffusion of submicron tracers in
living biological cells [4] or the dynamics of small particles in weakly chaotic flows [5] to the
dispersion of chemical tracers in the groundwater [6] or the dynamics of stock markets [7],
just to name a few [1, 2, 8, 9].

In general anomalous diffusion processes are not universal and thus their definition
through equation (1) is not unique. Instead, the form (1) may be caused by multiple physical
mechanisms, some of which are very distinct conceptually. Several pathways to anomalous
diffusion have been discussed. Among others, these include (i) trapping mechanisms leading
to long sojourn times, (ii) long-ranged temporal correlations induced by interaction with
a complex surrounding and (iii) long-distance displacements. A prominent approach to
mathematically model these effects is via stochastic processes such as continuous time
random walks (CTRWs) [3, 10], fractional Brownian motion (FBM) [11], or Lévy flights
and walks [12]. They are paradigmatic in the sense that they are designed to tackle one
specific key property (i)–(iii). Thus CTRWs were proposed as a model for charge carrier
transport in amorphous semiconductors [3], where individual charges reside on specific,
sparsely distributed acceptor sites for long, effectively random time spans, before hopping to a
neighbour site. Moreover, crosslinked polymer filament networks as found in mammalian cells
can cause similar caging effects for micron-sized objects [13], similarly to multiscale trapping
times of particles on sticky surfaces [14]. FBM addresses the problem of highly correlated stock
market decisions [15] and telecommunications [16], and the associated fractional Gaussian
noise fuels the diffusion of a single tracer particle in viscoelastic or crowded environments
[17–21]. Lévy flights and walks [12] provide a statistical description for the motion of tracers
in weakly chaotic systems [5] or of the linear particle diffusion along a fast-folding polymer
chain [22].

However, in complex, disordered environments we would expect that more than one of
the patterns (i) to (iii) emerge, compete and collude to generate anomalous diffusion patterns,
and it remains an open challenge to identify and differentiate them. Thus, the global properties
of dispersion in amorphous media can be related to the microscale flow dynamics by adding a
memory component to the standard CTRW description [23]. Modern single particle tracking
techniques in experiment and simulations indeed corroborate the co-existence of different
diffusion mechanisms [4, 8, 24–26]. For instance, for the motion of individual granules
in the intracellular fluid of living cells characteristics of CTRW-style trapping and FBM-
like anticorrelations were observed [4]. We here introduce a stochastic process, namely the
correlated CTRW (CCTRW), that merges and extends the classical paradigmatic models of
CTRW, FBM, and Lévy flights. We study in particular two quantities, which are typically
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Figure 1. Trajectories X (t) of ordinary Brownian motion. The sample paths are erratic but
continuous and at no time a favoured direction can be determined. In the context of CCTRWs
as defined in section 2.3, the parameters are: μ = 2, K = 1/2, α = 1, and G = 1.

accessible experimentally: the scaling of the particle position X with time t, and the shape of
the probability density function (PDF) p(x; t) of the particle displacement x at some instant of
time t. The result is a very flexible stochastic model, that will be of use for the data analysis
of stochastic processes in complex systems. One immediate lesson is the interplay of the
underlying stochastic modes, the blend of which may lead to indistinguishable forms for the
PDF p(x; t) for different sets of model parameters.

The paper is organized as follows. In section 2 we define the ingredients of the CCTRW
model. First, subsections 2.1 and 2.2 recapitulate the essential definitions and properties of
Lévy flights and CTRW-trapping theory. Second, we define a correlated version of these
models by means of stochastic integration in subsection 2.3. The stationarity (closely related
to the physical concept of equilibrium) of the CCTRW is briefly discussed in section 3. We
study extensively the scaling behaviour and the PDF of the position coordinate for CCTRWs
in section 4. The parallels and differences with other CCTRW models in the literature are
outlined in section 5. A brief overview on our main results and potential extensions and further
studies of the model are summarized in the conclusion, section 6.

2. Model definition

The most commonly used theoretical model for (normal) diffusion dynamics is the celebrated
Brownian motion. In its standard form, this random process describes the dynamics of a
point-like particle as an unbiased, continuous but erratic motion in an unbounded embedding
space. In the mathematics literature, such a process X (t) with positive time t ∈ R

+
0 , is usually

referred to as the Wiener process, and it is uniquely defined by the following three properties: (i)
X (0) = 0; (ii) a sample trajectory X (t) is almost surely continuous everywhere; (iii) increments
X (t2) − X (t1) have a Gaussian distribution with mean 0 and variance |t2 − t1|, and they are
mutually independent for any non-overlapping time intervals. Typical sample realizations of
Brownian motion are shown in figure 1. Individual trajectories are indeed characterized by a
continuous but non-smooth behaviour. There is no notable global drift and neither a specific
point in time nor some spatial region stands out from the rest. In ensemble measurements,
Brownian motion features a normal diffusive behaviour (H = 1

2 ). More generally, the position
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coordinate scales with time as X (t) ∼ t1/2.6 The independence of increments is reflected by
the correlation function, 〈X (t1)X (t2)〉 = min{t1, t2} for any t1, t2. In this sense, we call X (t)
an uncorrelated process7.

Thus, Brownian motion is an ideal candidate to model the diffusive motion in an
environment where the bombardment by small particles from a surrounding heat bath induces
vivid but short displacements of a relatively inert, point-like test particle. The typical example
is a micron-scale molecule in a dilute water solution at room temperature, as discussed in
Albert Einstein’s groundbreaking studies [27] and monitored in the seminal works by Perrin
[28]. There, the momentum transfer from the surrounding water molecules occurs much faster
than the average large particle motion observed under a microscope. Displacements of the test
particle thus indeed appear to be random and independent, yet small on an observational scale.

However, when we want to describe diffusive dynamics in complex environments, we
are forced to drop several of the idealizing assumptions (i) to (iii). For instance, in chaotic
systems [29] or in highly disordered optical materials [30] large scale displacements occur
almost instantaneously, resulting in highly non-continuous sample trajectories. Conversely, in
disordered environments such as the above-mentioned amorphous semiconductors or the
densely crowded intracellular fluid of biological cells, the assumption of a steady time
evolution is questionable, since charge carriers or tracer molecules can become trapped
in microenvironments or stick to reactive surfaces for long time periods [13]. Finally, the
independence of increments cannot be taken for granted when the particle motion is strongly
coupled to its environment, for instance, in single file diffusion [21] or in viscoelastic media
[18], leading to an effective memory in the history of the motion.

In the following sections, we generalize the standard Brownian motion to a larger class
of one-dimensional, random motions of a point particle to accommodate the above-mentioned
effects. We proceed stepwise: first, in section 2.1, we introduce the concept of Lévy flights
(allowing discontinuities in sample paths). In section 2.2 we consider CTRWs (with long
sojourn times). Finally in section 2.3, we generalize to processes defined in terms of stochastic
integrals (to account for FBM-style memory effects). On each level of generalization, we focus
our analytical discussion on the study of scaling laws in general, and the evolution of the PDF
of the particle position x with respect to time t, in particular.

2.1. Lévy flights

The first assumption that we drop in order to extend ordinary Brownian motion is the continuity
of sample paths. A widely used stochastic approach to model such type of anomalous diffusion
property are Lévy flights. This type of idealized random motion is not continuous in space, but
instead consists of a series of random jumps; see figure 2. The jump lengths δX are characterized
by heavy-tailed jump statistics, that is, by PDFs with power-law tails, λ(δx) � |δx|−1−μ with
0 < μ < 2 for large distances |δx|. The key feature of such stable PDFs is the diverging second
moment, 〈(δX )2〉 = ∫ ∞

−∞(δx)2λ(δx) d(δx) = ∞: discontinuous jumps occur on arbitrary large
spatial scales.

6 Let X (t) be a stochastic process and H > 0. We use the notation X (t) ∼ tH to indicate a time scaling relation:
the random variable X (t) has the same distribution as tH X (1). We note however, that for most cases we consider in
this work, an actually stronger statement holds: the motion is self-similar with index H, that is, for any c > 0, the
processes X (ct) and cH X (t) have the same finite-dimensional distributions.
7 Mathematically, two random variables A and B are called uncorrelated if 〈AB〉 = 0. Hence, calling Brownian
motion an uncorrelated process is a slight abuse of language. To be precise, its increments are independent
and thus uncorrelated. Still, we stick to the common habit of referring to a (continuous time) random walk
or diffusion process X (t) as an (un)correlated process, whenever its increments have this property, that is
〈[X (t1 + t) − X (t1)][X (t2 + t) − X (t2)]〉 = 0 for non-overlapping time intervals.
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Figure 2. Sample trajectories X (t) of Lévy flights. The motion is uncorrelated and unbiased,
but characterized by large-scale, discontinuous jumps. In the context of CCTRWs as defined in
section 2.3, the parameters are: μ = 3/2, K = 2/3, α = 1, and G = 1.

To be more precise, we here connect Lévy flights with the mathematical concept of a
symmetric Lévy μ-stable process, X (t) = Lμ(t). Apart from the discontinuity of individual
trajectories, also ensemble properties differ significantly from the Brownian case: the capability
of covering large distances by single, instantaneous jumps implies a superdiffusive scaling of
the position coordinate with time, X (t) ∼ t1/μ. In particular, the PDF pμ(x; t) for the position
X at time t assumes the scaling form

pμ(x; t) = t−1/μ�μ(xt−1/μ). (2)

where the scaling function �μ is a symmetric μ-stable law. The latter is uniquely defined in
terms of the characteristic function

〈exp{ikLμ(1)}〉 =
∫ ∞

−∞
eikx�μ(x) dx = exp(−|k|μ), (3)

including Gaussian statistics in the limit μ = 2. Indeed, in a distributional sense, the
limiting case X (t) = L2(t) is an ordinary Brownian motion. The scaling function �μ

(and thus the PDF pμ) has the same heavy-tail property as the PDF of individual jumps,
�μ(x) � |x|−1−μ for large |x|. Consequently, second (and higher) order moments diverge,
〈X2(t)〉 = ∫ ∞

−∞ x2 pμ(x; t) dx = ∞.
Yet, in terms of correlations, Lévy flights are on the same level as ordinary Brownian

motion. Indeed, both processes are Markovian. The jump lengths δX are mutually independent
and identical in a distributional sense. Consequently, the increments of Lévy stable motion
X (t2) − X (t1), are characterized by mutual independence and distributional equality.

2.2. Continuous time random walks

Despite their spatial discontinuity, Lévy flights are evolving continuously in time, in the sense
that the particle remains at any specific position for only an infinitesimal amount of time.
To account for the possibility to encounter deep traps on some random energy landscapes, a
common generalized stochastic model is used, namely, subdiffusive CTRWs. In contrast to
ordinary Brownian motion or Lévy flights, these processes include random long-time trapping
periods δT , usually referred to as waiting times. These are distributed according to heavy-
tailed waiting time statistics, ψ(δt) � δt−1−α with 0 < α < 1 for large δt. In close analogy to
the effects of scale-free jump lengths for Lévy flights, the infinite first moment of the waiting
times amounts to immobilization periods on all time scales; see figure 3.
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Figure 3. Sample trajectories X (t) of CTRWs. The spatially continuous motion is paused for
scale-free waiting periods. This considerably slows down the exploration of space as compared to
ordinary Brownian motion. Waiting times are heavy-tailed (see text) and thus assume values on
all time scales, but they are also mutually independent. In the context of CCTRWs as defined in
section 2.3, the parameters are: μ = 2, H = 1/2, α = 1/2, and G = 2.

Mathematically, one can model such systems by use of the subordination method [31, 32].
An internal time parameter s is introduced, which plays the role of the number of jumps
performed along the trajectory, that is successively delayed by trapping events. As this ‘internal
time’ s increases, on the one hand, the spatial exploration evolves according to a process Y (s).
The appropriate choice for Y (s) depends on the characteristics and features of the physical
system we intend to describe (external force fields, drift, friction, etc). Typically, Y (s) is
assumed to be Markovian and thus, in the above sense, is continuously evolving in time. As
a paradigmatic example, we define Y (s) = Lμ(s), i.e., the spatial dynamics are modelled in
terms of an unbiased and unconfined Lévy flight with stable index 0 < μ < 2, as defined in
the previous section 2.1.

On the other hand, we model the punctuated progression of real laboratory time as
measured by the observer in terms of a separate random process T (s): as the internal time
s increases, consecutive waiting times accumulate to the laboratory time T (s). In order to
model waiting times which are distributed by heavy-tailed statistics, one can simply choose
T (s) = L+

α (s), where 0 < α < 1. The latter is a special type of Lévy flight itself, namely,
a one-sided (or totally skewed) Lévy α-stable motion. It is a positive, strictly increasing
process and thus an appropriate representation of the random time progression of the particle
motion. Moreover, it has the typical Lévy flight property of scale-free discontinuous, jump-
like evolution. Statistically, it is characterized by the time scaling T (s) ∼ s1/α and one-sided
α-stable distributions. In particular, the PDF gα(t; s) for the laboratory time T at given internal
time s reads

gα(t; s) = s−1/α�+
α (ts−1/α ). (4)

Here, �+
α is a one-sided α-stable law. Its most natural representation is via its Laplace transform

〈exp{−θL+
α (1)}〉 =

∫ ∞

0
e−θt�+

α (t) dt = exp(−θα). (5)

The distribution is heavy-tailed, �+
α (t) � t−1−α , so that the expectation value (and higher order

moments) of the laboratory time diverges, 〈T (s)〉 = ∫ ∞
0 tgα(t; s) dt = ∞. Note that in the

limit α → 1 the PDF in equation (4) becomes a Dirac δ-distribution, g1(t; s) = δ(t − s).
Thus, this limiting case restores the equivalence of internal and laboratory time, such that the
particle motion is no longer paused for random waiting time periods.
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To complete the definition of this type of CTRWs we introduce an inverse process S(t)
which measures the evolution of internal time as function of laboratory time t,

S(t) = inf {s > 0 : T (s) > t}, (6)

which is also sometimes referred to as first-hitting time or counting process. The particle
motion as seen by the observer is now given by a process X (t) = Y (S(t)), i.e. the random,
unsteady progression of internal time is modelled by S(t), while independently the spatial
displacements during times of dynamic activity are governed by the process Y (s). Individual
paths of X (t) most notably feature discontinuities in both their spatial and temporal evolution.
Meanwhile, ensemble statistics combine the distributional properties of both independent
random processes Y (s) and S(t). For instance, let hα(s; t) denote the PDF for internal time S
at laboratory time t. Recall that pμ(y; s) is the PDF of the position Y when the internal time s
has passed. Then the PDF pμ,α(x; t) for the particle position X at time t can by computed as

pμ,α(x; t) =
∫ ∞

0
pμ(x; s)hα(s; t) ds. (7)

We conclude this section with a remark on correlations in this type of CTRW. Both the
displacement dynamics Y (s) and the laboratory time evolution T (s) with respect to internal
time s belong to the class of Lévy flight processes. As such, their respective increments are
stationary and mutually independent for non-overlapping time intervals. In the language of
individual jump distances δX or waiting times δT this means that the latter form sequences
of mutually independent, identically distributed (iid) random variables. As mentioned above,
this renewal property might be considered as a severe simplification when we want to model
real physical systems. We will therefore drop this property in the following section and define
a CTRW where successive jump lengths or waiting times are correlated.

2.3. Correlated continuous time random walks

In standard CTRW models, individual jump lengths and waiting times, respectively, are
independent of each other. Our goal is to extend this theory to systems where highly complex
environments induce long-range correlations. In that we build on previous results; we discuss
the parallels with akin CCTRWs in section 5. In the present paper, we follow an idea proposed
in [34] to introduce a process close in spirit to FBM and its heavy-tailed generalization, the
linear fractional μ-stable motion [35]. The basic theoretical approach is to derive a correlated
process from an uncorrelated one in terms of a (stable) stochastic integral. By this method,
correlations are introduced without altering the distributional properties of the process itself.

Without going into the details of stochastic integrals [35] we here provide an exemplary
calculation as a motivation for our method. Consider first a discrete time random walk in
continuous space, Yn ∈ R with n ∈ N. At the nth step, the random walker covers a random
jump distance δYn = Yn+1 − Yn. If we assume the δYn are mutually independent and iid, we
call the random walk Yn an uncorrelated process. For example, define δYn = ξn, where the ξn

are Gaussian iid random variables with zero mean and variance σ 2. Then the distribution of
the position variable Yn follows as (we assume Y0 = 0)

Yn =
n∑

j=1

δYj =
n∑

j=1

ξ j =d n1/2 · ξ1. (8)

Here, =d denotes an equality in distribution, and thus the position Yn after the nth step also has
a Gaussian distribution, scaling as Yn ∼ n1/2. Consequently the ‘diffusion’ law, 〈Y 2

n 〉 = σ 2n, is
normal for this simple, uncorrelated random walk. Note that this result is a generic one, since,
by virtue of the central limit theorem, any series of iid random displacements ξn with zero
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mean and finite variance produces asymptotically Gaussian behaviour on sufficiently large
scales.

Now, how can we add correlations to this simple random walk process, without altering its
Gaussian nature? One method is by means of a linear transformation, as proposed in [34]. Let ξn

be iid Gaussian random variables as above. We introduce a nonrandom function Mk, which we
will refer to as correlation kernel, and define the correlated jump lengths δỸn = ∑n

k=1 Mn−k+1ξk.
The latter have strong similarities in distribution with their uncorrelated counterparts δYn: both
are sequences of Gaussian random variables centred at zero. However, the correlated sequence
is not necessarily stationary, since 〈δỸ 2

n 〉 = σ̃ 2
n = ∑n

k=1 M2
k . More severely, the δYn are by

definition mutually independent, while for the correlated sequence we have, for any n, m ∈ N,

〈δỸnδỸn+m〉 =
n∑

k=1

n+m∑
l=1

Mn−k+1Mn+m−l+1〈ξkξl〉 = σ 2
n∑

k=1

MkMk+m. (9)

Depending on the exact behaviour of the correlation kernel Mk, this covariance function can
have either a negative or positive sign, where a positive (negative) covariance function indicates
a tendency for any two jumps to go in the same (opposite) direction. We can therefore say
that the jump lengths are either persistent or antipersistent, respectively. Only by choosing
Mk = δ1k, δik denoting the Kronecker symbol, the δỸn become mutually independent.

The random walk process Ỹn associated with such correlated jump lengths has the
following properties (again, assume Ỹ0 = 0):

Ỹn =
n∑

j=1

δỸj =
n∑

k=1

M̃n−k+1ξk =d ξ1 ·
(

n∑
k=1

M̃2
k

)1/2

M̃k =
k∑

l=1

Ml . (10)

Thus, the correlations indeed preserve the Gaussian nature of the process. Ỹn can itself be
written as a linear transformation of the iid Gaussian variables ξk in terms of the correlation
kernel M̃k. Note that we altered the scaling behaviour with the introduction of correlations:
in contrast to the normal scaling Yn ∼ n1/2, the scaling of the process Ỹn is more complex in
general and depends on the exact form of the kernel M̃k.

This method of correlating a Gaussian random walk can be readily transferred to a time-
continuous process such as the Lévy flights and CTRWs as defined in the previous sections8.
We start from the linear process representation in equation (10), namely Yn = ∑n

k=1 Mn−k+1ξk

(dropping the tilde here and in the following). Now we perform the following, purely formal
substitutions. The discrete step number n is replaced by a continuous (internal) time variable s.
The sum over the Gaussian iid random variables is rewritten in terms of a stochastic integration
with respect to the Lévy stable noise dLμ(s). Here, Lμ(s) is a symmetric Lévy flight with stable
index 0 < μ < 2. Finally, for the correlation kernel M(s) we choose a power-law, so that
correlations are potentially of a long-ranged kind. In summary, we define the stochastic process
Y (s) in terms of a stable integral through

Y (s) := (μK)1/μ

∫ s

0
(s − s′)K−1/μ dLμ(s′). (11)

Here 0 < μ < 2, and we will refer to K > 0 as the Hurst exponent. With this definition of the
process Y we stay in the domain of μ-stable processes. In particular, at given time s, its PDF
pμ,K (y; s) is of the stable form (2), albeit with an altered time scaling Y (s) ∼ sK ,

pμ,K (y; s) = s−K�μ(ys−K ). (12)

8 How and when a time-discrete correlated random walk converges to a time-continuous correlated motion is taken
up in [33, 36].
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The scaling prefactor (μK)1/μ in equation (11) makes sure that the scaling function �μ is again
exactly represented by the characteristic function in equation (3).

What really sets the process Y (s) apart from the ordinary Lévy motion Lμ(s) is the
stochastic dependence of increments. We may also say the noise related to Y (s) is strongly
correlated, or coloured. However, to assess the nature of interdependence here, we cannot
use the covariance function like in equation (9). While the latter is a meaningful and precise
measure of dependence for Gaussian processes, μ = 2, it is ill-defined for stable processes
μ < 2. In reference [35], several alternative concepts to deal with the stable cases are
introduced and discussed, such as covariation or codifference functions. In short, applying
these analytical tools to the correlated process Y (s), we find positive, long-range dependence
when K > 1/μ, and negative, short-range dependence when K < 1/μ. (Compare this to the
analogous discussion on linear fractional stable motion in [35]. An extensive discussion of the
notion of long-range dependence can be found in [37]).

We can also supplement these considerations by spectral analysis arguments, compare
also [36]. Consider a sample path of a Lévy flight Lμ(s) and denote its Fourier transform
by L̂μ(ω). Now since the stable stochastic integral (11) is of a convolution form, there is a
simple relation in Fourier space between the correlated noise dY (s) and the Lévy stable noise
dLμ(s), namely dŶ (ω) ∝ dL̂μ(ω)/(−iω)K−1/μ. When comparing the two noise types in the
case K > 1/μ we thus find that the correlation kernel in the stable integral (11) emphasizes
the low frequency components of the correlated noise. In a sample path of Y (s), we may
conceive this as a comparatively steady motion, even in the form of long-term periodic cycles.
Conversely, when K < 1/μ, high frequencies are amplified. A sample path Y (s) is then
fluctuating violently as compared to an ordinary Lévy flight.

Hence, both the analysis in terms of covariation/codifference functions and the spectral
analysis support the idea of an either persistent or antipersistent motion Y (s). (Throughout the
rest of this work, such statements are equivalent to saying that the respective increment/noise
process is persistent or antipersistent.) For K > 1/μ, persistence effects long cycles of
seemingly steady, biased motion. If K < 1/μ, antipersistent motion is observed as being
wildly fluctuating, since strong, short range, negative memory leads to a quick succession of
directional turns. The special case K = 1/μ recovers ordinary Lévy flights with mutually
independent jump lengths.

The last step in the definition of our CCTRW model is the introduction of correlations of
waiting times. Analogously to the above, we define

T (s) := (αG)1/α

∫ s

0
(s − s′)G−1/α dL+

α (s′), (13)

in terms of a stable integral with respect to one-sided Lévy α-stable noise dL+
α (s). Here,

0 < α < 1 and G � 1/α. The corresponding PDF gα,G(t; s) at given internal time s in this
case reads

gα,G(t; s) = s−G�+
α (ts−G), (14)

where the basic shape is still provided by a one-sided α-stable law �+
α as defined in equation (5).

The scaling with internal time s in this case reads T (s) ∼ sG. While T (s) is still an α-stable
motion, waiting times are no longer independent. Note that for T (s) to be an increasing
process, we need to require that G � 1/α. Thus, correlations in waiting times are necessarily
of the persistent type, and have a tendency to increase with s. The only exception to this rule
is G = 1/α, a parameter setting which brings us back to heavy-tailed but uncorrelated waiting
times.

9



J. Phys. A: Math. Theor. 46 (2013) 475001 J H P Schulz et al

−20

−15

−10

−5

0

5

10

0 200 400 600 800 1000

X
(t

)

t

Figure 4. Sample trajectories X (t) of CCTRWs. The spatially continuous motion is paused for
large-scale waiting periods, which appear on all time scales. Waiting times are not independent but
persistent here: long rests are directly followed by periods of reduced dynamic activity, but then
slowly turn into vivid almost Brownian-like motion. Note however that also spatial displacements
are persistent. The parameters are chosen such that the resulting scaling with time and the shape of
the PDF are the same as for the uncorrelated CTRWs in figure 3 (as explained in section 4). In the
context of CCTRWs as defined in this section, the parameters are: μ = 2, K = 1.1/2, α = 1/2,
and G = 2.2.

In complete analogy to the uncorrelated case we now introduce the inverse process S(t)
according to equation (6) and combine it with a correlated stable motion, X (t) = Y (S(t)).
The PDF for the particle position X at real time t is then given by

pμ,α,K,G(x; t) =
∫ ∞

0
pμ,K (x; s)hα,G(s; t) ds, (15)

where hα,G(s; t) denotes the PDF of internal time S at real time t. We will extensively discuss
this PDF in section 4. To study this process on a trajectory basis, see figure 4.9

This completes the definition of the CCTRW model that we discuss in the present
paper. A discontinuous progression of spatial displacements and laboratory time is modelled
in terms of the stable noises dLμ(s) and dL+

α (s). Correlations are separately introduced
by power-law correlation kernels to both the spatial dynamics Y (s) and the time evolution
T (s). The full model is defined in terms of four parameters: 0 < μ < 2 and 0 < α < 1
determine the respective distributional properties of individual jump lengths δX and waiting
times δT . In particular, they define the heavy tails λ(δx) � |δx|−1−μ and ψ(δt) � δt−1−α .
The special cases of continuous spatial and/or temporal evolution are included in the CCTRW
model on a distribution level as the limits μ → 2 and α → 1. The parameters K > 0 and
G � 1/α directly measure the scaling exponents with respect to internal time, Y (s) ∼ sK and
T (s) ∼ sG. Finally, the nature of the correlations can be assessed by comparing respective
parameter pairs: jump distances (waiting times) are persistent if K > 1/μ (G > 1/α),
uncorrelated if K = 1/μ (G = 1/α), or antipersistent if K < 1/μ (impossible for waiting
times).

9 All trajectories in figures 1–4 were generated by simulating long random walk trajectories and rescaling temporal
and spatial coordinate appropriately. Thus we approximate the time-continuous motion defined in the respective
sections. Heavy-tailed jump lengths or waiting times, respectively, are realized by drawing stable random variables
[39]. To introduce correlations as in equations (11) and (13), we use the method described in [35], section 7.11.
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3. Stationarity

We defined the stable processes Y (s) and T (s) directly in terms of their distributional,
scaling and correlation properties, as characterized through the parameters μ, α, K, and
G, respectively. We will now further study this quite large class of processes through their
stationarity properties. For this, we apply the preliminary definition of the nth order increments
of a stochastic process Y (s),

�(1)Y (s; τ ) = Y (s + τ ) − Y (s)

�(2)Y (s; τ1, τ2) = �(1)Y (s + τ2; τ1) − �(1)Y (s; τ1)

...

�(n)Y (s; τ1, . . . , τn) = �(n−1)Y (s + τn; τ1, . . . , τn−1)

−�(n−1)Y (s; τ1, . . . , τn−1). (16)

Thus, �(1)Y is the usual process increment while �(2)Y is an increment of increments, etc. If
Y (s) is meant to stand for the position of a particle at time s, then the ratio �(1)Y (s; τ )/τ can be
viewed as the average velocity (bearing in mind that the one-time velocity, i.e., the limit τ → 0,
in general does not exist for the processes discussed here). Likewise, �(2)Y (s; τ1, τ2)/(τ1τ2)

corresponds to the intuitive notion of an acceleration, and higher order increments represent
higher levels of temporal evolution.

We now say the nth order increments of Y (s) are asymptotically stationary in distribution
(ASD), if the random variable �(n)Y (s; τ1, . . . , τn) has a nontrivial limiting distribution for
large times, s → ∞. In the following we will determine such degrees of stationarity for the
stable processes Y (s) and T (s) as defined in the previous section. Note that this classification
is not a purely academic one. For the application and interpretation of a stochastic process as
a real world model system, stationarity properties are highly relevant. Let, for instance, Y (s)
model an animal foraging process. Then stationarity of first order increments is an indication
for a time-independent search strategy: the distance �(1)Y travelled during, say, τ = 1 day
is statistically indistinguishable from one day to the next. Conversely, nonstationary statistics
of travel distances can be a signature for an adaptive search strategy, an ageing animal, or
changes in the environment. In this case, we could further ask whether or not such internal
or external variations are stationary. This relates to second order increments. On smaller
scales, Y (s) could be a model for particle diffusion in a heat bath. There, nonstationarity of
first order increments is the fingerprint either of an inhomogeneous environment (i.e., the
particle displacement statistics changes as the particle explores various spatial regions) or
a non-equilibrated environment (i.e., the noise imposed by interaction with the surrounding
heat bath is itself nonstationary). Then, analysis of second and higher order increments yields
information on the precise nature of the spatial or temporal variations in the surroundings.

The displacement processY (s) as defined through the stable integral (11) is a nonstationary
process, as indicated by the time scaling Y (s) ∼ sK . As the particle explores its surrounding
space, the probability to find it in any region of fixed size around the origin of motion is
decaying with time. Now, the integral representation of first order increments reads

�(1)Y (s; τ ) = (μK)1/μ

{∫ s

0
[(s + τ − s′)K−1/μ − (s − s′)K−1/μ] dLμ(s′)

+
∫ s+τ

s
(s + τ − s′)K−1/μ dLμ(s′)

}
, (17)

so that its distribution is given in terms of the characteristic function
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〈exp(ik�(1)Y (s; τ ))〉
= exp

[
−μK|k|μ

∫ s

0
|(s + τ − s′)K−1/μ − (s − s′)K−1/μ|μ ds′

−μK|k|μ
∫ s+τ

s
|(s + τ − s′)K−1/μ|μ ds′

]
= exp

[ − |k|μI(1)
μ,K (s) − |kτK |μ]

, (18)

where we used the abbreviation

I(1)
μ,K (s) = μK

∫ s

0
|(s′ + τ )K−1/μ − (s′)K−1/μ|μ ds′. (19)

Nonstationarity is indicated by the explicit s-dependence of the integral I(1)
μ,K . The latter vanishes

identically if K = 1/μ. This is natural, since these cases are the symmetric Lévy stable motions,
Y (s) = Lμ(s), which have stationary increments by definition. Conversely, for any K �= 1/μ,
the integral differs from zero, so in general the first order increments of the stable motion
Y (s) are nonstationary. However, they can still be asymptotically stationary, depending on
the parameters. The expression in the integral I(1)

μ,K behaves, for large s′, like (s′)μK−μ−1. The
asymptotics at large times s � τ are therefore given through

I(1)
μ,K (s) �

⎧⎪⎨⎪⎩
const, for 0 < K < 1,

log(s), for K = 1,

τμsμ(K−1), for K > 1.

(20)

First order increments are hence ASD whenever 0 < K < 1, while spreading indefinitely
when K � 1. We can readily extend the procedure to the study of increments of arbitrary
order, see the appendix. In general, we have to distinguish two classes of parameter settings.

If we can find a nonnegative integer m such that K = 1/μ + m, then all increments of
order n > m are stationary in distribution, and lower order increments, n � m on average
broaden. This includes the Lévy stable motions, m = 0, K = 1/μ, with stationary increments
of all orders. To understand this, recall that correlated and Lévy stable noises are related in
Fourier space through dŶ (ω) = dL̂μ(ω)/(−iω)K−1/μ. Now for K = 1/μ + m, this suggests
we can interpret Y (s) as an m-fold repeated integration of a Lévy stable noise. In other words,
for m = 0, Y (s) is a Lévy flight, so increments are stationary; for m = 1, the noise generating
Y (s) is already a Lévy flight, therefore only second and higher order increments of Y (s) are
stationary; for m = 2, the noise generating the noise of Y (s) is a Lévy flight, so we find
stationary third order increments; etc.

The opposite case is K �= 1/μ + m for all nonnegative integers m. Interestingly, here
the result is μ-independent: all increments of order n > K are ASD, while lower order
increments, n � K, are spreading indefinitely. An extensive and mathematically rigorous
treatment of stochastic processes with stationary nth order increments can be found in [40].

The one-sided α-stable process (13), which describes the evolution of laboratory time
with respect to the internal time has completely analogous properties. Increments of any order
are stationary if G = 1/α, since then T (s) = L+

α (s) is a one-sided Lévy stable motion. If
there is a nonnegative integer m such that G = 1/α + m, then only increments of order n > m
are stationary in distribution. If there is no such m, increments of orders n > G are ASD.
Lower order increments are nonstationary at all times. Note, however, that for the waiting time
process we are forced to require G � 1/α for the following reason. Writing out the integral
representation for the first order increments,

12
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�(1)T (s; τ ) = (αG)1/α

{∫ s

0
[(s + τ − s′)G−1/α − (s − s′)G−1/α] dL+

α (s′)

+
∫ s+τ

s
(s + τ − s′)G−1/α dL+

α (s′)
}

, (21)

we see that the first integral could potentially give a negative contribution when G < 1/α.
This is clearly unacceptable in terms of causality: negative increments in laboratory time T (s)
would correspond to waiting times finishing earlier than they began. We therefore consider
only G � 1/α, which has two implications. On the one hand, as mentioned above, correlated
motions are necessarily persistent. On the other hand, first order increments—reflecting waiting
time statistics—are nonstationary. More precisely, they are, in a statistical sense, increasing
beyond all bonds, as their (one-sided!) distribution continuously broadens with internal
time s.

We conclude this section with a general remark on stationarity in CTRW models. The
inverse process S(t) measuring the internal time at fixed laboratory time t, equation (6), is a
highly nonstationary process, as are all of its increments. This holds even when G = 1/α, i.e.
when waiting times are not correlated. This phenomenon has been discussed extensively in
the CTRW literature, where it is commonly referred to as ageing [41–43] and is closely related
to other peculiar effects such as weak ergodicity breaking [43, 44]. The deeper reason behind
this nonstationarity are scale-free characteristics of waiting times. In the context of diffusion
dynamics, for instance, this absence of a typical time scale is motivated by an immense
heterogeneity of the environment. In effect, the particle encounters an indefinitely broad range
of waiting times and falls into deeper and deeper traps while exploring the environment. Thus,
CTRW models are by definition highly nonstationary stochastic processes, and it is indeed
natural to extend the common model candidates (K = 1/μ for uncorrelated, stationary jump
distances and G = 1/α for uncorrelated, stationary waiting times) to the larger class of stable,
but correlated and potentially nonstationary motions considered here.

4. Time scaling analysis and probability density function

For ordinary Lévy flights or CTRWs, the tail parameters μ and α determine both the
distributional and the scaling properties of the process. The present correlated model is slightly
more complex in this respect. While the shape of the PDF depends on all four parameters,
only the Hurst parameters K and G determine the time scaling. To see this, recall that for the
Lévy stable motions we have the characteristic scalings Lμ(s) ∼ s1/μ and L+

α (s) ∼ s1/α . From
equations (11) and (13) it follows that Y (s) ∼ sK and T (s) ∼ sG. Consequently, the internal
time scales as S(t) ∼ t1/G, and for the correlated motion we get

X (t) = Y (S(t)) ∼ tH , where H = K/G. (22)

We therefore call H the scaling or Hurst exponent of the correlated motion X (t). Interestingly,
from the point of view of time scaling, persistence in waiting times competes with persistence
in jump distances, and the process can turn out to be either sub (H < 1/2), or superdiffusive
(H > 1/2), or exhibit a normal diffusive scaling (H = 1/2). Conversely, measuring the Hurst
exponent H alone does not reveal specific information on the time scaling of correlated waiting
times (G) and correlated jumps (K), but only on their ratio.

This ambiguity actually goes beyond a simple time scaling analysis and extends to the
analysis of the PDF, as we show now. Let hα,G(s; t) denote the probability density for the
internal time S at given laboratory time t. Recall that T (s) ∼ sG is a monotonically increasing
process. This implies [32] S(t)

d= (t/T (1))1/G for any fixed laboratory time t. Therefore,

hα,G(s; t) = Gts−G−1�+
α (ts−G). (23)
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We can now combine equations (11), (6) and (23) to write the PDF pμ,α,K,G(x; t) for the
CCTRW X (t) = Y (S(t)) at time t in terms of stable densities10,

pμ,α,K,G(x; t) =
∫ ∞

0
pμ,K (x; s)hα,G(s; t) ds

=
∫ ∞

0

1

sK
�μ

(
x

sK

)
Gt

sG+1
�+

α

(
t

sG

)
ds

= 1

tH

∫ ∞

0
�μ

(
x

(st)H

)
1

sH+2
�+

α

(
1

s

)
ds

=:
1

tH
qμ,α,H

(
x

tH

)
. (24)

This representation demonstrates that the qualitative shape of the PDF can be classified in terms
of only three parameters: the tail parameters μ and α and the scaling exponent H = K/G.
This means that two processes may seemingly be the same when only studying their PDF and
time scaling behaviour, although they are inherently different with respect to their correlations.
Apparently, persistence in jump distances can balance persistence in waiting times, similar
to the previously observed twin paradox [45]. Consider, for instance, the stochastic process
X (t) defined by μ = 2, K = 1/2, α = 1/2 and G = 2. This special case has been studied
extensively in the literature, as it represents the simplest type of a CTRW process and is bare
of correlations both in jump distances and waiting times. For comparison, now define X ′(t)
by choosing μ′ = 2, K′ = 1.1/2, α′ = 1/2 and G′ = 2.2. Obviously, X ′(t) is different from
the ordinary CTRW X (t), since both its jump distances and its waiting times are persistent.
This is clearly visible when investigating a few sample trajectories, as provided in figures 3
and 4.11 However, on the level of time scaling analysis, equation (22), and PDF, equation (24),
the random motions are indistinguishable, since H = H ′.

To study the PDF p(x; t) analytically (we drop subscript parameters from here on),
it is natural to first study equation (24) in Fourier–Laplace domain. Making direct use of
equations (2) and (4), we find

p(k; u) ≡
∫ ∞

−∞

∫ ∞

0
eikx−ut p(x; t) dt dx

=
∫ ∞

0
exp(−|k|μsHμ/α )uα−1 exp(−uαs) ds. (25)

We now interpret the integral as a Laplace transform with respect to internal time s, while
expressing the exponential in terms of a Fox H-function [47],

exp(−z) = H1,0
0,1

[
z

∣∣∣∣(0, 1)

]
. (26)

After some straightforward manipulations of the H-function [47] we arrive at the following
representation in Fourier–Laplace space,

p(k; u) = α

uμH
H1,1

1,2

[
uα

|k|α/H

∣∣∣∣(1, α/(μH))

(1, 1)

]
. (27)

Inverting to laboratory time t and real space x, we find [47]

p(x; t) = t−H

2μ
√

π
H2,1

2,3

[ |x|
2tH

∣∣∣∣(1 − 1/μ, 1/μ); (1 − H, H)

(0, 1/2), (1 − H/α, H/α); (1/2, 1/2)

]
. (28)

10 The subordination integral (24) is evaluated numerically to generate the PDF plots in figure 5. For the associated
stable densities �μ (equation (2)) and �+

α (equation (4)), numerical evaluation tools are available for computer programs
such as Mathematica or MATLAB.
11 Methods to estimate such parameters from empirical CCTRW trajectory data are discussed in [46].
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Since for H-functions, series representations for small and large arguments are known, we
can now analyse in detail the behaviour around the origin and in the tails. Series expansions
can in principle be evaluated up to any order, see [47, 48]. Here, we discuss the leading order
contributions to the PDF, or equivalently, to the scaling function q(z) = p(z; 1).

In the vicinity of the starting position, z ≈ 0, we find that the qualitative shape depends
highly on the ratio α/H, if waiting times are heavy-tailed, α < 1:

q(z ≈ 0) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

const · |z|−1+α/H, α/H < 1,

const · log |z/2|, α/H = 1,

q(0) − const · |z|−1+α/H, 1 < α/H < 3,

q(0) − const · z2 log |z/2|, α/H = 3,

q(0) − const · z2, α/H > 3.

(29)

The constants depend on the parameters μ, α, H, but not on the scaling variable z. Thus, the
behaviour around the origin can be divergent (α/H � 1), continuous with divergent derivative
(1 < α/H < 2), continuous with discontinuous first derivative (2 � α/H � 3), and continuous
with vanishing first derivative (α/H > 3). While the cusp-like shape for low values of α/H
is reminiscent of CTRW propagators, the increasingly smoother shape for higher values of
α/H is imitating Gaussian distributions. Also note that in the absence of heavy-tailed waiting
times, corresponding to α → 1, the scaling function returns to the class of stable laws, which
are completely smooth (i.e., infinitely differentiable) everywhere. Example plots are given in
figure 5.

In contrast, if μ < 2, we find that heavy tails are directly inherited from the underlying
jump length distribution,

q(z → ∞) � |z|−1−μ, for μ < 2. (30)

This holds regardless of which type of correlations or waiting time distributions characterize
the motion, see also figure 5. In the special case of Gaussian jump lengths, the tails of the PDF
are of exponential type, log[q(z → ∞)] � −|z|1/2+H(1−α)/α .

Finally, let us point out an interesting, but maybe not intuitively expected property of the
scaling function q(z). From equation (28) one can derive [47]

q(z)|α→1 = q(z)|H→0. (31)

The limit α → 1 leads back to a steady time progression, ultimately rendering internal time
and laboratory time equivalent. Interestingly, when we study the shape of the PDFs, this is
effectively the same as choosing H very small. Thus, if either waiting times are sufficiently
persistent, or jump distances are sufficiently antipersistent, then the shape of the propagator
indicates dynamics devoid of any stalling or trapping mechanisms.

5. Comparison with other models of correlated motions

We now briefly compare, contrast and connect the CCTRW model discussed in the previous
sections to other existing models of correlated motion.

First, we stress that CCTRWs are distinct from the correlated (persistent) random walk
models as discussed in [49–52]. The latter are two-dimensional random walk models, aiming
at describing animal foraging and movements patterns. Angular correlations are introduced by
means of nonuniform angular distributions, governing the directional evolution of the random
walk at each step. Angular and step length distribution define characteristic correlation scales,
beyond which the dynamics are essentially Brownian.
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Figure 5. Scaling function q(z) for the propagator p(x; t) = t−H q(xt−H ), numerically evaluated
through equation (24). The insets detail the behaviour around the origin (left) and in the tails
(right). Top: while the exponent of power-law tails varies with μ, the qualitative behaviour at the
origin is universally given by q(0)− q(z) � |z|−1−α/H . Centre: conversely, a fixed stable exponent
μ < 2 defines the tail properties, q(z) � |z|−1−μ. By variation of the ratio α/H, the shape of the
maximum turns from a distinct cusp to a smooth Gaussian-like bell. Bottom: with μ = 2, the tails
are stretched exponentials. When α < H, the scaling function diverges at the origin, q(0) = ∞.
With H = 1/2, an analysis of the MSD universally indicates normal diffusion, since X2(t) ∼ t.
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The present CCTRW model is a direct continuation of the CTRW with correlated waiting
times presented in [34]. The authors discuss a laboratory time process (see equations (23) and
(24) in [34], we slightly adopt the notation to our needs)

T (s) =
∫ s

0
m(s − s′) dL+

α (s′), with m(s) =
∫ s

0
M(s′) ds′. (32)

While the correlation kernel m(s) defines the integral representation of laboratory time T (s),
the function M(s) = dm/ds can be interpreted as a correlation kernel for the noise or waiting
time process ‘ dT/ds’ (see equation (20) of [34]). Two different types of correlation kernels are
taken into consideration. First, power-law correlated waiting times, M(s) ∝ s−β , β < 1, lead to
a power-law correlated laboratory time process, m(s) ∝ s1−β . By identifying G = 1−β+1/α,
G > 1/α, we exactly arrive at the process definition used here, equation (13). Since jump
lengths in the model of [34] are Gaussian and independent (which, in our language, means
μ = 2, K = 1/2) we expect a scaling relation X (t) ∼ tH = tK/G = tα/[2α(1−β)+2]. This
is fully consistent with the MSD analysis in equation (A.6) of [34]. A second interesting
choice for the kernel behaviours is an exponentially decaying one, i.e. M(s) ∝ exp(−�s),
� > 0, corresponding to m(s) ∝ 1 − exp(−�s). While the full scaling behaviour is difficult
to calculate explicitly, we can look at the limiting cases t � � and t � �. By virtue of the
monotonic increase of the process T (s), this is equivalent to studying approximations with
respect to internal time s. For small s, we have m(s) � s = s1−0, while for large s, we get
m(s) � 1 = s1−1. Hence, we expect a turnover from the scaling X (t) ∼ tα/[2α+2] at t � � to
X (t) ∼ tα/2 at t � �. This is in perfect agreement with the MSD results equations (36) and
(38) in [34].

The authors of [46] discuss a subordinated process close in spirit to the one presented here.
In their case, the model ingredients are scale-free, correlated jump statistics as in equation (11).
Waiting times are not correlated, yet have an interesting distributional property: tail statistics
are intermediately power-law distributed, but an exponential cut-off introduces an intrinsic time
scale and ensures finiteness of all moments. Consequently, the diffusion process X (t), defined
via subordination, behaves very differently during different temporal regimes, as separated
by the average waiting time. We recommend in particular the interesting discussion on the
estimation of parameters from sample trajectory data.

While correlations in CTRW waiting times are not discussed explicitly in [38], the author
establishes an intimate principal connection between correlated waiting times, fluctuating
waiting time distributions, and rate fluctuations in underlying higher dimensional Markovian
dynamics. The methods and concepts from this work may thus provide a useful approach to
build a microscopic foundation of CCTRWs on the one hand, and to find reasonable model
extensions on the other.

Finally, we wish to draw the connection to the CCTRW introduced in [53]. On the discrete
random walk level, the basic idea is to define a nonstationary and correlated sequence of jump
lengths or waiting times in terms of separate random walk processes. For instance, correlated
jump lengths δYn are derived from a Lévy flight in jump length space. In other words,

δYn =
n∑

j=1

ξ j,

Yn =
n∑

j=1

δYj =
n∑

j=1

j∑
k=1

ξk, (33)

where the ξ j are independent, symmetric μ-stable random variables. The intuitive way of
guessing a long time limit approximation of this process can be found by replacing sums with
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integrals:

Y (s) =
∫ s

0

∫ s′

0
dLμ(s′′) ds′ =

∫ s

0
Lμ(s′) ds′. (34)

Indeed the convergence in distribution of the discrete random walk Yn to the continuous
process Y (s) was proved in [54]. The latter can be thought of, according to above equation,
as an integrated symmetric Lévy flight. Now according to the spectral analysis discussion we
brought up in section 3, such process should actually be included in the class of correlated
motions discussed in the present paper. Indeed, we could also rewrite the double sum in
equation (33) as

Yn =
n∑

j=1

(n − j) ξ j. (35)

The analogous step for continuous time is formal integration by parts of equation (34):

Y (s) =
∫ s

0
(s − s′) dLμ(s′). (36)

Up to a constant prefactor, this exactly corresponds to our definition (11) with K = 1/μ + 1.
We thus find, in complete accordance with [53, 54], that the integrated Lévy flight is a μ-stable
process with superdiffusive scaling Y (s) ∼ sK = s1/μ+1.

Correlated waiting times however, are defined in [53, 54] in a slightly different manner.
There, consecutive waiting times δTn are taken from a symmetric Lévy flight, subject to a
reflecting boundary condition at δTn = 0. In short,

δTn =
∣∣∣∣∣∣

n∑
j=1

ζ j

∣∣∣∣∣∣ ,
Tn =

n∑
j=1

δTj =
n∑

j=1

∣∣∣∣∣
j∑

k=1

ζk

∣∣∣∣∣ , (37)

where the ζ j are independent, symmetric α-stable random variables with 0 < α � 2. The
continuous version is

T (s) =
∫ s

0

∣∣∣∣∣
∫ s′

0
dLα(s′′)

∣∣∣∣∣ ds′ =
∫ s

0
|Lα(s′)| ds′, (38)

which is not a stable process [54], and hence cannot be represented by any of our correlated
laboratory time processes (13). Still, there is a formal analogy in scaling behaviours. It is
easy to show that the integrated Lévy flight on the positive half-line, equation (38), is self-
similar with T (s) ∼ s1/α+1. The present model yields the same scaling for G = 1/α + 1;
interestingly, this corresponds to a single integration of a one-sided α-stable motion. In the
case of independent Gaussian jump lengths, μ = 2 and K = 1/2, such scaling produces
subdiffusive dynamics X (t) ∼ tK/G = tα/[2(1+α)], as previously found in [53].

6. Conclusions

The correlated continuous time random walk (CCTRW) we introduced here combines the
effects of displacements with infinite variance, sojourn times with infinite mean and long-
range temporal correlations. It is thus applicable to a wide range of complex, heterogeneous
systems. We found that the PDF is very distinct from an ordinary Gaussian distribution. We
studied its shape extensively, revealing information contained in the tail properties and the
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detailed behaviour around the origin. However, care must be taken when assessing the effects
of correlations: processes with contrasting jump length and waiting time correlations can be
indiscernible on the level of scaling and propagator analysis.

Moreover, we classified CCTRWs in the context of processes with stationary increments of
higher order. Such considerations indicate an intimate connection between strong correlations
and higher, possibly fractional-order integrals of stochastic noise processes.

Further studies of this process should include an in-depth discussion on the actual
correlations within the correlated model. This question is particularly intricate, on the one hand,
for scale-free displacements (μ < 2), since the ordinary correlation function 〈X (t1)X (t2)〉 is
ill-defined. But even for CTRW dynamics with μ = 2, on the other hand, the issue of
inter-dependences is a subtle one. By means of simple subordination arguments, one can
show that the increments—and by this any notion of ‘velocities’—of an unbounded, possibly
CCTRW are uncorrelated. Yet, they are not stochastically independent (see e.g. [32]). It thus
remains an open question how (or if) correlation functions can be used to determine and assess
dependences, especially within CCTRW data12.

It would also be interesting to study a process where correlations within displacements
and waiting times are coupled, such as Lévy walks. Finally, the physical properties of such
processes such as ageing or (non-)ergodicity will be of interest.
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Appendix. Asymptotic distributional stationarity of higher order increments

We establish here the asymptotic behaviour of increments of arbitrary order for the correlated
stable motion Y (s) as defined through equation (11). Recall that by the term ASD we designate
the asymptotic long-time stationarity of a single-time distribution.

First, rewrite the correlated motion Y (s), equation (11), as

Y (s) = (μK)1/μ

∫ ∞

0
M(s − s′) dLμ(s′), M(s) = θ (s) sK−1/μ, (A.1)

with θ denoting the Heaviside step function, i.e. θ (s � 0) = 1 and θ (s < 0) = 0.
The nth order increments, equation (16), have a similar stochastic integral representation,

namely

�(n)Y (s; τ1, . . . , τn) = (μK)1/μ

∫ ∞

0
M(n)(s − s′) dLμ(s′) (A.2)

with associated integration kernels

M(1)(s; τ ) = M(s + τ ) − M(s)

M(2)(s; τ1, τ2) = M(1)(s + τ2; τ1) − M(1)(s; τ1)

...

M(n)(s; τ1, . . . , τn) = M(n−1)(s + τn; τ1, . . . , τn−1) − M(n−1)(s; τ1, . . . , τn−1).

(A.3)

12 In this context it is interesting to note that even for a standard renewal subdiffusive CTRW with μ = 2, the
presence of spatial confinement may introduce anticorrelations in the velocity correlation function that are practically
indistinguishable from the velocity correlator of FBM [55].
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The characteristic function of the distribution of nth order increments is related through

log{〈exp[ik�(n)Y (s; τ1, . . . , τn)]〉}
= −μK|k|μ

∫ ∞

0
|M(n)(s − s′; τ1, . . . , τn)|μ ds′

= −|k|μ(
I(n)
μ,K (s) − I(n)

μ,K (−∞)
)

(A.4)

with

I(n)
μ,K (s) = μK

∫ s

0
|M(n)(s′; τ1, . . . , τn)|μ ds′. (A.5)

The question of whether or not such distribution has a nontrivial limit for s → ∞ is
determined by the integral I(n)

μ,K (s) and hence by the tail asymptotics of the integration kernel
M(n)(s). Notice that the step function θ (s) in the process kernel (A.1) passes on to the increment
kernels (A.3) and contributes in the form θ (s+τ1), θ (s+τ2), . . . , θ (s+τ1+τ2), θ (s+τ1+τ3),...,
etc. It thus defines several lower bounds for the integral I(n)

μ,K (−∞). Conversely, for s � 0, all
step functions entering the integral I(n)

μ,K (s) are identically equal unity. At this point, we have
to distinguish two parameter classes.

First, we can have K = 1/μ+m for some nonnegative integer m. Then the process kernel is
M(s � 0) = sm, and we can use standard polynomial calculus. One can show that for all n � m
increment kernels M(n) are polynomials of degree m−n and thus the nonstationary contribution
I(n)
μ,K (s) grows indefinitely for large s. Conversely, for n � m+1, M(n) vanishes identically and

so does the nonstationary contribution to the characteristic function. In particular, we have the
Lévy stable motions, m = 0, K = 1/μ, with stationary increments of all orders n � 1.

Now consider the second class of parameter pairs, i.e. K �= 1/μ + m for all nonnegative
integers m. In this case, the process kernel is a noninteger power-law, and we recursively find
tail asymptotics

M(n)(s; τ1, . . . , τn) ∼ τn

(
∂M(n−1)

∂s

)
(s; τ1, . . . , τn−1) (A.6)

for s � τ1 + · · · + τn. This implies the explicit tail behaviour,

M(n)(s; τ1, . . . , τn) ∼ τ1 · · · τn

(
∂nM

∂sn

)
(s)

= �(K − 1/μ)

�(K − 1/μ − n)
τ1 · · · τn sK−1/μ−n, (A.7)

so for the ultimate time dependence of the nonstationary part of the characteristic function,
we get

I(n)
μ,K (s) ∼ μK

∣∣∣∣ �(K − 1/μ)

�(K − 1/μ − n)
τ1 · · · τn

∣∣∣∣μ
×

⎧⎨⎩
const, for n > K,

log(s), for n = K,

[μ(K − n)]−1 sμ(K−n), for n < K.

(A.8)

Hence, only increments of order n > K are ASD, while all lower order increments are
spreading indefinitely with time.
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[46] Teuerle M, Wyłomańska A and Sikora G 2013 J. Stat. Mech. P05016
[47] Mathai A M, Saxena R K and Haubold H J 2009 The H-Function, Theory and Applications (Berlin: Springer)
[48] Kilba A A and Saigo M 1999 J. Appl. Math. Stochastic Anal. 12 191
[49] Turchin P 1998 Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in

Plants and Animals (Sunderland, MA: Sinauer)
[50] Kareiva P M and Shigesada N 1983 Oecologia 56 234
[51] Bovet P and Benhamou P A 1988 J. Theor. Biol. 131 419
[52] Bartumeus F and Levin S A 2008 Proc. Natl Acad. Sci. USA 105 19702
[53] Tejedor V and Metzler R 2010 J. Phys. A: Math. Theor. 43 082002
[54] Magdziarz M, Metzler R, Szczotka W and Zebrowski P 2012 Phys. Rev. E 85 051103

Magdziarz M, Metzler R, Szczotka W and Zebrowski P 2012 J. Stat. Mech. 2012 P04010
[55] Burov S, Jeon J-H, Metzler R and Barkai E 2011 Phys. Chem. Chem. Phys. 13 1800

22

http://dx.doi.org/10.1103/PhysRevLett.107.260601
http://dx.doi.org/10.1088/0305-4470/37/46/L02
http://dx.doi.org/10.1088/1742-5468/2013/05/P05016
http://dx.doi.org/10.1155/S1048953399000192
http://dx.doi.org/10.1007/BF00379695
http://dx.doi.org/10.1016/S0022-5193(88)80038-9
http://dx.doi.org/10.1073/pnas.0801926105
http://dx.doi.org/10.1088/1751-8113/43/8/082002
http://dx.doi.org/10.1103/PhysRevE.85.051103
http://dx.doi.org/10.1088/1742-5468/2012/04/P04010
http://dx.doi.org/10.1039/c0cp01879a

	1. Introduction
	2. Model definition
	2.1. Lévy flights
	2.2. Continuous time random walks
	2.3. Correlated continuous time random walks

	3. Stationarity
	4. Time scaling analysis and probability density function
	5. Comparison with other models of correlated motions
	6. Conclusions
	Acknowledgments
	Appendix. Asymptotic distributional stationarity of higher order increments
	References



