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We study time averages of single particle trajectories in scale-free anomalous diffusion processes, in

which the measurement starts at some time ta > 0 after initiation of the process at t ¼ 0. Using aging

renewal theory, we show that for such nonstationary processes a large class of observables are affected by

a unique aging function, which is independent of boundary conditions or the external forces. Moreover,

we discuss the implications of aging induced population splitting: with growing age ta of the process, an

increasing fraction of particles remains motionless in a measurement of fixed duration. Consequences for

single biomolecule tracking in live cells are discussed.
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Recently there is growing interest in the diffusive prop-
erties of single molecules or microscopic tracer particles in
living biological cells [1,2] since such information pro-
vides insight into molecular regulation and signaling
underlying cellular biology [3]. Similar particle tracking
methods are used to analyze complex fluids [4,5]. This
field is opening up new perspectives in nonequilibrium
statistical mechanics revealing, in particular, phenomena
such as anomalous diffusion, weak ergodicity breaking,
and population splitting as discussed in this Letter.

Population splitting is a widely observed phenomenon in
single biomolecule experiments where a fraction of the
molecules is immobile (or extremely slow) while the com-
plimentary fraction is mobile. Such two-phase dynamics
was observed for the motion of lipids in phospholipid
membranes [6], single protein molecules in the cell nucleus
[7], H-Ras on plasma membranes [8], and of membrane
proteins [9]. The immobile fraction is also often found in
fluorescence recovery after photobleaching experiments
[6]. Here, we come up with a novel single molecule popu-
lation splitting mechanism which is controlled by the age
of the system ta. This aging population splitting has broad
consequences for the way we report statistical properties of
single molecule experiments, which can be made either
with respect to the total population or with respect to the
mobile fraction.

Let us first look at a Brownian particle in water at room
temperature. Since the studies of Nordlund [10], experi-
mentalists have tracked individual trajectories of particles
and used the information for precise measurements of
diffusion constants. Consider a particle, that was immersed
in the medium at time t ¼ 0 while the experimental obser-
vation starts at the ‘‘aging time’’ ta � 0. The time averaged

mean squared displacement �2 (TAMSD) is a measure of
the diffusivity. It is defined through the trajectory xðtÞ, which
is recorded in the time interval (ta, ta þ T), in terms of

�2 ¼ 1

T ��

Z taþT��

ta

½xðtþ �Þ � xðtÞ�2dt; (1)

with the lag time � � T. At finite measurement time T the
TAMSD (1) is usually averaged over many trajectories to

produce the smooth quantity h�2i. In experiments we may
have ta ¼ 0, namely the start ofmeasurement coincideswith
the immersion of the observed particle in the medium. In
contrast, the particle may be immersed long before the start
of the measurement, and in some cases we may not even
know the aging time ta. Luckily, for Brownian motion, ta is
an irrelevant time scale. Because of the stationary increments

of Brownian motion, even if ta � T, one finds �2 � 2K1�
where K1 is the diffusion coefficient of the Brownian mo-

tion.We say that no aging occurs since�2 is ta independent.
A far more challenging behavior is encountered when

the medium is strongly disordered. As originally pointed
out by Bouchaud in the context of spin glass dynamics
[11], strongly disordered systems may exhibit weak ergo-
dicity breaking [12]. Roughly speaking, this implies non-
stationary dynamics, where certain sojourn times t in
microstates of the system become asymptotically power-

law distributed, c ðtÞ ’ t�ð1þ�Þ with 0<�< 1, leading to
a diverging mean sojourn time (see more details below).
This in turn causes the inequivalence of long time and
ensemble averages [13–21]. Imagine that at time t ¼ 0
we immerse an ensemble of particles in such a disordered
system. The particles diffuse in the interval (0, ta), and
some of them get trapped in the associated energy land-
scape containing deep traps. At time ta, one starts measur-

ing individual particle trajectories and the TAMSD �2 is
recorded. If the life times of particles in the traps are finite,
eventually all particles will exhibit normal behavior, like
Brownian particles. If the traps are perfect sinks, i.e.,
infinitely deep traps, we again get trivial behavior: all
particles become localized. However, when we encounter
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power-law trapping times, a wealth of interesting behaviors
emerges. This includes widely investigated phenomena such
as anomalous diffusion (namely, hx2i ’ t� [22]) and weak
ergodicity breaking [13,14,21]. Here we investigate the de-

pendence of h�2i on the aging time ta as well as the finger-
print of ergodicity breaking under aging condition, namely,

we compute precisely the fluctuations of �2 showing that
they strongly depend on ta. This yields new perspectives on
weak ergodicity breaking since, so far, the effect of aging on
time averaged observables has not been investigated. As we
show, knowledge of these effects is crucial for a meaningful
physical interpretation of single trajectory measurements.

For the TAMSD h�2i, we find a simple relation between
the aged (ta > 0) and nonaged (ta ¼ 0) cases,

h�2i ¼ ��ðta=TÞh�2ita¼0; with

��ðzÞ ¼ ð1þ zÞ� � z�;
(2)

in which the multiplicative factor �� carries the entire
dependence on the aging time ta and 0<�< 1 is the

anomalous diffusion exponent. In Eq. (2), h�2ita¼0 ¼
2K��=½�ð1þ �ÞT1��� is the solution for the nonaged
case ta ¼ 0 [13,14]. Equation (2) shows an elegant con-
nection between aged and nonaged systems through
��ðta=TÞ, which serves as a clock determining the age of
the process. Importantly, we show the universality of this
result here, by extension to a wide class of physical observ-
ables beyond the TAMSD and for external force fields.

CTRW model.—Anomalous diffusion based on power-
law distributions of waiting times c ðtÞ is naturally described
in the continuous time random walk (CTRW) model. The
CTRWmodelwas conceivedbyMontroll andWeiss [23] and
further developed byMontroll, Scher, and Shlesinger [24]. In
a CTRW [25], the position coordinate x of the walker is an
accumulation of random jump lengths�xi. Aftern jumps the
walker’s position is xðnÞ ¼ P

n
i¼0 �xi. The �xi are indepen-

dent, identically distributed (IID) randomvariables with zero
mean and finite variance�2. Jumps are separated by random
IID waiting times, drawn from the common distribution
c ðtÞ. This implicitly defines a counting process nðtÞ, the
random number of steps up to time t [25]. The statistics of
the overall diffusion process xðtÞ ¼ xðnðtÞÞ is derived from
both constituents, amethod commonly called subordination
[26–29]. For a large variety of physical applications of
CTRW, see Refs. [22,24]. In particular, CTRW dynamics
was identified in single particle tracking in living cells [1].
We first discuss the counting process nðtÞ.

Aging renewal theory.—The effect of the aging time ta in
subdiffusive CTRW is investigated in the framework of
aging renewal theory [30,31]. Since waiting times are
independent, nðtÞ is a renewal process, which we assume
to start at t ¼ 0 . Waiting times are power-law distributed,

c ðtÞ � ��t�ð1þ�Þ=j�ð��Þj (0<�< 1), with scaling fac-
tor �. In our study of the aging properties of the process, we
consider the number of jumps naðta; tÞ ¼ nðtþ taÞ � nðtaÞ

in the interval (ta, ta þ t). In the limit of large times ta,
t � �, the corresponding probability density for na in
double Laplace space, ðta; tÞ ! ðsa; sÞ, becomes [30,32]

pðna; sa; sÞ ¼ �ðnaÞ
s

�
1

sa
� hðsa; sÞ

�
þ hðsa; sÞ

s1��
��e�naðs�Þ� :

(3)

Remarkably, the occurrence of the term �ðnaÞ shows that
there is a nonzero probability for the particle not to perform
any steps at all. To see this, note that the density of waiting
times t1 for the first jump to occur after start of the mea-
surement at ta is hðsa; s1Þ ¼ ½1� ðs1=saÞ��=ðsa � s1Þ, i.e.,
hðta; t1Þ ¼ ½sinð��Þt�a �=½�t�1 ðta þ t1Þ� [30,33,34]. In the
limit � ! 1, the number of jumps na and real time t are
equivalent, pðna; ta; tÞ ¼ �ðna � t=�Þ, and � is the typical
time for a single jump to occur. In contrast, for �< 1,
Eq. (3) shows that na is random and varies continuously
between 0 and 1. After Laplace inversion,

pðna; ta; tÞ ¼ ½1�m�ðt=taÞ��ðnaÞþm�ðt=taÞpmðna; ta; tÞ:
(4)

Here, m� is the probability to have a nonzero number of
steps during (ta, ta þ t), for which [33,35]

m�ðt=taÞ¼Bð½1þ ta=t��1;1��;�Þ=½�ð1��Þ�ð�Þ�; (5)

withm��1 for ta� t, andm��ðt=taÞ1��=½�ð�Þ�ð2��Þ�
for ta � t. Bðz; a; bÞ is the incomplete beta function
[36,37]. pm is the conditional probability for the mobile
population, i.e., for na > 0. For strong aging ta � t, it is
given in terms of a Fox H-function [37,38],

pmðna; ta; tÞ��ð2��Þ
ðt=�Þ� H1;0

1;1

�
na

ðt=�Þ�
�������� ð2� 2�;�Þ
ð0;1Þ

�
; (6)

which is explicitly independent of ta. Equation (3) defines
the average of any function ofna, e.g., theqth ordermoment

hnqaðsa;sÞi¼�ðqþ1Þðs�a �s�Þ=½��qs�a ðsa�sÞs1þ�q�; (7)

used below. After dual Laplace inversion we obtain

hnqaðta; tÞi ¼ �ðqþ 1Þ=½�ð�Þ�ð1þ �q� �Þ�
� ½ðtþ taÞ=���qBðt=½tþ ta�; 1þ �q� �;�Þ:

(8)

Thus, the number of steps during a time interval t is not
stationary: the moments for the period [0, t] clearly differ
from those for [ta, ta þ t]. hnqaðta; tÞi scales as ’ t�q at
ta ¼ 0, and vanishes as ’ t��1

a t1��þ�q for ta=t � 1.
Equations (4)–(6) show a twofold effect of aging: (i) in

an ensemble of CTRW particles a finite fraction always
stays immobilized during (ta, ta þ t). Only at ta ¼ 0, this
effect is negligible and pðna; 0; tÞ � pmðna; 0; tÞ. With
increasing age ta, the population splits into two, and
the mobile fraction m� decreases algebraically towards 0
as ta grows. (ii) Even if we solely consider the mobile
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fraction, their stepping statistics, and thus pm, change with
growing ta. Both effects have to be considered carefully
when interpreting diffusion data.

Aging CTRW.—We now add the position coordinate to
our description. For IID jump lengths �xi, the jump process
xðnÞ converges to free Brownian motion in the large-n
limit. The anomalous diffusion process xðtÞ ¼ xðnðtÞÞ
inherits the aging properties of the counting process nðtÞ.
Thus, consider the qth order TA moment

�q ¼ 1

T ��

Z taþT��

ta

jxðtþ�Þ � xðtÞjqdt; (9)

useful to characterize experimental data [39]. For free

Brownian motion xðnÞ, we know that hjxðn2Þ � xðn1Þjqi ¼
21�q=2�ðqÞ�qjn2 � n1jq=2=�ðq=2Þ. Since xðnÞ and nðtÞ are
independent, by help of Eq. (8) the qth order TA moment
becomes

h�qi ’ ��ðta=TÞ�ðqþ 1Þ½K��
��q=2

�ð�þ 1Þ�ð2� �þ �q=2Þ
�
�

T

�
1��

(10)

at � � T. Here K� ¼ �2=ð2��Þ [22]. Interestingly, ta
effects only enter the prefactor ��ðta=TÞ, generalizing
Eq. (2) to arbitrary order moments. Moreover, even when

ta of different trajectories is random, the � scaling of �2

remains unaffected, only the prefactor is changed.
However, when extracting quantitative information from

time series such as the diffusion constant K�, we need to
account for the population splitting. Figure 1 shows simu-
lations results for the TAMSD, Eq. (1). For ta ¼ 0, indi-

vidual �2 scatter around the ensemble average h�2i,
Eq. (10). In contrast, for the aged process (ta � T), h�2i
appears much lower than the shown individual trajecto-
ries. This is due to the fact that a significant fraction
1�m� of particles do not move during the measure-
ment. These trajectories are naturally not visible in a
logarithmic plot. In an experiment, diffusivities can
solely be extracted from data on the mobile particles.

We account for this categorization by considering the
mobile fraction only, which we denote by h	im. Compare

h�qi ¼ ��ðta=TÞh�qita¼0 � �ðT=taÞ1��h�qita¼0, where �
holds for the limit ta � T, with the mobile average

h�qim ¼ ��ðta=TÞ
m�ðT=taÞ h�

qita¼0 � �ð1� �Þ�
sinð��Þ h�qita¼0: (11)

We see that the average over the complete ensemble ulti-
mately indicates a suppression ’ ðT=taÞ1�� of dynamic
activity, whereas the restriction to the fraction of mobile
particles significantly softens the dampening effect of
aging. In the limit ta � T, the time averages (11) are
expected to be reduced merely by a constant factor com-
pared with the nonaged case ta ¼ 0.
If we consider ratios of TA moments of the form [39]

h�qi
h�pi ¼ h�qim

h�pim
¼ aq

ap
ðK��

�Þðq�pÞ=2; (12)

with aq ¼ �ðqþ 1Þ=�ð2� �þ �q=2Þ, these are bare of

any dependence on ta or T, or restriction to mobile parti-
cles. With Eq. (12), one can experimentally determine K�

and � without having to care about aging effects.
In a biological cell, the diffusive motion of a tracer

particle is spatially confined. To address such systems we
determine the TAMSD in the presence of an external
potential. As a generic example, we consider the harmonic
potential �x2=2. The Langevin equation for xðnÞ is
dx=dn ¼ ��xðnÞ þ �ðnÞ, �ðnÞ being white Gaussian
noise with h�ðn1Þ�ðn2Þi ¼ �2�ðn2 � n1Þ [40]. Thus, xðnÞ
is a stationary Ornstein-Uhlenbeck process. Its increments
are Gaussian variables of variance h½xðn2Þ � xðn1Þ�2i ¼
�2½1� expð��jn2 � n1jÞ�=�. From above subordination
approach, we find

h�2i ¼ ��ðta=TÞ
�ð1þ �Þ

2K��

T1��
E�;2ð����

�Þ; (13)

with the generalized Mittag-Leffler function E�;2

(see the Supplemental Material [37]) and �� ¼ �=��.

Asymptotically, h�2i ’ � for � � ��1=�
� and ’ �1�� for

� � ��1=�
� [21]. Despite the introduction of the intrinsic

time scale ��1=�
� , the TAMSD for ta > 0 is simply multi-

plied by ��.
In fact, this is a general feature of the TA of a large class

of observables Fðx2; x1Þ,

h �Fi ¼ 1

T � �

Z taþT��

ta

hFðxðtþ �Þ; xðtÞÞidt; (14)

where the random quantity F may represent moments
[Fðx2; x1Þ ¼ jx2 � x1jq] or correlation functions. We only
require that F fulfill hFðxðn2Þ; xðn1ÞÞi ¼ fðjn2 � n1jÞ.
Thus, fðnÞ ¼ �2n for the second moment of unbounded
motion [cf. (1)], or fðnÞ ¼ �2½1� expð��nÞ�=� in a har-
monic potential. In these cases we find [35]
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FIG. 1 (color online). TAMSD �2 for individual free CTRW
trajectories (symbols) and theoretical mean Eq. (10) (bold black
lines). Each panel is based on 40 trajectories. Left: Nonaged case,
ta ¼ 0,m� ¼ 1. Right: Aged process, ta ¼ 1:75� 107 arb: units:
the immobile fraction 1�m� 
 80% of trajectories are absent in
the log-log plot.We chose�¼1=2, �¼�2¼1, and T ¼ 2� 106.

Note that the average over the full population h�2i is not represen-
tative of the average over the mobile population.
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h �Fi ¼ Cþ��ðta=TÞ
�ð1þ �Þ

gð�=�Þ
ðT=�Þ1��

; (15)

for � � T, with the constant C ¼ fð0Þ. The function g is
defined as gðsÞ ¼ s2��2LffðnÞ � fð0Þ; n ! s�g in Laplace
space [32]. In the limit � ! 0, the TA (15) reduces to the
constant C, the expectation value of the observable when
measured at identical positions. For example, if we study
correlations in an equilibrated process, Fðx2; x1Þ ¼ x2x1,
then C ¼ hx2i is the thermal value of x2. Conversely, C
naturally vanishes for TA moments of displacements,
Fðx2; x1Þ ¼ jx2 � x1jq, so it did not appear previously. We
observe that the lag time dependence enters exclusively
through the multiplicative function gð�=�Þ. For example,
for fðnÞ � nq, C ¼ 0, and we recover the previous result
(10). Finally, the factor �� only depends on the ratio ta=T
and the parameter �, and due to a factor T��1 any TA
converges to the constantC as T ! 1. Note that this depen-
dence on ta andT is universal in the sense that it is indifferent
to the specific choice of the observable F or model of the
jump process xðnÞ, but directly follows from the nature of the
aging counting process nðtÞ. In the Brownian limit � ¼ 1,
Eq. (15) reduces to h �Fi ¼ fð�=�Þ, restoring the equiva-
lence of ensemble and time averages and the stationarity.

Distribution of TAMSD.—Due to the scale-free nature of
the distribution c ðtÞ of waiting times all TAs of physical

observables, e.g., �2, remain random quantities, albeit with
a limiting distribution �ð�Þ for the dimensionless ratio

� ¼ �2=h�2i [9,17,41]. As contributions to TAs of the
form (1) occur at time instants when the particle performs

a jump, we expect that in the sense of distributions both �2

and na should be equivalent, �2 ¼d cna, for some nonran-
dom, positive c. In other words,

� ¼ �2=h�2i¼d naðta; TÞ=hnaðta; TÞi; (16)

for� � T. We may thus deduce the statistics directly from
the underlying counting process. In the Supplemental
Material [37] we provide numerical evidence for this
argument.

The distribution�ð�Þ for ta ¼ 0 is related to a one-sided
stable law [13]. For ta � T, Eqs. (16), (4), and (6), in the
limit � � T yield

�ð�Þ � ½1�m�ðT=taÞ��ð�Þ þm�ðT=taÞ�ð2� �Þ

� ðT=taÞ1��

�ð�Þ H1;0
1;1

�
�
ðT=taÞ1��

�ð�Þ
�������� ð2� 2�;�Þ
ð0; 1Þ

�
: (17)

The probability 1�m�ðT=taÞ for not moving during the
measurement (� ¼ 0) approaches one as ’ ðT=taÞ1��.
Figure 2 shows excellent agreement of Eq. (17) with
simulations and demonstrates the qualitative changes in
the probability density with growing age of the process.

Deviations from ergodic behavior are quantified by the

ergodicity breaking parameter, EB ¼ h�22i=h�2i2 � 1,
which is zero for an ergodic processs. Its magnitude

drastically depends on whether we focus on the mobile
population or not. For the full ensemble we find

EB ¼ 2�
Bð½1þ ta=T��1; 1þ �;�Þ

½1� ð1þ T=taÞ���2 � 1; (18)

while for the mobile fraction EBm ¼ m�ðT=taÞEB�
ð1�m�ðT=taÞÞ. If ta ¼ 0, then 0 � EB ¼ EBm � 1
reduces to the bounded result of Ref. [13]. In contrast, in the
strongly aged regime ta � T, EB diverges as EB�
2ðta=TÞ1��=½�ð1þ �Þ�, indicating huge fluctuations. This
is mainly due to the fundamentally different dynamics of
the two populations; concentrating solely on the mobile
group, we find that 0< EBm � 1 stays finite in the limit
ta=T ! 1. Figure 3 shows the behavior of EB.
Conclusions.—We investigated the effects of aging on

TAs of physical observables. Previous calculations of TAs
tacitly neglect the fact that often the preparation of the
system and start of the measurement do not coincide.
While this does not cause any problems for ergodic sys-
tems with rapid memory loss of the initial conditions, in
general this cannot be taken for granted in anomalous
diffusion processes. Here we showed for the case of
CTRW dynamics with scale-free waiting times that TAs
of arbitrary physical observables carry the common
factor ��. This factor is universal in the sense that it
only depends on the process age ta and the measurement
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FIG. 2 (color online). Scatter density �ð�Þ for different � and
m�. Lines: Eq. (7) from Ref. [13] (Left) and Eq. (17) (Right).
Symbols: Simulations of free CTRW. Note that the area under
the curves for the aged process (Right) is not unity, since the
fraction 1�m� of immobile events is not shown. We used �2 ¼
� ¼ 1 arb: units, � ¼ 100, T ¼ 2� 106, and ta ¼ 1:75� 107.
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FIG. 3 (color online). Ergodicity breaking parameter (18) as
function of � (Left) and ta=T (Right). Note that the nonergodic
fluctuations become larger with increasing ta.
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time T. When deducing solely the � scaling of the TAs
from data, aging effects are of minor impact. The aging of
the process, however, has a pronounced statistical effect,
the population splitting into mobile (m�) and immobile
(1�m�) fractions. This effect occurs despite the a priori
identical nature of the particles in our model system. It is a
direct consequence of the absence of a characteristic
sojourn time in microstates, which prohibits the onset of
steady state dynamics. Biological experiments [7] indeed
report a complex, nonstationary mechanism for the split-
ting of protein mobility populations. Future studies of
population splitting and its relation to the process age
might therefore be worthwhile both analytically and
experimentally.
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[6] G. J. Schütz, H. Schindler, and T. Schmidt, Biophys. J. 73,
1073 (1997) and references therein.

[7] T. Kues, R. Peters, and U. Kubitscheck, Biophys. J. 80,
2954 (2001).

[8] P. H.M. Lommerse, B. E. Snaar-Jagalska, H. P. Spaink,
and T. Schmidt, J. Cell Sci. 118, 1799 (2005).

[9] S. Manley, J.M. Gillette, G. H. Patterson, H. Shroff, H. F.
Hess, E. Betzig, and J. Lippincott-Schwartz, Nat. Methods
5, 155 (2008).

[10] I. Nordlund, Z. Phys. Chem. (Leipzig) 87, 40 (1914).
[11] J.-P. Bouchaud, J. Phys. I (France) 2, 1705 (1992).
[12] G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602 (2005);

A. Rebenshtok and E. Barkai, ibid. 99, 210601 (2007).
[13] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev.

Lett. 101, 058101 (2008).
[14] A. Lubelski, I.M. Sokolov, and J. Klafter, Phys. Rev. Lett.

100, 250602 (2008).
[15] T. Neusius, I.M. Sokolov, and J. C. Smith, Phys. Rev. E

80, 011109 (2009).
[16] T. Akimoto, E. Yamamoto, K. Yasuoka, Y. Hirano, and M.

Yasui, Phys. Rev. Lett. 107, 178103 (2011).

[17] I.M. Sokolov, E. Heinsalu, P. Hänggi, and I. Goychuk,

Europhys. Lett. 86, 30 009 (2009).
[18] M.A. Lomholt, I.M. Zaid, and R. Metzler, Phys. Rev.

Lett. 98, 200603 (2007); I.M. Zaid, M.A. Lomholt, and

R. Metzler, Biophys. J. 97, 710 (2009).
[19] D. Boyer, D. S. Dean, C. Mejı́a-Monasterio, and G.

Oshanin, Phys. Rev. E 85, 031136 (2012).
[20] X. Brokmann, J. P. Hermier, G. Messin, P. Desbiolles, J. P.

Bouchaud, and M. Dahan, Phys. Rev. Lett. 90, 120601
(2003); G. Margolin and E. Barkai, ibid. 94, 080601

(2005).
[21] S. Burov, J.-H. Jeon, R. Metzler, and E. Barkai, Phys.

Chem. Chem. Phys. 13, 1800 (2011); S. Burov, R. Metzler,

and E. Barkai, Proc. Natl. Acad. Sci. U.S.A. 107, 13228
(2010).

[22] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000);

J. Phys. A 37, R161 (2004).
[23] E.W. Montroll and G.H. Weiss, J. Math. Phys. (N.Y.) 6,

167 (1965).
[24] H. Scher and E.W. Montroll, Phys. Rev. B 12, 2455

(1975); M. F. Shlesinger, J. Stat. Phys. 10, 421 (1974);

H. Scher, M. F. Shlesinger, and J. T. Bendler, Phys. Today

44, No. 1, 26 (1991).
[25] B. D. Hughes, Random Walks and Random Environments,

Random Walks Vol. 1 (Oxford University, Oxford, UK,

1995).
[26] H. C. Fogedby, Phys. Rev. E 50, 1657 (1994).
[27] A. Baule and R. Friedrich, Phys. Rev. E 71, 026101 (2005).
[28] M. Magdziarz, A. Weron, and K. Weron, Phys. Rev. E 75,

016708 (2007).
[29] M.M. Meerschaert and H.-P. Scheffler, J. Appl. Probab.

41, 623 (2004).
[30] E. Barkai, Phys. Rev. Lett. 90, 104101 (2003); E. Barkai

and Y.-C. Cheng, J. Chem. Phys. 118, 6167 (2003).
[31] A. N. Lageras, J. Appl. Probab. 42, 1134 (2005).
[32] We express the Laplace transform fðsÞ¼LffðtÞ;t! sg¼R1

0 fðtÞexpð�stÞdt of a function fðtÞ by explicit depen-

dence on the Laplace variable s.
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