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We study the ergodic properties of superdiffusive, spatiotemporally coupled Lévy walk processes. For

trajectories of finite duration, we reveal a distinct scatter of the scaling exponents of the time averaged

mean squared displacement �x2 around the ensemble value 3� � (1<�< 2) ranging from ballistic

motion to subdiffusion, in strong contrast to the behavior of subdiffusive processes. In addition we find a

significant dependence of the average of �x2 over an ensemble of trajectories as a function of the finite

measurement time. This so-called finite-time amplitude depression and the scatter of the scaling exponent

is vital in the quantitative evaluation of superdiffusive processes. Comparing the long time average of the

second moment with the ensemble mean squared displacement, these only differ by a constant factor, an

ultraweak ergodicity breaking.
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Suppose you are recording the trajectories of individual
blue sharks in the ocean over time. Calculating the time

averaged mean squared displacement (MSD) �x2 sepa-
rately for each shark you find that some animals appear to
move almost ballisticallywhile others appear tomovemuch
slower. Does this necessarily indicate that the animals
follow different generic motion patterns? Surprisingly, the
same disparity between individual trajectories under pre-
cisely identical physical conditions will be observed for the
motion of passive tracer particles in weakly chaotic trans-
port in a rotating annulus. As we show here for the cele-
brated Lévy walk (LW) model of superdiffusion identified
as the stochastic process behind themotion of the sharks [1]
and the tracers in the annulus [2], the intrinsic nonergodicity
in trajectories of finite length indeed gives rise to a wide
distribution of apparent scaling exponents. These exponents
may even range to subdiffusive values, although the
motion is produced from identical distributions. This sur-
prising finding is accompanied by a significant reduction

of the amplitude of �x2 at finite measurement times and
strongly contrasts the nonergodicity observed in subdiffu-
sive motion.

Blue sharks are indeed just one example of marine
predators followed over large distances that show scaling
laws in their foraging behavior consistent with LW dynam-
ics [1], similar to findings from other tracking studies of
animals or humans [3–5]. LWs are widely applied, inter
alia to describe intermittent chaotic systems [6–8], diffu-
sion in Josephson junctions [9], negative Hall resistance
[10], diffusion of atoms in optical lattices [11] and of light
in disordered media [12], blinking statistics of quantum
dots [13], movement strategies in mussels [14], or even
T-cell motility in the brain [15]. Many of these systems are
routinely analyzed on the single trajectory level.

Despite this ubiquity of LWs their ergodic behavior has
not been studied in detail. However the question of whether
a system is ergodic becomes relevant when instead of
the conventional MSD hx2ðtÞi ¼ R

x2Pðx; tÞdx defined as

ensemble average over the probability density Pðx; tÞ we
use time averages over single trajectories. For time series
xðtÞ of duration T the time averaged MSD is defined via

�x2ð�Þ ¼ 1

T � �

Z T��

0
½xðtþ �Þ � xðtÞ�2dt; (1)

� denoting the lag time. The behavior of �x2 has been
studied in detail for the case of subdiffusion, hx2ðtÞi ’ t�

with 0< �< 1, revealing distinct discrepancies between
ensemble and time averaged MSD for scale-free waiting
time processes [16–18]. This so-called weak ergodicity

breaking (WEB) means that hx2ð�Þi � �x2ð�Þ even for
long T [16,17], while other subdiffusive processes such
as fractional Brownian motion are ergodic in the sense that

hx2ð�Þi ¼ �x2ð�Þ for sufficiently long T [19,20]. Weak
ergodicity breaking has indeed been observed in experi-
ments, for instance, for the motion of protein channels in
the walls of living human kidney cells [21] and of lipid
granules in living yeast cells [22].
To study the ergodic properties of LWs we recall their

definition within continuous time random walk (CTRW)
theory [23]. A CTRW is based on the joint distribution
�ðx; tÞ. For each jump we draw from �ðx; tÞ a random
waiting time t and jump length x [24–26]. To describe
superdiffusive processes hx2ðtÞi ’ t� with � > 1, LWs are
endowed with a spatiotemporal coupling for which we
choose the simplest form �ðx; tÞ ¼ 1

2 c ðtÞ�ðjxj � vtÞ
[25]. Confined by an expanding horizon at positions �vt
from the origin, LWs performs statistically independent
free paths with constant velocity jvj, whose durations
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are distributed according to the power law c ðtÞ ¼R
�ðx; tÞdx� t�ð1þ�Þ. For 0<�< 1 the resulting motion

is ballistic, � ¼ 2, for 1<�< 2 we observe sub-ballistic
superdiffusion with � ¼ 3� �, while for �> 2 the mo-
tion is normal diffusive, � ¼ 1 [6,7]. The mean sojourn
time hti ¼ R1

0 tc ðtÞdt is infinite for 0<�< 1 and finite

otherwise. In contrast to Lévy flights with their diverging
variance [27], LWs are physical models for particles with a
maximum propagation speed. Apart from the description
in terms of the above continuous time randomwalk scheme
with �ðx; tÞ, LWs can be described as a renewal process
[9], in terms of a master equation [28], a fractional trans-
port equation [29], or a Langevin approach based on sub-
ordination [30].

Here we focus on the behavior of time averages and
ergodic properties of LWs in the relevant superdiffusive
range 1<�< 2. From analytical results and extensive
numerical simulations we highlight the particular role of
the finiteness of trajectories when calculating the time
averages. Namely, we show that the scaling exponents

of �x2 apparently become random quantities and that the
amplitude of the time averages is a function of the mea-
surement time T. Moreover, we report an ultraweak ergo-
dicity breaking (UWEB) of superdiffusive LWs. These
effects are important to interpret time averages of LWs.

A full analytical solution for the time-averaged MSD �x2

is obtained from the renewal framework [9]. The starting

point is the velocity autocorrelation function CvðtÞ ¼
limt0!1jt0 � tj�1

Rjt0�tj
0 vðt00Þvðt00 þ tÞdt00, where the time

average is taken over a trajectory of infinite length. In the
velocity model for LWs employed here the velocity fluctu-
ates between þv and �v with equal probability, meaning
that only single events contribute to CvðtÞ, which in turn is
the result of an averaging of event durations along a trajec-
tory. The problem can be rephrased in terms of the probabil-
ity that awalker is in an ongoing event of duration T between
0 and t given that we pick an arbitrary origin on the time axis.
To obtain Cv we simply average over all such possible

durations. Once Cv is known, �x2 is readily obtained from

the Green-Kubo formula �x2ð�Þ ¼ 2
R
�
0ð�� tÞCvðtÞdt [31].

For infinite trajectories, we obtain the result

�x2ð�Þ ¼ 2

�ð1þ �Þ3�� � 1

ð3� �Þð2� �Þ �
�

2� �

�
; (2)

where we have set jvj ¼ 1. As for 1<�< 2 the mean
waiting time hti is finite, individual trajectories at sufficiently
long (infinite) times become self-averaging, such that there

will be no difference between�x2ð�Þ obtained from different
trajectories and the trajectory-to-trajectory averaged quantity

h�x2ð�Þi. In other words, the actual series of events is irrele-
vant in the case of infinite trajectories. In reality one never
deals with infinite trajectories, albeit they might become
extremely long. Once a trajectory is finite, irrespective of
its actual length, there always exists a nonzero probability

that the walker will be ‘‘locked’’ in a single motion event
(‘‘ultralarge LWmodes’’) persisting along a great fraction of
or even during the entire trajectory. This produces (almost)
purely ballistic motion. Other trajectories may show many
quick transitions between velocity modes and thus appears

almost trapped. The MSDs �x2ð�Þ of individual trajectories
will therefore not coincide but show a scatter of amplitudes,
as shown below. On average, there is a residual probability in
favor of the locked modes, producing the well-known
hx2ðtÞi ’ t3�� scaling of LWs.

In our simulations we use the concrete form c ðtÞ ¼
�ð1þ tÞ�ð1þ�Þ for the waiting time distribution. From
this asymptotic power law we generate M ¼ 104 time
series of particle coordinates xjðtÞ, where j labels different
trajectories. We calculate the ensemble averaged MSD
h�x2ð�Þi ¼ M�1

P
M
j¼1 xjð�Þ2 and the time averaged MSD

through Eq. (1). Figure 1 shows typical results for �x2 for
400 different trajectories of duration T ¼ 108 time steps

(�) for � ¼ 1:2 and � ¼ 1:5. Remarkably, while �x2 for
all trajectories coincides and shows superdiffusive scaling

at shorter lag times, at longer �, �x2 displays a wide spread
of slopes ranging from ballistic motion to subdiffusion
(� < 1). At the same time the ensemble-averaged MSD
predicts a unique long-time scaling of the form hx2ðtÞi ’
t3��, confirmed by our simulations (not shown here). Thus
ergodicity, the equivalence of long time and ensemble
average is broken. Moreover, self-averaging does not
take place. In contrast to subdiffusive CTRW with diverg-
ing mean waiting time, where the scaling is identical for all
trajectories but the generalized diffusion coefficient
becomes a random variable [16–18], here we observe
that the scaling exponent of individual trajectories appears
random. We note that this effect is not due to bad statistics
at larger � as � � T is fulfilled for all � shown in Fig. 1.

Performing an average over all trajectories, h�x2i, the full
black lines in Fig. 1, the result seems to follow the scaling
predicted by Eq. (2). However, this agreement is only
apparent, see below.

FIG. 1 (color online). Time-averaged MSD �x2 obtained from
400 trajectories for � ¼ 1:2 (left) and � ¼ 1:5 (right) of length
T ¼ 108�. Full red (gray) lines depict different scaling behav-
iors as indicated, the full black lines are averages over all

trajectories, h�x2i.
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We first quantify the deviations of �x2 of different

trajectories around the trajectory-ensemble average h�x2i,

Pð�j�Þ ¼
*
�

0
@ �x2ð�Þ
h�x2ð�Þi

� �

1
A+: (3)

The results for � ¼ 1:2 and � ¼ 1:5 are shown in Fig. 2
(left). In the case of an infinite trajectory we would find a
sharp peak at � ¼ 1, which is approximately observed for
the shortest �. In contrast, for finite-time trajectories
Pð�j�Þ apparently relaxes from an almost ergodic behavior
at shorter lag times � towards a skewed limiting distribu-
tion with a maximum well below the ergodic value � ¼ 1.
Therefore the average value appears to be dominated by
one or few very long waiting time events locked in a given
velocity mode, and the self-averaging is not fulfilled and
only restored for infinitely long trajectories. In addition we
measure the long-time scaling in individual trajectories by

least-squares fit of the last decade of �x2 to the power law
t�app , obtaining the scatter distribution of the apparent
scaling exponent �app. The resulting distributions Pð�appÞ
for� ¼ 1:2 and� ¼ 1:5 are shown in Fig. 2 (right).We see
that the maximum ofPð�appÞ is well below the infinite-time

average �app ¼ �. This demonstrates that the time average

of a superdiffusive dynamical process can in fact display
subdiffusive behavior on the level of single trajectories
of finite duration. Again, we see that finite time averages

such as �x2 are obviously dominated by either extremely
long motion events pushing �app to values closer to

�app ¼ 2, or by strong oscillations between velocity modes

inducing localization effects and values �app < 1. These

observations will be crucial for the correct interpretation of
single trajectory measurements of superdiffusive processes.

Having established that there is no unique scaling of �x2

along finite-time single trajectories one might wonder
whether and how the finiteness of single trajectories affects
the corresponding average over an ensemble of trajecto-
ries. This problem can be treated exactly with the renewal
approach. Once an arbitrary origin is specified on the time
axis the probability that the walker is in a motion event of

duration # at time 0 is p0ð#Þd# ¼ #c ð#Þd#= �#, where �#
is the average time span of # along a finite-time trajectory
of duration T and ensures the correct normalization,
�#¼R

T
0 #c ð#Þd#� 1

��1ð1��ð1þ�TÞð1þTÞ��Þ. The

probability that the event persists until t is ppðtj#Þ ¼
ð# � tÞ=#, such that the probability that the walker is in
a motion event of duration # between 0 and t is
p0ð#Þppðtj#Þd#. The velocity autocorrelation function

Cf
vðtÞ is then obtained by averaging over all possible dura-

tions up to T, i.e.,

Cf
vðtÞ ¼ ð1þ tÞ1�� þ ð1þ TÞ1��½ð�� 1Þt� ð1þ �TÞ�

1� �ð1þ �TÞð1þ TÞ��

(4)

for t < T, such that for finite-time trajectories we find

h�x2if ¼ 2

ð1þ�Þ3���1
ð3��Þð2��Þ � �

2�� þ
�ð��1Þ�3
6ð1þTÞ� � ð1þ�TÞ�2

2ð1þTÞ�
�

ð�� 1Þ �# : (5)

For long T the time averaged MSD has the form

h�x2if � �x2ð�Þ þ T3��

�
�� 1

3

�
�

T

�
3 � �

�
�

T

�
2
�
: (6)

Simulation results for �x2 are shown in Fig. 3, demonstrat-
ing good agreement with the result (5). Indeed we find that

FIG. 2 (color online). Left: Scatter distribution Pð�Þ of the

time-averaged MSD �x2 versus � ¼ �x2=h�x2i for � ¼ 1:2
(black) and � ¼ 1:5 (red or gray). Different values of � are
indicated in terms of the time unit �. Right: Scatter distribution
Pð�appÞ of the apparent scaling exponent �app obtained by the

least-squares fit of �x2 � t�app to the last decade of the time
series in Fig. 1. All data are for trajectories of length 108�.

FIG. 3 (color online). h�x2i (dashed red or grey line) and

h�x2if (full lines) with T ¼ 107� (black symbols) and T ¼
108� (blue or gray symbols). The right panels show the same
plots on a logarithmic scale.
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on a logarithmic scale (right, the conventional representa-
tion of time averaged MSD data) one hardly observes
deviations from Eq. (2); however, on a linear scale
pronounced deviations are apparent (left). Of course as
�=T ! 1 these deviations would become increasingly
pronounced also on the logarithmic scale. To assess the
importance of correction terms for given values of � and T

it is instructive to consider the ratio of �x2 for finite-time
and infinite-time trajectories,

R ¼ h�x2if=h�x2i (7)

as a function of the relative time lag ’ � �=T. The results
for various cases are shown in Fig. 4 (left). Thus, when
� ¼ 1:2 for instance, Rð’Þ decreases to 0.2 as ’
approaches 1. This finite-time depression is important in
relating the amplitude of the measured time averaged MSD
to the anomalous diffusion coefficient of the process. In the
Brownian limit � ¼ 2, Rð’Þ is independent of the finite
measurement time T and equals 1.

Finally we investigate the nature of the ergodicity break-
ing and, in particular, the role of the finiteness of trajecto-
ries. As already noted by Zumofen and Klafter [7] the
time-averaged MSD differs from the corresponding en-
semble average; thus, ergodicity is broken. We define the

ergodicity-breaking parameter EBð�Þ ¼ h�x2i=h�x2ð�Þi
as the ratio of time versus ensemble averaged MSD [32].

For our choice of c ðx; tÞ the ensemble averaged MSD
asymptotically is h�x2ð�Þi � 2ð�� 1Þ�3��=½ð3� �Þ�
ð2� �Þ� for 1<�< 2 as � ! 1 [7]. Thus EBð�Þ ¼
1=ð�� 1Þ as � ! 1, and time and ensemble averages
differ only in terms of a constant. This ultraweak ergodic-
ity breaking contrasts with the stronger ergodic violation of
subdiffusive processes, see below. According to Eq. (5) we
expect that the finiteness of trajectories will also affect
EBð�Þ. Interestingly EBð�Þ appears to be almost indepen-
dent of �, as shown in Fig. 4(b), but the value deviates
significantly from 1=ð�� 1Þ. In fact, this is not surprising
if considering Fig. 3: the scaling of finite-time averages on
the logarithmic scale agrees rather well with the prediction
for infinite trajectories, suggesting that the correction terms
effectively cause a rescaling of the generalized time-
averaged diffusion coefficient.
We investigated the ultraweakly ergodic behavior of

superdiffusive LWs, finding a pronounced scatter of appar-
ent scaling exponents of the time-averaged MSD for finite-
time trajectories. These apparent scaling exponents range
from ballistic motion (sticking to one velocity mode) down
to subdiffusive values (localization due to erratic hopping
between different velocity modes). Moreover, averaged
over many individual trajectories, the time-averaged
MSD is pronouncedly smaller than for very long trajecto-
ries. We quantify these effects in terms of an ergodicity
breaking parameter. While it is tempting to associate the
nonergodic behavior of LWs at finite times with the finite-
time exploration of the full shape of the LW propagator
between the two counterpropagating � peaks, we note that
time-averaged MSDs represent sliding windows along the
entire trajectory up to the measurement time. The observed
effect is therefore due to waiting time events and thus
insufficient self-averaging for finite measurements.
For a subdiffusive CTRW weak ergodicity breaking

emerges due to the lack of time scale in the waiting times.
Thus even at infinite measurement times, time averages
remain random quantities, and the ergodic violation per-
sists. The time-averaged MSD remains different from its
ensemble analog even when averaged over infinitely many
trajectories. In this sense the ergodicity breaking for sub-
diffusion is stronger than in LWs. Also for subdiffusion,

individual trajectories show deviations of �x2ð�Þ from the
linear scaling with �, including complete stalling in some
trajectories. In contrast, violation of ergodicity for LWs is
only present for finite trajectories (and thus relevant for
experiments), and the average over many trajectories
restores the scaling exponent 3� � of the ensemble aver-
age. Between both quantities only the prefactor differs, an
ultraweak violation.
The present results reveal the importance to take into

account the effects of the finiteness of trajectories when
interpreting experimental results. Concurrently, they also
demonstrate how the measured time series of different
lengths reveal more reliable information about the

FIG. 4 (color online). (a) Rð’Þ for various values of � and
T; (b) Ergodicity breaking parameter as a function of lag time,
EBð�Þ for � ¼ 1:2 (circles) and � ¼ 1:5 (squares) for T ¼ 107�
(black) and T ¼ 108� (blue or gray). The dashed and dotted
red (gray) lines denote the theoretical values for infinite-time
trajectories, and the full lines correspond to the predictions for
the finite-time case.
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fundamental underlying dynamical process. The additional
information comes from the dependence of time-averaged
quantities on the length of the time series. Instead of
attempting to measure or generate longer and longer time
series to extract reliable time averaged quantities, one
could instead use many shorter time series and obtain
even more reliable results. Our results may also provide
an alternative and more robust method of determining expo-
nents of probability densities of step durations. Namely,
since we inevitably expect poor sampling of very long
events this might be reflected in the obtained exponent.
Using the time-averaged MSD from measurements of dif-
ferent (but known) durations one should in principle be able
to determine the exponent more accurately.

We acknowledge funding from the Academy of Finland
(FiDiPro scheme) and the German Federal Ministry for
Science and Education.

Note added in proof.—Ergodicity violation and its quan-
titative consequences in ballistic LWs (0<�< 1) are
analyzed in a recent study [33].
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