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Lateral diffusion plays a crucial role in numerous processes that take place in cell

membranes, yet it is quite poorly understood in native membranes characterized

by, e.g., domain formation and large concentration of proteins. In this article, we

use atomistic and coarse-grained simulations to consider how packing of

membranes and crowding with proteins affect the lateral dynamics of lipids and

membrane proteins. We find that both packing and protein crowding have a

profound effect on lateral diffusion, slowing it down. Anomalous diffusion is

observed to be an inherent property in both protein-free and protein-rich

membranes, and the time scales of anomalous diffusion and the exponent

associated with anomalous diffusion are found to strongly depend on packing

and crowding. Crowding with proteins also has a striking effect on the decay rate

of dynamical correlations associated with lateral single-particle motion, as the

transition from anomalous to normal diffusion is found to take place at

macroscopic time scales: while in protein-poor conditions normal diffusion is

typically observed in hundreds of nanoseconds, in protein-rich conditions the

onset of normal diffusion is tens of microseconds, and in the most crowded

systems as large as milliseconds. The computational challenge which results from

these time scales is not easy to deal with, not even in coarse-grained simulations.

We also briefly discuss the physical limits of protein motion. Our results suggest

that protein concentration is anything but constant in the plane of cell

membranes. Instead, it is strongly dependent on proteins’ preference for

aggregation.
1 Introduction

Lateral diffusion of lipids and proteins1,2 is one of the most significant dynamic
processes in cell membranes, as it governs a variety of phenomena such as formation
of membrane protein complexes and self-assembly of functional nano-scale
membrane domains known as lipid rafts.3 Understanding how these complex
processes take place in native cell membranes under biologically relevant conditions
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is key to unlocking many of the cellular functions. In this work, we focus on one of
the central issues in this context, that is, the effects of lipid packing and protein
crowding on lipid and protein diffusion.
In cell membranes, their local surface density depends quite substantially on lipid

composition. Membrane regions rich in polyunsaturated lipids are loosely packed,
while in cholesterol and sphingolipid rich regions the packing of lipids is much
tighter.4–6 Especially the latter situation is appealing since the concept of lipid rafts
is largely based on the interplay of cholesterol and sphingolipids that are abundant
in these highly ordered and packed domains. Considering the heterogeneity of cell
membranes and the spatially varying membrane density in the membrane plane,
there is reason to expect that lateral diffusion also depends on lipid packing. Exper-
iments on model membranes support this view.7,8

Meanwhile, given that in native membranes the (molar) ratio of proteins and
lipids has been suggested9,10 to vary roughly between 1 : 50 and 1 : 100, it is obvious
that membranes in living cells can be crowded with proteins.11 What does this mean
in practice? Assuming a typical phospholipid whose area per lipid is 0.64 nm2 and an
alpha-helical transmembrane peptide/protein whose diameter is 3 nm, then for a
protein-to-lipid number ratio of 1 : 50, the average distance between the proteins’
surfaces is about 3.2 nm. This suggests that in membranes crowded with proteins,
membrane-mediated protein–protein interactions may play decisive roles in lateral
diffusion.
Packing and crowding may also play a role in the nature of diffusion, since in

other biological contexts, such as in the cytoplasm of living cells it has been found
that diffusion of individual molecules at ‘‘short’’ time scales is anomalous12,13 (also
called subdiffusion), with the average mean-squared displacement scaling as a
power-law ta in time t with an anomalous scaling exponent a < 1.14 Similar behavior
has been suggested very recently for membrane channels in plasma membranes of
human kidney cells.15 At long times, if molecular motion is not confined to a certain
region, one expects a random walk-like normal diffusion with a ¼ 1.
While most of the discussion relates to normal diffusion occurring at long times

and large length scales, the concept and the biological relevance of crowding-
induced anomalous diffusion have recently received increased attention, opening
up new vistas for interesting implications. In the cytoplasm of living cells anomalous
diffusion of tracers such as labelled messenger RNA,12 lipid granules,13 or chromo-
somal loci16 have been observed on time scales of tens of seconds, in accordance with
control experiments in dense dextran17 or protein solutions.18 At longer times this
anomalous motion is of the type of viscoelastic subdiffusion. As found by Golding
and Cox12 as well as Guigas and Weiss,19 viscoelastic subdiffusion leads to increased
recurrence of the position coordinate and may lead to increased local reaction rates
of diffusing reactants. Anomalous diffusion may also lead to dynamical localisation,
as argued for chromosomal separation in eukaryotes from measurements of the telo-
mere motion,20 with similar consequences for the membrane channels investigated in
ref. 15. Finally, anomalous diffusion would strongly influence the dynamics of
surface-bulk exchange.21,22

As far as membrane proteins and lipids are concerned, the current understanding
of their lateral diffusion is almost completely based on considerations in rather ideal-
ized conditions compared to a real biological environment, as the issues due to, e.g.,
crowding, have not been clarified. Nonetheless, recent progress has provided a great
deal of new insight into the mechanisms and physical laws associated with lipid and
protein motion under protein-poor conditions. For instance, atomistic simulations
recently showed23 that the so-called free-volume theories24–26 often used to interpret
lipid diffusion data are incomplete, as they do not account for the proper diffusion
mechanism of lipids. Unlike assumed earlier, the mechanism by which lipids diffuse
in the plane of a membrane turned out to be a concerted one, based on tens of lipids
moving in unison as loosely defined dynamical clusters.23,27 These predictions based
on simulations were recently verified by quasi-elastic neutron scattering
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experiments.28 Also, it has been found that not only lipid diffusion but also protein
motion is based on concerted effects, as atomistic as well as coarse-grained simula-
tions have highlighted membrane proteins to diffuse as dynamical clusters together
with about 100 lipids around them,29 the size of the complex being much larger than
the size of the protein itself. As the current paradigm of membrane protein diffusion
in protein-poor membranes is based on the Saffman–Delbr€uck model,30 which
describes the protein diffusion coefficient in terms of physical parameters such as
protein size, even the understanding of lateral diffusion in protein-poor conditions
is an important goal.
However, when more complex situations have been considered, experiments have

shown that in native cell membranes the diffusion of proteins and lipids can be
distinctly different compared to simplified model systems.31–36 One of the striking
findings is that if identical proteins undergo lateral diffusion in the membranes of
seemingly identical cells, the diffusion coefficients determined for individual proteins
in different regions of a membrane may be quite different, differing by a factor of
five.33 This conclusion seems to hold true regardless of the fact that the motion of
the proteins has been followed up to macroscopic time scales. Meanwhile, diffusion
of lipids can also be quite complex. Recent super-resolution microscopy studies of
living cells have shown that the motion of lipids can be slowed down significantly
on time scales of the order of milliseconds and length scales of tens of nanometers,34

suggesting that there are unknown mechanisms to confine diffusion of specific lipid
types.
While these two examples are just suggestive, they highlight the complexity of

molecular motion in membrane systems. There are many factors that can affect
how rapidly molecules diffuse in membranes, and it is quite plausible that many
of them contribute at the same time. First, the roles of the actin and cytoskeleton
networks are often important, as they create domains that confine molecular
motion.35 Specific lipid–protein and protein–protein interactions can also
contribute, slowing down diffusion through complex formation. Lipids in the
vicinity of membrane proteins are known to diffuse much more slowly compared
to lipids far from proteins.29 Furthermore, it is clear that crowding can have an influ-
ence on lateral molecular motion, since with large enough protein concentrations the
motion of lipids and proteins will be blocked.32,37,38 Overall, one can conclude that
the complexity of native cell membranes renders studies of protein and lipid diffu-
sion quite difficult, and care is warranted when the results are being interpreted.
The main objective of this work is to shed light on the implications of crowding on

the dynamics of lipids and membrane proteins. This broad topic embraces consider-
ations of how lateral diffusion coefficients depend on crowding of proteins and
molecular packing of lipids, and how the time scales of anomalous diffusion and
its exponent relate to crowded conditions. For lipids, anomalous diffusion has
been identified in previous studies,39–41 but its biological significance has remained
unclear. As for membrane proteins, recent simulations have identified anomalous
diffusion to be an intrinsic property of protein motion under crowding,38 though
its biological relevance is not understood.
Here we have considered these topics from two complementary viewpoints. First,

we have elucidated crowding in the sense of packing through atomistic simulations of
protein-free lipid monolayers, with a purpose to understand how membrane density
affects lipid dynamics in the membrane plane. In a biological context, this is a rele-
vant question, e.g., during the respiratory cycle during which the monolayer-like
lung surfactant is first expanded and then compressed. Second, we investigated
how crowding of membrane proteins affects lateral dynamics in tensionless lipid bila-
yers. This topic is biologically highly relevant since—as mentioned above—native
cell membranes are rich in proteins.
We have found that anomalous diffusion is an inherent property in both protein-

free and protein-rich membranes, and that the time scales of anomalous diffusion
and the anomalous diffusion exponents of lipids and proteins strongly depend on
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packing/crowding. Strikingly, while in protein-poor conditions normal diffusion is
observed in hundreds of nanoseconds, in protein-rich (crowded) conditions the onset
of normal diffusion takes place in tens of microseconds, and in the most crowded
systems quite likely on time scales that are no less than milliseconds. Given that
the time scales associated with normal diffusion are so long, this matter has to be
accounted for in analysis of diffusion data, and especially in simulations where
the time scale problem is very severe even with coarse-grained simulation models.
Moving on, we also discuss physical limits of protein motion, paying attention to
the optimal protein concentration where protein diffusion would be fast enough
to enable sufficiently rapid motion over large length scales and also promote
protein–protein collisions needed for protein complex formation.
2 Methodology

2.1 Langmuir monolayers

We used atomistic molecular dynamics (MD) simulations to consider seven Lang-
muir monolayer systems with a mean molecular area ranging from 44 �A2 to 68
�A2, with a uniform spacing of 4 �A2. With this range of compression, the monolayer
states cover liquid condensed to liquid expanded phases. Further compression was
found to result in monolayer buckling, while further expansion induced formation
of holes.
The studied systems consisted of two monolayers separated by a water slab and a

thick vacuum region to separate the monolayers from one another (see Fig. 1 for
snapshots of individual monolayers in the systems). The monolayers contained
100 lipid molecules each, with the composition of 60 mol% dipalmitoylphosphatidyl-
choline (DPPC), 20 mol% palmitoyloleoylphosphatidylcholine (POPC), 10 mol%
palmitoyloleoylphosphatidylglycerol (POPG), and 10 mol% cholesterol, in
Fig. 1 Snapshots of the monolayer systems at a water–air interface at two different compres-
sions: a fairly compressed system with hAi ¼ 48 �A2 is shown above and a system with a lower
surface pressure and hAi ¼ 64 �A2 is depicted below. Lipids are drawn in the liquorice scheme
with DPPC presented in green, POPC in white, POPG in yellow, and cholesterol in orange.
Water is shown using the van der Waals scheme. For clarity, lipids on the sides have not
been truncated but there are still periodic boundaries on both sides. Snapshots have been
rendered with VMD.
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agreement with experimental measurements on the human lung surfactant.42 Exten-
sive hydration was achieved with 7235 water molecules. A concentration of 150
mMol of NaCl was included in order to mimic physiological conditions. Additional
sodium ions were added to neutralize the negative charges in POPG head groups.
Two systems with mean molecular areas equal to 48 �A2 and 64 �A2 are represented
in Fig. 1, showing clearly the difference in the ordering of their tails.
As described in our earlier work,43 the force fields used for lipids followed the

Berger description,44 for cholesterol we used the description of Holtje et al.,45 and
for water we used the TIP3P model.46 Salt and counterions were described by the
GROMACS force field.
All simulations were conducted using the GROMACS simulation package.47 The

leap-frog integrator was employed in all simulations with a time step of 2 fs. NVT
conditions were applied with temperature kept constant at 310 K with the Nos�e–
Hoover thermostat48 with a time constant of 0.5 ps. Electrostatics were handled
with the PME algorithm49 of the order of 4. The cut-off used between real and
inverse space calculations was 1 nm. The Lennard-Jones potential was cut-off at 1
nm and the neighbor list for the long-range interactions with a radius of 1 nm
was updated every 10 steps. All bonds were constrained with LINCS50 of the order
of 4. Further details of the simulation model and protocol can be found from ref. 43.
Three sets of simulations were performed with different sampling frequencies in

order to obtain information of lipid motion over a wide range of time scales from
tens of femtoseconds to hundreds of nanoseconds. The shortest simulations were
ran for 500 ps with data collected every 10 fs. The values for the second set were
10 ns and 100 fs, respectively. Finally, all the systems were simulated for at least
100 ns with coordinates saved every 10 ps. As the regime of normal diffusion was
not achieved even after 100 ns, the simulations of the limiting cases of the most
expanded and the most compressed systems were further extended to 660 ns and
610 ns, respectively. Data corresponding to the first 10% of the trajectories were dis-
carded in all analyses.
2.2 Membrane proteins in lipid bilayers

To consider the joint lateral diffusion of proteins and lipids in membranes, we used
coarse-grained (CG) models for two different one-component lipid bilayers to host
membrane proteins. The first set of bilayers was composed of dilinoleoylphosphati-
dylcholine (DLPC) lipids, while the second one was comprised of dipalmitoylphos-
phatidylcholine (DPPC) lipids. These bilayers were simulated with a varying number
of NaK channel (2AHY) proteins embedded in the membranes. The starting struc-
tures consisted of proteins positioned in a grid in the membrane plane.
The choice of these lipids and proteins was based on careful testing that concluded

their properties to be distinctly different with respect to protein aggregation. In
DLPC bilayers, NaK channels were found to avoid aggregation due to the minor
hydrophobic mismatch between the proteins and the lipid bilayer. In DPPC bilayers,
the situation was completely different, as NaK proteins were observed to prefer
forming aggregates due to their larger hydrophobic mismatch. Therefore, the choice
of lipids and proteins in our models is not based on their biological relevance but
instead is just pragmatic: with these choices we can model two different scenarios,
one preferring protein aggregation (DPPC) and another avoiding it (DLPC). In
this spirit, the DPPC and DLPC systems are from here on referred to as aggregating
(A) and non-aggregating (NA), respectively. Snapshots of chosen systems in the end
of simulations are shown in Fig. 2.
Both systems were studied with multiple protein-to-lipid ratios (1 : 50, 1 : 75,

1 : 100, 1 : 150, and 1 : 200 in each leaflet, see Table 1) to consider diffusion at
different levels of crowding. In addition, systems with a single protein embedded
in a bilayer were also considered to describe dilute (protein-poor) conditions that
we here denote as a protein-to-lipid ratio as 1 : infinity. The simulated systems
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Fig. 2 Snapshots of protein–lipid systems with selected protein-to-lipid ratios. The aggre-
gating DPPC system (A) is shown on the left hand side and the non-aggregating DLPC
(NA) system on the right. The upper images show the system with a protein-to-lipid ratio of
1 : 50 in each leaflet, and the lower ones the case with the protein-to-lipid ratio of 1 : 100 per
leaflet. In each case, the simulated system has been repeated four times (2 � 2) with periodic
boundary conditions to better visualize large-scale ordering. Snapshots correspond to the
end of each respective simulation. Proteins are colored in yellow and lipids in brown. Pictures
have been rendered with VMD.

Table 1 Details of the simulated protein–lipid systems. ‘‘A’’ stands for aggregating, ‘‘NA’’ for

non-aggregating, and ‘‘INF’’ stands for infinity. The number of proteins refers to the total

number in the bilayer. The number of lipids in the 1 : INF system is 2045 (DPPC) or 3000

(DLPC)

DPPC (A)

Protein-to-lipid ratio 1 : 50 1 : 75 1 : 100 1 : 150 1 : 200 1 : INF

No. of proteins 16 16 9 9 4 1

Size in x/y (nm) 27.4 31.3 26.1 30.9 23.4 25.1

Size in z (nm) 9.5 9.3 9.5 9.3 9.6 9.4

DLPC (NA)

Protein-to-lipid ratio 1 : 50 1 : 75 1 : 100 1 : 150 1 : 200 1 : INF

No. of proteins 16 16 9 9 4 1

Size in x/y (nm) 27.2 31.2 26.1 30.7 23.3 30.1

Size in z (nm) 9.3 9.4 9.2 9.3 9.2 9.1
contained one, four, nine, or sixteen proteins depending on the protein-to-lipid ratio.
For comparison with experimental studies, the surface area covered by proteins was
in the different DPPC–NaK systems as follows: 2.4% (1 : infinity), 11% (1 : 200),
15% (1 : 150), 21% (1 : 100), 27% (1 : 75), and 34% (1 : 50). The system dimensions
ranged between 23 and 31 nm along the bilayer (xy-plane). The thickness of the
system along membrane normal direction (z) was about 10 nm. These values are
listed in Table 1.
The molecules were modelled with a CG force field derived from MARTINI51–53

and modified for membrane peptides and proteins.54 The starting structure of the
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protein was also based on the earlier work discussed elsewhere.54 The simulations
were carried out using the GROMACS simulation package.47 The A-systems were
simulated for 26 ms and the NA-systems for 10 ms. Data were collected every 100
ps. The time step was fixed to 40 fs in all simulations. Data corresponding to the first
microsecond of simulation were discarded in all diffusion analysis to account for
equilibration. Below, the time scales reported for the CG models are the real simu-
lation times without a commonly used scaling factor of four51–53 that is used to
account for the faster dynamics in CG models compared to atomistic ones.
However, the diffusion coefficients reported below have been scaled by this factor.
The electrostatics were handled by potentials shifted to zero in the interval from

0 to 1.2 nm. The Lennard-Jones interactions were shifted in between 0.9 and 1.2 nm.
Neighbor lists with a radius of 1.2 nm were updated every 10 steps. NPT ensemble
was adapted and pressure was held constant at 1 bar with the Parrinello–Rahman
barostat55 with a time constant of 4 ps and compressibility of 4 � 10�5 bar�1. The
x and y directions were coupled together and z separately. The system was also
coupled to a heat bath at 310 K produced by the Nos�e–Hoover thermostat48 with
a time constant of 1 ps. No constraints were applied to the bonds.
2.3 Mean-squared displacement

The mean-squared displacement (MSD) curves act as a starting point for the diffu-
sion analysis. The MSD can be calculated as

MSD(t) ¼ h[ri(t + t0) � ri(t
0)]2i, (1)

where ri(t) is the location of the examined particle i at time t. Angular brackets
denote averaging over both time and the set of examined particles. Lateral diffusion
coefficient describing the pace of motion in the xy (membrane) plane is obtained
from the MSD as

DL ¼ lim
t!N

MSDðtÞ
4t

: (2)

TheMSD in eqn (1) is based on a time average taken over the time series r(t) of the
lipid motion. While viscoelastic subdiffusion is ergodic in the sense that in the limit
of long measurement times the ensemble average and the time average of the MSD
are identical for free motion56–58 (in contrast to anomalous diffusion with scale-free
waiting time distributions59 as observed in ref. 15), for finite measurement times
the amplitude of the time averaged MSD fluctuates around the ergodic value.57

A smooth curve may be obtained by averaging the time averaged MSD over indi-
vidual trajectories. Further, it is important to mention that the long-time limit in
eqn (2) means that DL should be determined from the region where MSD(t) � ta

with a ¼ 1.
In Langmuir monolayers, the MSD curves were computed for the 90 phospholipid

molecules in each monolayer (diffusion of cholesterol was not included in the anal-
ysis). The two monolayers in each system (separated by vacuum) were considered
independently, and the motion of the centre of mass (COM) of the examined mono-
layer was discarded before the analysis. This choice was made to avoid possible
issues, which could arise from the motion of the leaflet as a whole,60,61 and therefore,
in practice, the motion of each lipid’s COM was determined with respect to the
center of mass of the monolayer in which the given lipid resides. Data used in further
analysis were based on an average of MSD results of the two monolayers.
In protein–bilayer systems, the integral proteins anchor the leaflets to one another,

and hence the possible motion of the two bilayer leaflet COMs (compared to each
other) is expected to be much slower compared to membrane protein-free systems.
Given this, in bilayer systems we first removed the COM motion of the membrane
This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 161, 397–417 | 403



(by accounting for all lipids and proteins, but not water) and then determined the
displacements of particles’ COM to compute the MSDs.
2.4 Exponent associated with mean-squared displacement

We assume the mean-squared displacement to scale as a power-law in time as
follows:

MSD(t) � ta, (3)

where a ¼ a(t) is the time-dependent anomalous diffusion exponent. By definition,
the exponent can be obtained as the slope of log(MSD) versus log(t). In practice, the
MSD data are first translated to a logarithmic scale. However, as particle locations
are sampled at constant time intervals in our simulations, the data obtained are not
uniformly spaced in the logarithmic description. To fix this issue for further analysis,
a smoothing spline was fitted to the log–log data and the spline was sampled at
constant intervals in the logarithmic scale. This fitting procedure also smoothed
roughness in the data which occurs when data saved from different sets of simula-
tions with different saving frequencies overlap.
The time dependence of a was calculated by fitting a straight line to a moving

window containing 20 data points (represented in a log–log scale) both backward
and forward of the examined moment of time. This interval corresponds to 0.41
time units in logarithmic scale with a base of 10.
In a further step the anomalous motion should be scrutinised through additional,

complementary analysis tools to diagnose precisely the nature of the stochastic
motion of lipids and proteins. For instance, one may analyse moment ratios,62 the
velocity autocorrelation,57 or apply the p-variation method.63 The results of analysis
based on these tools will be discussed elsewhere.
3 Results

3.1 Diffusion in Langmuir monolayers

The MSD curves obtained from the longest simulations are shown in Fig. 3. The
data of the most compressed and the most expanded systems have been calculated
from the whole trajectory (>600 ns), resulting in better statistical quality compared
to the other cases where simulations lasted for 100 ns. Still, in all cases the MSD data
are fairly smooth.
Fig. 3 MSD curves of phospholipids in the monolayer systems, with colors corresponding to
different compression states. Dashed lines show the time range used in fitting eqn (2) to the
data.
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The data in Fig. 3 bring about a very important point which one should pay atten-
tion to in all the discussion below. That is, the MSDs in Fig. 3 are seemingly linear in
time, therefore supporting the idea that one could use eqn (2) to determine the diffu-
sion coefficient. However, as the data and the discussion below show, this is not the
case. Nonetheless, for the time being, let us assume that the assumption of MSD(t)�
t1 holds. Possible issues related to the calculation of the diffusion coefficient when
the exponent is less than one will be addressed and discussed later in the Discussion.
The diffusion coefficients obtained from fitting eqn (2) to theMSD data are shown

inFig. 4. The diffusion coefficients are consistent with the expected behavior that lipid
dynamics are faster the looser the packing in a monolayer. The diffusion coefficients
are also in agreement with experimentally and computationally measured values for
lipid diffusion in monolayers, if the effect of cholesterol is taken into account (see
discussion in ref. 43). Notably, even in the most packed system (44 �A2) the diffusion
coefficient is several orders of magnitude larger compared to diffusion in the gel
(solid-like) phase, where diffusion coefficients in lipid bilayers are1 of the order of
10�16–10�11 cm2 s�1, highlighting that all systems considered here are fluid.
3.2 Self-assembly of membrane proteins in bilayers

Before considering lateral diffusion in lipid bilayers with membrane proteins, it is
crucial to have well-defined systems that have equilibrated. To this end, the aggrega-
tion tendency of membrane proteins was investigated by calculating the number of
close contacts between proteins during the simulations. The calculation was per-
formed every 100 ns, analyzing the first 10 ms of all systems. Two proteins were
considered to be in close contact if the distance between their centres of mass in
the xy-plane was smaller than 1.7 times the initial maximum distance between the
beads of a protein and its COM.While protein radius is not easy to define, according
to our benchmarks on the validity of the chosen criterion, the chosen value was
found to best describe the limit at which there is a contact between two proteins.
The calculated aggregation maps are shown in Fig. 5.
The results (Fig. 5) confirm the conclusion which was readily hinted by Fig. 2:

proteins in A-systems start to form aggregates already after a few hundred nanosec-
onds and almost all proteins become connected to each other during the first micro-
second. The clusters of proteins are also stable in the A-system. This result also
supports our choice to discard the first microsecond of simulation data from the
analysis as the formation of protein aggregates takes about a microsecond.
In the NA-system, proteins tend to stay unconnected for up to microseconds and

some of them remain separated from other proteins during the whole 10 ms
Fig. 4 Diffusion coefficients of phospholipids in Langmuir monolayer systems as a function of
mean area per molecule.
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Fig. 5 The number of close contacts that each protein has with other proteins. The two upper
figures show the behavior in the aggregating DPPC system (A) with protein-to-lipid ratios of
1 : 75 (top) and 1 : 100 (second from top). The two lower plots show the number of close
contacts in the non-aggregating DLPC system (NA) with similar protein-to-lipid ratios of
1 : 75 (second from bottom) and 1 : 100 (bottom). Note that the color bars are scaled differ-
ently in systems with a different total number of proteins.
simulation. The aggregates in the NA-system are also able to break apart once they
are formed.
The difference in protein behavior between the two lipid–protein systems, and

especially the time it takes to form aggregates, cannot be explained by the speed
of lateral dynamics. The proteins in DLPC (NA) membranes have higher diffusion
coefficients compared to the DPPC (A) membranes (data to be shown below), thus
in the NA-systems the proteins meet other proteins on time scales shorter than those
in the A-systems. Yet, the aggregates form faster in the A-systems, which confirms
the higher aggregation tendency of proteins in the DPPC bilayer.
3.3 Diffusion in aggregating (A) protein system

With the first microsecond of data discarded, a total of 25 ms of simulation time was
considered for MSD calculation of the aggregating NaK–DPPC system. The MSD
curves for lipids are shown in Fig. 6 and for proteins in Fig. 7.
Fig. 6 suggests that the dynamics of lipids are faster in the less crowded systems, as

expected. Diffusion slows down even for minor protein concentrations, and this
effect is the stronger the larger is the concentration of proteins.
The effect of crowding on protein motion is even more dramatic than in the case of

lipids, see Fig. 7. The system with a protein-to-lipid ratio of 1 : 200 shows a drastic
slowing down of diffusion.
The lipid diffusion coefficients determined from the MSD curves with different

levels of crowding are listed in Fig. 8. The diffusion coefficients decrease almost line-
arlywith increasing protein-to-lipid ratio. The decrease arises in part from the effect of
blocking: as the protein content increases, there is less space for lipid motion, slowing
down diffusion. Confinement of lipids in cages formed by proteins strengthens this
effect (see Fig. 2), and it is likely that lipid–protein interactions play a role, too. In
experiments, in line with our data, proteins have been found to cause a significant
reduction in lateral diffusion rate of phospholipids in the plane of membranes.8
406 | Faraday Discuss., 2013, 161, 397–417 This journal is ª The Royal Society of Chemistry 2013



Fig. 6 MSD curves of lipids in the DPPC (A) systems with different protein-to-lipid ratios.
Dashed lines show the time range used in fitting eqn (2) to the data.

Fig. 7 MSD curves of proteins in the DPPC (A) systems. The time range used for fitting eqn
(2) is shown with a pair of dashed lines.

Fig. 8 Diffusion coefficients of lipids in membranes with different protein-to-lipid ratios: data
for DPPC (red) and DLPC (blue). INF stands for infinity. The diffusion coefficients in x and y
directions have been drawn with dashed and dotted lines of the same color, respectively, full
curve being the average.
The values for the diffusion coefficient in x and y directions were also calculated in
order to examine the possible anisotropic effects of wall-like structures formed by
protein aggregation. These coefficients are also shown in Fig. 8. Not surprisingly,
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in some systems lateral diffusion is not uniform in both directions in the plane. These
differences in x and y directions may also in part be due to finite size effects.
However, the differences are relatively small.
The diffusion of proteins is even more affected by crowding, see Fig. 9. First, for

the aggregating proteins, the dependence of protein diffusion coefficient on protein-
to-lipid ratio is stronger than linear. Second, its values span two orders of magnitude
in the case of the DPPC (A) system. A seemingly minor increase in protein content
from 1 : infinity to 1 : 200 slows diffusion down by a factor of four. In the most
crowded DPPC–NaK system protein motion has virtually stopped, which is
described by a very low value of the diffusion coefficient (about 1 � 10�10 cm2

s�1). When the diffusion coefficients of lipids and proteins are compared to each
other, the diffusion of proteins is slower by a factor of 5 (protein-poor) to 30
(protein-rich conditions).
If the diffusion of membrane proteins could be described in terms of hard disks

moving on a plane, then the protein diffusion coefficient would decrease linearly
for increasing area fraction covered by proteins.64 Based on Fig. 9, this behavior
holds approximately well at small protein-to-lipid ratios but breaks down around
1 : 150, where protein clustering becomes evident. Clearly, aggregation of proteins
plays a profound role in protein diffusion under crowding, and theoretical work
to describe this behavior would be welcome.
Experiments have shown quite generally that the lateral diffusion coefficient of

membrane proteins decreases for increasing protein concentration,32,37,65 in agree-
ment with our data.
3.4 Diffusion in non-aggregating (NA) protein systems

The analysis on the non-aggregating protein–DLPC system was performed similarly
as on the aggregating protein–DPPC system. The diffusion coefficients are depicted
in Fig. 8 and 9.
Diffusion coefficients of lipids in the non-aggregating systems are 1.5 to 5 times

higher than the values in the aggregating DPPC membranes. In the limit of small
protein concentration (1 : infinity), aggregation of proteins cannot affect lipid diffu-
sion, thus the main reason why DLPC and DPPC diffuse at a different pace in this
limit is the different viscosity (or alternatively a different membrane fluidity
described also by a different average area per lipid) of these lipid bilayers. If changes
in membrane viscosities are assumed to be similar in DPPC and DLPC bilayers with
Fig. 9 Diffusion coefficients of NaK channel proteins in membranes with different protein-to-
lipid ratios. Curves show lateral diffusion coefficients in DPPC (red) and DLPC membranes
(blue). INF stands for infinity.
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increasing protein density, then in the 1 : 50 ratio, the diffusion of DPPC is slowed
down by a factor of 3.6 compared to DLPC, and this difference is due to protein
aggregation.
Protein diffusion in the DPPC system is slowed down by a factor of 1.5 to 10

compared to DLPC, as the protein-to-lipid ratio is increased from 1 : infinity to
1 : 50, respectively. Again in the dilute protein system, the difference in protein diffu-
sion coefficients is due to different membrane viscosities in the DLPC and DPPC
bilayers. The remaining part is due to aggregation, or changes in membrane viscosity
associated with aggregation.

3.5 Anomalous diffusion exponent

3.5.1 Langmuir monolayer systems. As data on lipid diffusion in Langmuir
monolayers were collected in multiple simulations with different data saving inter-
vals, it was first combined for the log–log plots. The smoothed data, spanning almost
8 orders of magnitude, are shown in Fig. 10.
We can readily find three different regimes in Fig. 10. First, there is a regime cor-

responding to superdiffusive ballistic motion at very short time scales. In this regime,
the exponent a ¼ 2. Anomalous diffusion follows after a transition period and is
characterized by an exponent smaller than one. Finally, at long times, one finds a
transition towards normal diffusion characterized by an exponent a ¼ 1.
For further analysis, let us focus on how a behaves in time, see Fig. 11. It is readily

seen that the level of compression has a profound effect on the nature of diffusive
motion. At very short times the behavior in the monolayers subject to different
packing conditions is similar, characterizing ballistic motion. However, the curves
describing different packing conditions start to separate from each other in a time
scale of hundreds of femtoseconds.
Subsequently, superdiffusion changes into subdiffusion in about 1 picosecond,

and one finds a plateau consistent with subdiffusion with an exponent that is
approximately constant over several orders of magnitude in time, starting between
1 and 10 picoseconds. The subdiffusion exponents of the most compressed and
the most expanded systems were found to be quite low: 0.30 and 0.57, respectively.
The tighter the packing, the smaller the exponent.
After the subdiffusive regime, the exponents start to grow, expected to level off at

a value of one, thus describing normal random walk like diffusion at long times. In
the most expanded system the long-time regime was almost reached during the simu-
lations, and one can estimate that the onset of normal diffusion (sonset) in this case is
Fig. 10 Mean-squared displacements of lipids in Langmuir monolayers shown on a log–log
scale. The dashed gray lines show normal diffusion behavior with a ¼ 1. Color code used in
the curves is as follows: 44 �A2 (blue), 48 �A2 (brown), 52 �A2 (green), 56 �A2 (orange), 60 �A2

(cyan), 64 �A2 (black), and 68 �A2 (red).
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Fig. 11 Time evolution of the exponent a associated with the mean-squared displacement of
lipids in Langmuir monolayers. Color code used in the curves is as follows: 44 �A2 (blue), 48 �A2

(brown), 52 �A2 (green), 56 �A2 (orange), 60 �A2 (cyan), 64 �A2 (black), and 68 �A2 (red). Dashed
black line shows the expected extrapolation to ballistic behaviour (a ¼ 2), and the dashed
red and blue lines show extrapolation to normal diffusion (a ¼ 1) at long times. Dotted red
and blue lines guide the eye to the estimated time scales in which normal diffusion is reached,
and also to the subdiffusion exponent. Dashed gray line shows the normal diffusion exponent.
Error bars (considering the standard error of the mean) in the value of a are very small at short
times (�0.01) and increase slightly at longer times (�0.03).
close to 1 microsecond. Other, more compressed systems are expected to behave
similarly but less rapidly, and our best educated guess based on the data in
Fig. 11 suggests that the onset of normal diffusion ranges in these cases from about
1 to 10 microseconds.

3.5.2 Aggregating protein systems. For the DPPC system with protein aggrega-
tion, the time evolution of a for lipid motion is shown in Fig. 12. The corresponding
curve for protein diffusion is depicted in Fig. 13.
We stress that the data in this case have been collected at fairly long intervals of

100 picoseconds in order to focus on the long-time motion. Therefore, a plateau
associated with subdiffusion is not included in Fig. 12 and 13 (compared to
Fig. 11). It would appear at short times (<1 ns) if data of particle positions had
been saved more frequently.
Fig. 12 Exponent characterizing lipid motion in the aggregating DPPC systems. Curves are
colored as follows: 1 : 50 (blue), 1 : 75 (red), 1 : 100 (green), 1 : 150 (black), 1 : 200 (orange),
and 1 : infinity (cyan). Error bars (considering the standard error of the mean) in the value
of a are the smallest at short times (<0.01) and increase up to about �0.01 at 3 ms. Extrapola-
tions at the longest times (shown by dashed lines) are based on a conservative estimate of a(t)
between about 10–20 ms.
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Fig. 13 Exponent characterizing protein motion in the aggregating DPPC systems. Curves are
colored as follows: 1 : 50 (blue), 1 : 75 (red), 1 : 100 (green), 1 : 150 (black), 1 : 200 (orange),
and 1:infinity (cyan). Error bars are about �0.01 at short times and about �0.02 at the longest
times.
Let us first focus on lipid motion (Fig. 12). At times of the order of 1–100 ns, the
exponent in every case increases towards one, reflecting a tendency to aim for
random walk like motion. In the most dilute system with just a single membrane
protein, the regime of normal diffusion is indeed reached in about 100 ns. However,
in other systems where crowding of proteins becomes more prominent, the exponent
falls down and reaches a minimum at 1–10 ms, the exponent being the smaller the
more crowded the membrane is, and the time at which the minimum is observed
increasing for increasing crowding. We discuss this in more detail below.
The collisions of lipids with proteins become more and more frequent for

increasing protein concentration, giving rise to dynamical correlations in lipid
motion, which in turn is manifested as anomalous diffusion (a < 1) where the motion
of lipids has a memory. We find that the anomalous diffusion exponent decreases for
increasing protein concentration, in agreement with experiments by Horton et al.66

At very long times the lipids will undergo a random walk characterized by a¼ 1, and
therefore one can expect the curves in Fig. 12 to eventually recover to a value of one.
How long this takes is not clear, though. The data in Fig. 12 suggest that for inter-
mediate crowding (1 : 200, 1 : 150, 1 : 100) normal diffusion would be observed at
times of the order of 10 ms. For the most crowded systems (1 : 75, 1 : 50), the time
scale of reaching normal diffusion is considerably larger, and our best educated
guess based on interpolation of the data is that normal diffusion would be observed
at times of the order of 100 ms or even milliseconds.
Let us come back to Fig. 12 and discuss why the anomalous diffusion exponent

decreases at intermediate times. The data below (Fig. 16) for the non-aggregated
lipid–protein system do not highlight a similar major decrease in a, thus the drop
in the exponent cannot be due to lipid–protein collisions as such. Instead, it turned
out that the decrease in a is largely due to lipids whose motion is confined due to
proteins around them. As Fig. 2 shows, there are membrane regions where the lipids
are surrounded by proteins from all possible directions, confining their motion to a
limited part of the membrane. This is illustrated in Fig. 14, which shows a trajectory
of a single tagged lipid during a 25 ms simulation. The motion of the lipid is clearly
restricted, allowing it to access only part of the membrane surface. If the confine-
ment would continue over a period longer than the simulation time, then MSD
would converge to a constant value, implying that one would have a situation where
MSD(t) � t0. The data in Fig. 12 suggest that the waiting time of lipids to escape
confined regions is large, but it is smaller than the simulation time. This is also sup-
ported by the data in Fig. 15, which depicts time-averaged MSDs of all lipids in the
DPPC system one by one, and, more importantly, the distribution of the single-
particle-based anomalous diffusion exponents at times of 10 ns and 1 ms. The
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Fig. 14 Trajectory of a single tagged lipid in the DPPC–NaK system with a protein-to-lipid
ratio of 1 : 50 over a simulation time of 25 ms. Note confinement of the lipid into restricted
areas. The red arrow shows how the lipid escapes from one region, ending up in another,
moving through a narrow channel between the two.
distribution of a in both cases is quite broad, but importantly in the latter case (at 1
ms) there are no or just a few exponents close to zero but there are exponents equal to
one. In other words, the data indicate that while there are few lipids whose motion is
almost non-existent due to the caging effect of proteins, the confinement of lipids is
temporary. Also, at times of the order of a microsecond there are individual lipids
undergoing free random walk like diffusion.
In the case of protein motion, Fig. 13 demonstrates that the conclusions based on

lipid motion are largely valid also for protein motion. The main differences are the
smaller exponent values in protein motion, and the time scales that seem to be longer
for proteins compared to lipids. That is, normal diffusion is recovered in non-
crowded systems in about one microsecond, but in the highly crowded cases the
time required for accessing the normal diffusion regime is likely larger than in the
case of lipid motion.

3.5.3 Non-aggregating protein systems. In the non-aggregating DLPC–protein
systems, the time evolution of a for lipids is shown in Fig. 16. As it shows, the nature
of lipid diffusion in the non-aggregating protein system is somewhat different
compared to that of the aggregating DPPC system. Unlike in the DPPC–NaK
system (Fig. 12), here the dip in the exponent a is much less evident. Instead, there
Fig. 15 MSDs shown separately for each lipid in the DPPC–NaK system with a protein-to-
lipid ratio of 1 : 50. Also shown in insets are the distributions of anomalous diffusion exponents
at two different times (10 ns and 1 ms) to demonstrate their width and approximate Gaussian
profile.
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Fig. 16 Exponents determined from running fits for the MSD of lipids in non-aggregating
DLPC–protein systems. Curves are colored as in earlier plots: 1 : 50 (blue), 1 : 75 (red),
1 : 100 (green), 1 : 150 (black), 1 : 200 (orange), and 1 : infinity (cyan). Normal diffusion
behavior with a¼ 1 is shown with a gray dashed line. Error bars are as in Fig. 12. Extrapolation
at long times (shown by a dashed line) in the 1 : 50 case is based on a conservative estimate of
a(t) between 1–5 ms.
is almost a plateau covering about one order of magnitude in time from a few tens of
nanoseconds to a few hundred nanoseconds. The plateau is a common feature in all
non-aggregating systems. The system with a single protein (1 : infinity) finds the
normal diffusion regime in about 100 ns, whereas in the multi-protein systems the
diffusion becomes normal with a ¼ 1 at much longer times. Even minor crowding
(1 : 200) increases the onset of normal diffusion to about 1 ms. In more crowded
systems it is more difficult to estimate how long it takes to get to the normal diffusion
regime, but, again based on an educated guess, it ranges roughly between 10 and 100
microseconds.
Importantly, in the dilute case (1 : infinity) the time dependence of a in the aggre-

gating and non-aggregating systems is almost identical (see Fig. 12 and 16). The
differences between the DLPC–protein and DPPC–protein systems under crowding
are therefore not due to different dynamics of the lipid molecules but rather result
from alterations caused by the aggregation tendency of the proteins. Furthermore,
also important to stress is that atomistic Langmuir monolayer simulations and
coarse-grained lipid bilayer models are largely consistent with each other: in Lang-
muir monolayers with an area per lipid comparable to tensionless lipid bilayers (60–
68 �A2), normal diffusion is accessed in 100–1000 ns, which is also the case in coarse-
Fig. 17 Exponents determined from running fits for the MSD of proteins in non-aggregating
DLPC–protein systems. Curves are colored as in earlier plots: 1 : 50 (blue), 1 : 75 (red), 1 : 100
(green), 1 : 150 (black), 1 : 200 (orange), and 1 : infinity (cyan). Normal diffusion behavior with
a ¼ 1 is shown with a gray dashed line. Error bars are as in Fig. 13.
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grained model studies. The time scales predicted by the coarse-grained models are
therefore in the right ballpark (regarding the order of magnitude).
The plots for protein motion, see Fig. 17, show slightly different behavior

compared to the aggregating system (Fig. 13). The diffusion exponents a for
DLPC–protein membranes are larger than in the case of the aggregating DPPC
system and they reach a ¼ 1 to some extent faster.

4 Discussion and conclusions

Cell membranes modulate or even govern a variety of cellular functions. The key
molecules either responsible or at least involved in these functions are lipids and
membrane proteins. To understand their full role in cellular functions, one has to
understand the principles that control their lateral dynamics as the formation of
functional nanoscale membrane domains (with a specific set of proteins and lipids)
is based on lateral diffusion. However, while this dynamical process has been paid a
great deal of attention to, most of the previous studies have been based on rather
idealized conditions where the complexity of native membranes has not been taken
into account. One of the great challenges in this spirit is to understand the effects of
crowding on lipid and protein diffusion.
Here we have considered this topic from two complementary viewpoints, eluci-

dating the effects of lipid packing through considerations of Langmuir monolayers,
as well as the effects of protein crowding in lipid bilayers.
Simulations of Langmuir monolayers in the absence of proteins indicated that the

motion of lipids is to do with quite substantial memory effects manifested as anom-
alous diffusion that persist over a broad range of time. We observed that the anom-
alous diffusion exponent depends on the packing of the monolayer; increasing
packing leading to smaller exponent. In the same spirit, also the transition from
anomalous to normal diffusion was found to depend on how strongly the lipids
are packed, as increasing packing increases the onset of normal (random walk
like) diffusion. What is quite stunning is the magnitude of the characteristic time
needed to cross over from anomalous to normal diffusion (sonset). Even in fluid
monolayers where packing of lipids is low (like in the liquid-expanded phase), sonset
was found to be several hundred nanoseconds, and in the most compact monolayers
of the order of microseconds.
In simulations of lipid bilayers the objective was to further our understanding of

proteins’ role in lateral diffusion, when proteins either aggregate or stay apart from
each other. We observed the influence of protein crowding on lateral diffusion to be
strong. Increasing protein concentration slowed down both lipid and protein diffu-
sion, the slowing down being as large as a factor of 10 for lipids and 20–100 for
proteins. Recent simulation results by Domanski et al. are consistent with this
picture.38 We also explored the extent to which protein crowding can affect sonset,
thereby slowing down lateral dynamics. The observed effects associated with anom-
alous diffusion demonstrated the roles of blocking (entropy) and protein self-orga-
nization (aggregation). The system that promoted protein aggregation expressed the
strongest effects manifested as lipid and protein confinement, complemented by the
largest values we observed for sonset.
All simulated scenarios point to the fact that in systems that are highly packed or

crowded with proteins, the time it takes to access the regime of normal diffusion is
large. In protein-poor systems this ranges from 100 to 1000 ns. In protein-rich
systems with significant crowding, sonset can be of the order of milliseconds. Exper-
iments using biotinylated avidin lipid anchors as a crowding agent suggest66

that sonset could actually be much larger, of the order of 100 ms. Is this a potential
problem? In simulations it is, since availability of computer resources needed to
access millisecond simulations are not common. If one wanted to explore lipid
and/or protein diffusion in native-like membranes with a significant concentration
of proteins, one should carry out simulations that last for several milliseconds.
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Shorter simulations would not provide quantitatively reliable data for normal diffu-
sion. This stems from the fact that the definition of the lateral diffusion coefficient is
valid only in the limit of long times (see eqn (2)) for random walk like diffusion,
when a ¼ 1. If a < 1, as in anomalous diffusion, the diffusion coefficient is not
well defined. This is the case, e.g., when the simulation time is less than sonset. In
practice the simulation time should however be considerably longer, at least 10 �
sonset, to gather decent statistics for MSD up to times that are much longer than
the onset of normal diffusion sonset.
The above implies that the reader should consider our data for diffusion coeffi-

cients with reservation, too. Despite our best efforts and quite substantial computer
resources, even the longest of our simulations covered less than 30 microseconds.
Therefore, at least the diffusion coefficients of the most crowded protein systems
(1 : 50, 1 : 75, and 1 : 100) studied in this work are questionable. Quite likely they
are qualitatively in order, but quantitatively they are certainly compromised since
in those cases we were not able to gauge the times where a ¼ 1.
What is even more stunning are the conclusions of our atomistic Langmuir mono-

layer simulations, which set the minimal standard for atomistic simulations of lipid
diffusion in fluid membranes: the simulations should last at least for 1000 ns. This is
not good news given that the simulation time scale of typical atomistic MD simula-
tions of lipid membranes is currently of the order of 100 ns. Of course, one can use
such data for consideration of lateral diffusion, and one can extract the diffusion
coefficient too, but one should keep in mind that the quantity obtained in this
manner will be an effective one, describing subdiffusive behavior instead of long-
time (hydrodynamic) normal diffusion. The comparison of subdiffusive data deter-
mined from simulations with long-time scale diffusion data measured in experiments
would also be problematic, and comparison of trends would then be more meaning-
ful instead of comparing just quantitative numbers.
Quite unfortunately, the above scenario is yet the optimistic one, if one considers

the challenge to simulate long enough times. The above discussed views hold as long
as the lipids and proteins diffuse in a well-defined membrane domain. If the
membrane is characterized by formation of domains with different properties, or
if there is a need to consider diffusion in a membrane coupled to an actin-based
membrane skeleton, then one has to account for effects of domain boundaries
that typically slow down diffusion from one domain to another. The hydrodynamic
long-time diffusion would then take place at times much larger than those associated
with diffusion inside a single membrane domain. It is quite plausible that if one
wanted to consider lateral diffusion of proteins in heterogeneous membranes with
considerable domain formation, including the effects of actin-based confinement,
then the true normal diffusion in the hydrodynamic long-time limit would be
observed only in simulations of the order of seconds or minutes. While these time
scales are just an educated guess, they highlight the size of the challenge.
Finally, let us briefly discuss physical limits of protein motion. Following the ideas

of Dill et al., is there an optimal concentration of membrane proteins that would
maximize the speed of biochemical reactions?67 On the one hand, protein diffusion
should then be fast enough to enable sufficiently rapid motion over large length
scales. This idea would be best fulfilled in protein-poor membranes. On the other
hand, the optimal conditions should also promote protein–protein collisions needed
for protein complex formation, and this idea in turn would favor crowding. Using
hard sphere models for proteins in cytosol, Dill et al. predicted that the optimal
protein volume concentration would be 19%, compared to 20% observed in cells.67

In 2D membranes the validity of the hard disk model is less obvious, but what is
obvious is that the protein concentration cannot be too high, since otherwise protein
diffusion would become too slow as the data in Fig. 9 also demonstrate. Actually,
what is striking in Fig. 9 is the slowing down of diffusion in the aggregating
DPPC–NaK system, where protein diffusion slows down rather steeply down to a
protein-to-lipid ratio of 1 : 150. This corresponds to an area fraction of 15%
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occupied by the proteins. Similar diffusion in the non-aggregated DLPC–NaK
system is observed with the protein-to-lipid ratio of 1 : 50, corresponding to a
protein area fraction of 34%. If cells want to maximize their membrane protein diffu-
sion without sacrificing chances for biochemical reactions (in terms of protein
complex formation), then our data suggest that protein concentration is anything
but constant in the membrane plane but is strongly dependent on proteins’ prefer-
ence for aggregation.
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