
PHYSICAL REVIEW E 87, 022141 (2013)

Anomalous statistics of random relaxations in random environments

Iddo Eliazar1,* and Ralf Metzler2,3,†
1Holon Institute of Technology, P.O. Box 305, Holon 58102, Israel

2Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
3Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland

(Received 28 November 2012; published 26 February 2013)

We comprehensively analyze the emergence of anomalous statistics in the context of the random relaxation
(RARE) model [Eliazar and Metzler, J. Chem. Phys. 137, 234106 (2012)], a recently introduced versatile model
of random relaxations in random environments. The RARE model considers excitations scattered randomly
across a metric space around a reaction center. The excitations react randomly with the center, the reaction
rates depending on the excitations’ distances from this center. Relaxation occurs upon the first reaction between
an excitation and the center. Addressing both the relaxation time and the relaxation range, we explore when
these random variables display anomalous statistics, namely, heavy tails at zero and at infinity that manifest,
respectively, exceptionally high occurrence probabilities of very small and very large outliers. A cohesive set of
closed-form analytic results is established, determining precisely when such anomalous statistics emerge.

DOI: 10.1103/PhysRevE.87.022141 PACS number(s): 05.40.−a, 02.50.−r, 82.20.Rp

I. INTRODUCTION

Fluorescence methods based on induction or quenching
via resonant energy or electron transfer have reached
unprecedented levels of accuracy [1] and allow one to routinely
analyze molecular distances and interactions [2–4]. Similarly,
in the condensed phase relaxation phenomena can be measured
at high accuracy, for instance, by NMR relaxometry [5] or
dynamic light scattering [6]. Concurrently to this development
scientists realized that the standard Debye relaxation, given by
the exponential tail distribution function φ(t) ∝ exp(−t/τ ),
where τ is some characteristic time scale, fails to describe
the observed relaxation dynamics even on molecular
scales [2,7,8]. Generalized relaxation models accommodating
the experimental data include the stretched-exponential relax-
ation, also known as the Kohlrausch-Williams-Watts law, and
mathematically given by the Weibull tail distribution function
φ(t) ∝ exp(−[t/τ ]α) with exponent 0 < α < 1 [9–11].
Another prevalent model is the power-law relaxation,
also known as the Nutting law, which is given by the
Pareto tail distribution function φ(t) ∝ 1/(1 + [t/τ ]α) with
exponent 0 < α < 1 [12,13]. A third common approach to
nonexponential dynamics is given by fractional relaxation
models [13–16] leading to the Mittag-Leffler behavior
φ(t) ∝ Eα(−[t/τ ]α) = ∑∞

k=0(−[t/τ ]α)k/�(1 + αk), which
interpolates between an initial stretched-exponential
behavior � exp{−[t/τ ]α/�(1 + α)} as t → 0 and a terminal
power-law behavior �(τ/t)α/�(1 − α) as t → ∞ [13,14,16].
Generalized relaxation models can also be decomposed into
a continuum of exponential relaxation modes in terms of the
so-called relaxation time distribution [17].

There exist various generalized relaxation models to ac-
count for the observed deviations from the single exponential
pattern. Among others, the concept of parallel relaxation
channels goes back to Förster [18,19], and it was shown
that hierarchically constrained dynamics give rise to complex
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serial relaxation [20]. From a more stochastic point of
view, defect diffusion models have been discussed [21]. In
particular, for the stretched-exponential law it was demon-
strated that there are common universal principles behind
different approaches [22–24]. There exist also extensions
of stretched exponentials in models of dynamic relaxation
channels [25]. Related to the above-mentioned Mittag-Leffler
relaxation function, fractional-order viscoelastic mechanical
bodies combine Mittag-Leffler modes to generate complex
yet analytically treatable relaxation behaviors in mechanical
[13,26–28] and dielectric [29,30] relaxation.

Both the stretched-exponential and the power-law re-
laxations exhibit a heavy-tail behavior. In the stretched-
exponential relaxation the corresponding probability density
function follows the diverging power-law behavior tα−1 at
zero, t → 0. In the power-law relaxation the corresponding
probability density function follows the power-law behavior
t−α−1 at infinity, t → ∞. These power-law asymptotics mani-
fest anomalous statistics: an exceptionally high concentration
of probability at either very small outliers (in the stretched-
exponential relaxation model) or very large outliers (in the
power-law relaxation model).

The goal of this paper is to comprehensively explore
the emergence of heavy-tail behaviors in the context of
the recently introduced random relaxation (RARE) model
[31]. Generalizing previous approaches by Thomas et al.
[32] and Blumen [33], in the context of donor-acceptor
recombination dynamics, the RARE model is a highly robust
model for random relaxations in random environments. The
RARE model considers general random reactions taking place
in general random environments as follows. A countable
collection of excitations is spatially distributed, according
to a random Poisson scattering (which may or may not be
homogeneous), across a metric space containing a reaction
center. The excitations react randomly with the center, and
the reaction rates depend on the excitations’ distances from
the center. A relaxation event occurs upon the first reaction
between an excitation and the center.

The RARE model has two deterministic inputs: (i) a
scattering function quantifying the distribution of the distances

022141-11539-3755/2013/87(2)/022141(12) ©2013 American Physical Society

http://dx.doi.org/10.1063/1.4770266
http://dx.doi.org/10.1103/PhysRevE.87.022141


IDDO ELIAZAR AND RALF METZLER PHYSICAL REVIEW E 87, 022141 (2013)

of the excitations from the reaction center, and (ii) a reactivity
function quantifying the distance-dependent reaction rates of
the excitations. A host of scenarios (of random reactions in
random environments) can be modeled via this pair of input
functions. The two stochastic outputs of the RARE model are
(i) a reaction time representing the relaxation epoch, i.e., the
first reaction between an excitation and the center, and (ii) a
reaction range representing the relaxation distance, i.e., the
distance between the first-reacting excitation and the center.
In this paper we study in detail the anomalous statistics of
the pair of outputs and establish closed-form analytic answers
to the following question: When do the reaction time and the
reaction range display heavy tails at either zero or infinity?

The paper is organized as follows. We begin with a concise
description of the RARE model in Sec. II, followed by the
precise probabilistic notion of heavy tails in Sec. III. The
anomalous statistics of the reaction time and the reaction
range are presented in Secs. IV and V, respectively. Power-law
coupling between the scattering function and the reactivity
function, leading to the emergence of stretched-exponential
relaxation, is studied in Secs. VI and VII. Exponential
coupling between the scattering function and the reactivity
function, leading to the emergence of (asymptotic) power-law
relaxation, is studied in Sec. VIII. We conclude in Sec. IX and
compile the technical calculations and the detailed proofs in
the Appendices to keep the exposition in the main part of the
text more streamline and accessible to the reader.

This study provides researchers with a handy and easily
applicable toolbox for the study of anomalous statistics in
the context of random relaxations in complex environments.
The application of the toolbox is straightforward: Identify the
scattering function and the reactivity function in the system
of interest and plug these functions in the set of closed-form
formulas presented below. While the mathematics used to
establish the results is somewhat involved, all technical
details are deferred to the Appendices. The emergence of the
anomalous-statistics results is immediately accessible from
the scattering and reactivity functions.

II. THE RARE MODEL

The RARE model was introduced in Ref. [31] and is briefly
described as follows. A reaction center is placed at an arbitrary
point P of a general metric spaceM and a countable collection
of excitations is scattered randomly across the space. The
excitations are labeled by the index i and the position of
excitation i is the random point Pi . The distance in the metric
space M is measured by a general metric function d(.,.) and
the distance between the reaction center and excitation i is
Di = d(Pi,P ).

The random points {Pi} are assumed to form a general
Poisson process on the metric space M [34]. Consequently,
the displacement theorem of the theory of Poisson processes
(see Sec. 5.5 in Ref. [34]) implies that the distances {Di} form a
general Poisson process on the positive half line (0,∞). In what
follows we denote by ρ(x) the mean number of excitations that
are within a distance x of the reaction center, i.e.,

ρ(x) = E

[∑
i

I(Di � x)

]
, (1)

with x � 0. The intensity of the Poisson process {Di} is the
derivative ρ ′(x) of the function ρ(x). In Eq. (1) the symbol E
denotes the mathematical expectation. Namely, if ξ is a real-
valued random variable governed by the probability density
function fξ (x) (x real) and φ(x) is a real-valued function
defined on the real line, then E[φ(ξ )] = ∫ ∞

−∞ φ(x)fξ (x)dx.
Excitation i is equipped with a random timer Ti and the

timers {Ti} are assumed to be conditionally independent and
exponentially distributed random variables—given the Poisson
process Di . The exponential distribution of the timer Ti is
determined by the distance Di and in what follows we denote
by η(x) the exponential rate of the timers as a function of
the distance variable (x). Namely, given the distance Di ,
the random timer Ti is exponentially distributed with mean
1/η(Di) and hence

Pr(Ti > t |Di) = exp{−η(Di)t}, (2)

with t � 0.
The inputs of the RARE model are the aforementioned

scattering function ρ(x) and the reactivity function η(x).
The scattering function ρ(x) quantifies the underlying spatial
scattering of the excitations and the reactivity function η(x)
quantifies the underlying distance-dependent reaction rates.
We henceforth assume that the scattering function ρ(x) is
monotonically increasing from zero [ρ(0) = 0] to infinity
[ρ(∞) = ∞] and that the reactivity function η(x) is mono-
tonically decreasing to zero [η(∞) = 0].

In the RARE model relaxation occurs upon the first
timer-expiration event, i.e., upon the first reaction between the
excitations and the reaction center. Consequently, the outputs
of the RARE model are the reaction time T and the reaction
range X, a pair of random variables that are defined as follows.
The reaction time T is the time elapsing until the first timer
expires,

T = min
i

{Ti}. (3)

The reaction range X is the distance between the reaction
center and the excitation whose timer first expired,

X =
∑

i

DiI(T = Ti). (4)

We note that by considering the space M to be a general
metric space and setting the random points {Pi} to be a
general Poisson process on M, the RARE model becomes
a highly versatile model of random reactions in random
environments. Indeed,M can be a Euclidean space of arbitrary
dimension, a non-Euclidean space such as a hyperbolic space,
a general surface or landscape, a fractal object, a network, etc.
Also, Poisson processes represent a highly effective statistical
methodology to model the random scattering of points in
general spaces, with a vast span of applications ranging from
insurance and finance [35] to queuing systems [36] and from
fractals [37] to power laws [38]. Consequently, in a statistical
sense, no matter how elaborate the space and how intricate the
scattering of the excitations across the space, the spatial facet of
the RARE model is quantified by the monotonically increasing
scattering function ρ(x). Also, no matter how complex the
mechanisms governing the reactions between the excitations
and the reaction center, the chemical facet of the RARE
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model is quantified by the monotonically decreasing reactivity
function η(x). Thus, with only two intuitively comprehensible
parameters, the scattering function ρ(x) and the reactivity
function η(x), the RARE model is capable of encompassing
a wide span of scenarios of random reactions in random
environments.

III. HEAVY TAILS

The goal of this paper is to explore anomalous statistics of
the reaction time T and the reaction range X of the RARE
model. Both the reaction time T and the reaction range X

are positive-valued random variables. Anomalous statistics of
a positive-valued random variable ξ are displayed when its
distribution possesses heavy tails at either zero or infinity [39].
A heavy tail at zero implies a high-probability occurrence of
very small outliers, whereas a heavy tail at infinity implies a
high-probability occurrence of very large outliers. Informally,
the heavy tails of the random variable ξ are characterized
by power-law asymptotics of its probability density function.
The precise definition of heavy tails involves the mathematical
notion of regular variation, which we briefly review.

Consider a non-negative-valued function f (x) defined
on the positive half line (x > 0). The function f (x) is
said to be [40]: (i) slowly varying at zero if the limit
liml→0 f (lx)/f (l) = 1 holds for all x > 0; and (ii) slowly
varying at infinity if the limit liml→∞ f (lx)/f (l) = 1 holds
for all x > 0. A function f (x) is slowly varying at zero if and
only if the function f (1/x) is slowly varying at infinity; the
class of functions that are slowly varying at infinity includes
asymptotically constant functions, logarithmic functions,
powers of slowly varying functions (at infinity), and
logarithms of slowly varying functions (at infinity). The class
of slowly varying functions is a generalization of the class of
asymptotically constant functions (at zero and at infinity).

The aforementioned function f (x) is said to be [40]: (i) reg-
ularly varying at zero if the limit L0(x) = liml→0 f (lx)/f (l)
exists for all x > 0; and (ii) regularly varying at infinity if
the limit L∞(x) = liml→∞ f (lx)/f (l) exists for all x > 0.
It is straightforward to observe that regular variation at zero
implies that the condition L0(xy) = L0(x)L0(y) holds for all
x,y > 0, and that regular variation at infinity implies that
the condition L∞(xy) = L∞(x)L∞(y) holds for all x,y > 0.
These observations in turn imply that the aforementioned
limits are power laws: L0(x) = xε0 and L∞(x) = xε∞ , where
ε0 and ε∞ are real-valued exponents.

On the one hand, slowly varying functions are a special
case of regularly varying functions. Indeed, slowly varying
functions are regularly varying functions with zero exponents
(ε0 = 0 and ε∞ = 0). On the other hand, regularly varying
functions are based on slowly varying functions: (i) A function
f (x) is regularly varying at zero with exponent ε0 if and
only if it admits the representation f (x) = xε0φ0(x), where
the function φ0(x) is slowly varying at zero; and (ii) a function
f (x) is regularly varying at infinity with exponent ε∞ if and
only if it admits the representation f (x) = xε∞φ∞(x), where
the function φ∞(x) is slowly varying at infinity.

The class of regularly varying functions is a generalization
of the class of asymptotic power-law functions (at zero and
at infinity) and it plays a focal role in various fields of

mathematical analysis and probability theory [40]. Equipped
with the notion of regular variation, we are now in the position
to rigorously define the heavy tails of a positive-valued random
variable ξ . (i) The random variable ξ is heavy tailed at zero
with exponent α (0 < α < 1) if its cumulative distribution
function Pr(ξ � x) is regularly varying at zero with exponent
ε0 = α, i.e.,

lim
l→0

Pr(ξ � lx)

Pr(ξ � l)
= xα, (5)

with x > 0. (ii) The random variable ξ is heavy tailed at infinity
with exponent β (0 < β < 1) if its tail distribution function
Pr(ξ > x) is regularly varying at infinity with exponent ε∞ =
−β, i.e.,

lim
l→∞

Pr(ξ > lx)

Pr(ξ > l)
= 1

xβ
, (6)

with x > 0.
We note that if the random variable ξ is heavy tailed at

zero then its probability density function diverges at zero, a
phenomenon manifesting the high-probability occurrence of
very small outliers. Analogously, if the random variable ξ is
heavy tailed at infinity then its mean diverges, a phenomena
manifesting the high-probability occurrence of very large
outliers. The connection between heavy tails at zero and at
infinity is as follows: The random variable ξ is heavy tailed at
zero with exponent α (0 < α < 1) if and only if its reciprocal,
the random variable 1/ξ , is heavy tailed at infinity with the
same exponent.

IV. ANOMALOUS STATISTICS OF THE REACTION TIME

In this section we study the anomalous statistics of
the reaction time T of the RARE model. The probability
distribution of the reaction time T is governed by the tail
distribution function

Pr(T > t) = exp

(
−

∫ ∞

0
[1 − exp{−η(x)t}]ρ(dx)

)
, (7)

with t � 0 [31]. Based on the tail distribution function of
Eq. (7), a stochastic analysis detailed in Appendix A asserts
that the heavy tails of the reaction time T , in terms of the
scattering function ρ(x) and the reactivity function η(x), are
characterized as follows.

(i) The reaction time T is heavy tailed at zero with exponent
α (0 < α < 1) if and only if the scattering function ρ(x) and
the reactivity function η(x) satisfy the connection

ρ(x) = φ(η(x))
η(x)α

, (8)

with x > 0, where the function φ(x) is slowly varying at
infinity.

(ii) The reaction time T is heavy tailed at infinity with expo-
nent β (0 < β < 1) if and only if the scattering function ρ(x)
and the reactivity function η(x) satisfy the limit connection

lim
x→∞

ρ(x)

ln[η(x)]
= −β. (9)

We note that, in principle, the result regarding the heavy tails of
the reaction time T at infinity holds for all positive exponents
β > 0 and it is not restricted to the exponent range 0 < β < 1.
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An alternative approach to characterize heavy tails of the
reaction time T is based on the notion of the hazard rate, which
is commonly used in applied probability and in reliability
theory [41–43]. The hazard rate hT (t) of the random variable
T at time t is defined by

hT (t) = lim
�t→0

1

�t
Pr(T � t + �t |T > t), (10)

with t > 0. Namely, hT (t) is the realization rate of the random
variable T at time t provided the random variable T did not
realize up to time t . The tail distribution function of the reaction
time T is attainable from its hazard rate hT (t) via the formula

Pr(T > t) = exp

(
−

∫ t

0
hT (τ )dτ

)
, (11)

with t � 0. Consequently, it is straightforward to deduce from
Eqs. (7) and (11) that the hazard rate of the reaction time T is
given by

hT (t) =
∫ ∞

0
exp[−η(x)t]η(x)ρ(dx), (12)

with t > 0.
A stochastic analysis detailed in Appendix B asserts that

the heavy tails of the reaction time T , in terms of its hazard
rate hT (t), are characterized by the following statements.
(i) The reaction time T is heavy tailed at zero with exponent
α (0 < α < 1) if and only if its hazard rate hT (t) is regularly
varying at zero with exponent ε0 = α − 1, i.e.,

lim
l→0

hT (lt)

hT (l)
= tα−1, (13)

with t > 0. (ii) The reaction time T is heavy tailed at infinity
with exponent β (0 < β < 1) if and only if the following limit
holds:

lim
t→∞ thT (t) = β. (14)

We note that the results of Eqs. (13) and (14) hold true for all
positive-valued random variables. Indeed, the aforementioned
results characterize the heavy tails of any positive-valued
random variable in terms of its hazard rate. A stochastic
analysis detailed in Appendix C further shows that when
applying the general hazard-rate results to the specific hazard
rate of the reaction time T , given by Eq. (12), we re-obtain the
results of Eqs. (8) and (9).

V. ANOMALOUS STATISTICS OF THE REACTION RANGE

In this section we study the anomalous statistics of the
reaction range X of the RARE model. The probability
distribution of the reaction range X is governed by the tail
distribution function

Pr(X > x) =
∫ ∞

x

(1 − E[exp{−η(s)T }])ρ(ds), (15)

with x � 0 [31]. Note that the tail distribution function of
the reaction range X involves the Laplace transform of the
reaction time T . Based on the tail distribution function of
Eq. (15), a stochastic analysis detailed in Appendix D asserts
that the heavy tails of the reaction range X, in terms of the

scattering function ρ(x) and the reactivity function η(x), are
characterized as follows.

(i) The reaction range X is heavy tailed at zero with
exponent γ (0 < γ < 1) if and only if the scattering function
ρ(x) is regularly varying at zero with exponent ε0 = γ , i.e.,

lim
l→0

ρ(lx)

ρ(l)
= xγ , (16)

with x > 0.
(ii) If the reaction time T has a finite mean then the

asymptotic behavior of the tail distribution function of the
reaction range X is given by

Pr(X > x) ≈ E[T ]
∫ ∞

x

η(s)ρ(ds), (17)

with x → ∞. Consequently, in this finite-mean case we obtain
that the reaction range X is heavy tailed at infinity with
exponent δ (0 < δ < 1) if and only if the function η(x)ρ ′(x) is
regularly varying at infinity with exponent ε∞ = −1 − δ, i.e.,

lim
l→∞

η(lx)ρ ′(lx)

η(l)ρ ′(l)
= 1

x1+δ
, (18)

with x > 0.
(iii) If the reaction time T is heavy tailed at infinity with

exponent β (0 < β < 1) then the asymptotic behavior of the
tail distribution function of the reaction range X is given by

Pr(X > x) ≈ �(1 − β)
∫ ∞

x

Pr

(
T >

1

η(s)

)
ρ(ds), (19)

with x → ∞. Consequently, in this heavy-tailed case the
reaction range X is heavy tailed at infinity with exponent δ

(0 < δ < 1) if and only if the function Pr[T > 1/η(x)]ρ ′(x) is
regularly varying at infinity with exponent ε∞ = −1 − δ, i.e.,

lim
l→∞

Pr
(
T > 1

η(lx)

)
ρ ′(lx)

Pr
(
T > 1

η(l)

)
ρ ′(l)

= 1

x1+δ
, (20)

with x > 0. We will elaborate on this case in Sec. VIII below.
We note that, in principle, the results regarding the heavy

tails of the reaction range X, at both zero and infinity, hold,
respectively, for all positive exponents γ,δ > 0 (and are not
restricted to exponent ranges 0 < γ < 1 and 0 < δ < 1).

VI. POWER-LAW COUPLING

In Sec. IV we established that the reaction time T is heavy
tailed at zero with exponent α (0 < α < 1) if and only if
the scattering function ρ(x) and the reactivity function η(x)
satisfy the relation given by Eq. (8). The simplest and most
straightforward way to satisfy Eq. (8) is via the power-law
coupling

ρ(x) = η(x)−α, η(x) = ρ(x)−1/α. (21)

Note that this power-law coupling implies that the reactivity
function η(x) is unbounded, i.e., η(0) = ∞.

Substituting the power-law coupling of Eq. (21) into Eq. (7),
we obtain a stretched-exponential tail distribution function of
the reaction time T ,

Pr(T > t) = exp[−�(1 − α)tα], (22)
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with t > 0. Note that this stretched-exponential tail distribu-
tion function implies that the reaction time T has convergent
moments of all orders: E[T m] < ∞ for all m > 0. Moreover,
Eq. (22) implies that the hazard rate of the reaction time T

admits the power-law form

hT (t) = �(1 − α)αtα−1, (23)

with t > 0. Note that the hazard rate appearing in Eq. (23)
indeed satisfies the hazard-rate characterization of heavy tails
at zero, given by Eq. (13).

Using the fact that the reaction time T has a finite mean and
substituting the power-law coupling of Eq. (21) into Eq. (17),
a calculation yields the asymptotic form of the tail distribution
function of the reaction range X,

Pr(X > x) ≈ cαη(x)1−α = cαρ(x)−(1−α)/α, (24)

with x → ∞, where cα is a constant whose precise value is
given by cα = �(1/α)/[(1 − α)�(1 − α)1/α].

It can be further shown that the conditional distribution of
the reaction range X, given the realization of the reaction time
T , is governed by the conditional tail distribution function

Pr(X > x|T = t) =
∫ tη(x)

0

exp(−u)u−α

�(1 − α)
du, (25)

with t,x > 0. Note that the integrand appearing on the right-
hand side of Eq. (25) is the probability density function
of the Gamma distribution with exponent 1 − α. In turn,
Eq. (25) implies that the asymptotic form of the conditional
tail distribution function of the reaction range X is given by

Pr(X > x|T = t)

≈ t1−α

�(2 − α
η(x)1−α = t1−α

�(2 − α)
ρ(x)−(1−α)/α, (26)

with x → ∞. Note that, up to a multiplicative factor, the
asymptotics of the tail distribution functions of Eqs. (24) and
(26) coincide; this coincidence stems from the fact that the
reaction time T possesses a finite mean. The derivations of
Eqs. (22)–(26) are detailed in Appendix E.

VII. STRETCHED-EXPONENTIAL REACTION TIMES

In the preceding section we saw that the power-law coupling
of Eq. (21) gives rise to a stretched-exponential distribution
of the reaction time T . Up to a time-scale factor, a stretched-
exponential distribution of the reaction time T is characterized
by the tail distribution function of Eq. (22).

The stretched-exponential distribution is the prototypical
phenomenological model in the physical sciences of relax-
ation in disordered systems [44]. This distribution was first
introduced in 1854 by R. Kohlrausch to describe capacitor
discharge [9] and was applied by F. Kohlrausch to describe
torsional relaxation [10]. It was further applied as a description
of luminescence decays [45], luminescence quenching [46],
and electronic energy transfer [18,47,48]. The use of the
stretched-exponential distribution became widespread follow-
ing the paper of Williams and Watts on dielectric relaxation
[11]; the nowadays common term stretched exponential first
appeared in Ref. [49]. Additional examples and applications
of the stretched-exponential distribution include Ising spin
glasses [50], relaxation in disordered systems [22], electric

polarization [51] and electric birefringence [52], supercooled
liquids [53], molecular and electronic glasses [54], Lennard-
Jones systems [55], random walks on hypercubes [56], and
universality in relaxation processes [38].

The importance and the significance of the stretched-
exponential distribution gives rise to the following question:
When does the RARE model result in a stretched-exponential
distribution of its reaction time T ? In this section we answer
this reverse-engineering question: We identify RARE inputs,
i.e., pairs of scattering functions ρ(x) and reactivity functions
η(x), that yield the stretched-exponential output of Eq. (22).

In what follows we consider the reactivity function to
be unbounded, η(0) = ∞. Applying the change of variables
s = η(x)t to the integral appearing on the right-hand side
of Eq. (7) yields the following representation of the tail
distribution function of the reaction time T :

Pr(T > t) = exp

{
−

∫ ∞

0
exp(−s)

[
ρ

(
η−1

(
s

t

))]
ds

}
,

(27)

with t � 0. From this relation it is evident that the stretched-
exponential tail distribution function of Eq. (22) can be
obtained if and only if the function ρ(η−1(y)) is a power with
exponent −α, namely,

ρ(η−1(y)) = y−α, (28)

with y > 0. Consequently, applying the change of variables
y = η(x), we obtain that

ρ(x) = η(x)−α, (29)

with x > 0. Thus we conclude that the distribution of its
reaction time T is a stretched exponential if and only if the
power-law coupling of Eq. (21) is satisfied.

In the preceding section we established that the power-
law coupling of Eq. (21) results in a stretched-exponential
distribution of the reaction time T . In this section we
further established that the power-law coupling of Eq. (21)
uniquely characterizes stretched-exponential reaction times in
the RARE model.

VIII. EXPONENTIAL COUPLING

In Sec. IV we established that the reaction time T is heavy
tailed at infinity with exponent β (0 < β < 1) if and only if the
scattering function ρ(x) and the reactivity function η(x) satisfy
the limit connection given by Eq. (9). The simplest and most
straightforward way to satisfy Eq. (9) is via the exponential
coupling

ρ(x) = −β ln[η(x)], η(x) = exp[−ρ(x)/β], (30)

with x > 0. Note that the exponential coupling of Eq. (30)
implies that the reactivity function η(x) is bounded: η(0) =
1. In what follows we consider positive exponents β > 0
and do not restrict the exponent β to the heavy-tailed
range 0 < β < 1.

Substituting the exponential coupling of Eq. (30) into
Eq. (7), a calculation yields the following asymptotically
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Paretian [38,57–59] tail distribution function of the reaction
time T ,

Pr(T > t) ≈
(

b

t

)β

, (31)

with t → ∞, where b is a constant whose precise
value of is given by ln(b) = ∫ ∞

1 [exp(−u)/u]du − ∫ 1
0 {[1 −

exp(−u)]/u}du. Note that the asymptotically Paretian tail
distribution function of Eq. (31) implies that the reaction
time T has convergent moments (E[T m] < ∞) in the range
0 < m < β and has divergent moments (E[T m] = ∞) in the
range m � β. Moreover, substituting the exponential coupling

of Eq. (30) into Eq. (12) yields the following asymptotically
harmonic (as t → ∞) hazard rate of the reaction time T ,

hT (t) = β
1 − exp(−t)

t
, (32)

with t > 0. Note that the hazard rate appearing in Eq. (32)
indeed satisfies the hazard-rate characterization of heavy tails
at infinity given by Eq. (14).

We now turn to the reaction range X and distinguish
between three different cases regarding the range of the
exponent β: (i) β > 1, (ii) β = 1, and (iii) β < 1. These
different cases yield the following different asymptotic forms
of the tail distribution function of the reaction range X:

Pr(X > x) ≈

⎧⎪⎨
⎪⎩

E[T ]βη(x) = E[T ]β exp[−ρ(x)/β] for β > 1

−bη(x) ln[η(x)] = b exp[−ρ(x)]ρ(x) for β = 1

�(1 − β)bβη(x)β = �(1 − β)bβ exp[−ρ(x)] for β < 1,

(33)

with x → ∞, where b is the aforementioned constant. The
first and third cases are obtained, respectively, via Eqs. (17)
and (19); the second case is obtained following a specific
asymptotic calculation of Eq. (15).

It can be further shown that the conditional distribution of
the reaction range X, given the realization of the reaction time
T , is governed by the conditional tail distribution function

Pr(X > x|T = t) = 1 − exp[−tη(x)]

1 − exp(−t)
, (34)

with x > 0. In turn, Eq. (34) implies that the asymptotic form
of the conditional tail distribution function of the reaction
range X is given by

Pr(X > x|T = t) ≈ t

1 − exp(−t)
η(x) = t exp[−ρ(x)/β]

1 − exp(−t)
,

(35)

with x → ∞. Note that, up to a multiplicative factor, the
asymptotics of the tail distribution functions of Eqs. (33) and
(35) coincide if and only if the reaction time T possesses
a fine mean (i.e., if and only if β > 1). The derivations of
Eqs. (31)–(34) are detailed in Appendix F.

IX. CONCLUSION

In this paper we presented a detailed analysis of anomalous
statistics in the context of the RARE model of random relax-
ations in random environments. In the RARE model a count-
able collection of excitations are randomly scattered, accord-
ing to a general Poisson process, across a general metric space
containing a reaction center. The excitations randomly react
with the center and the reaction rates depend on the distances
between the excitations and the center. Relaxation occurs upon
the first reaction between an excitation and the center.

The RARE model is fully described by two parameters:
(i) a scattering function quantifying the distribution of the
excitations’ distances from the reaction center, and (ii) a re-
activity function quantifying the distance-dependent reaction

rates. On the one hand, the RARE model is highly versatile
as its underlying structure—the general embedding metric
space, the general Poisson scattering, and the general reaction
rates—allows for the accommodation of a host of settings and
scenarios. On the other hand, the RARE model compresses
this host of settings and scenarios to the aforementioned
compact two-parameter description and is highly tractable and
amenable to quantitative analysis. These features of the RARE
model render it readily accessible to researchers from a span
of scientific disciplines.

The outputs of the RARE model are the reaction time and
the reaction range, a pair of positive-valued random variables.
Anomalous statistics of these outputs are quantified by heavy
tails at either zero or infinity that manifest, respectively,
exceptionally high occurrence probabilities of very small and
very large outliers. In this paper we analytically established a
set of closed-form results determining, in terms of the RARE
inputs, precisely when the RARE outputs display anomalous
statistics. In particular, we showed that stretched-exponential
relaxations are intimately related to power-law coupling of
the RARE inputs and (asymptotic) power-law relaxations are
intimately related to exponential coupling of the RARE inputs.
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APPENDIX A: HEAVY TAILS OF THE REACTION TIME

1. Heavy tails at zero

Set the function �(t) to be implicitly given by Pr(T > t) =
exp[−�(t)] with t > 0, assume that η(0) = ∞, and further
set ψ(y) = ρ(η−1(y)) with y > 0. Applying the change of
variables s = η(x)t to the integral appearing on the right-hand
side of Eq. (7) implies that

�(t) =
∫ ∞

0
exp(−s)ψ(s/t)ds. (A1)
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Note that

lim
l→0

Pr(T � lt)

Pr(T � l)
= lim

l→0

1 − Pr(T > lt)

1 − Pr(T > l)
= lim

l→0

1 − exp[−�(lt)]

1 − exp[−�(l)]
= lim

l→0

�(lt)

�(l)

= lim
l→0

∫ ∞
0 exp(−s)ψ(s/ lt)ds∫ ∞
0 exp(−s)ψ(s/ l)ds

= lim
l→∞

∫ ∞
0 exp(−s)ψ(ls/t)ds∫ ∞

0 exp(−s)ψ(ls)ds
=

∫ ∞
0 exp(−s)[liml→∞ ψ(ls/t)/ψ(l)]ds∫ ∞

0 exp(−s)[liml→∞ ψ(ls)/ψ(l)]ds
, (A2)

where we used Eqs. (7) and (A1). From Eq. (A2) we see that the
cumulative distribution function Pr(T � t) is regularly varying
at zero if and only if the function ψ(y) is regularly varying at
infinity. Moreover, note that if the function ψ(y) is regularly
varying at infinity with exponent ε∞ = −α (0 < α < 1), then

lim
l→0

Pr(T � lt)

Pr(T � l)
=

∫ ∞
0 exp(−s)(s/t)−αds∫ ∞

0 exp(−s)s−αds
= tα

�(1 − α)

�(1 − α)
,

(A3)

with t > 0, where �(·) denotes the Gamma function. Hence we
conclude that the cumulative distribution function Pr(T � t)
is regularly varying at zero with exponent ε0 = α (0 < α < 1)
if and only if the function ψ(y) is regularly varying at
infinity with exponent ε∞ = −α (0 < α < 1). In turn, the
function ψ(y) is regularly varying at infinity with exponent
ε∞ = −α if and only if it admits the form ψ(y) = φ(y)/yα ,
where the function φ(y) is slowly varying at infinity. Since
ψ(y) = ρ(η−1(y)), applying the change of variables y = η(x)
yields Eq. (8).

2. Heavy tails at infinity

Regarding the heavy tails of the reaction time T at infinity,
Eq. (7) implies that

lim
l→∞

Pr(T > lt)

Pr(T > l)

= exp

(
lim
l→∞

∫ ∞

0
{exp[−η(x)lt] − exp[−η(x)l]}ρ ′(x)dx

)
.

(A4)

In turn, we have

lim
l→∞

∫ ∞

0
{exp[−η(x)lt] − exp[−η(x)l]}ρ ′(x)dx

= lim
l→∞

∫ η(0)l

0
[exp(−y) − exp(−yt)]

ρ ′(η−1(y/l))
lη′(η−1(y/l))

dy

=
∫ ∞

0

exp(−y) − exp(−yt)

y

×
[

lim
l→0

η(η−1(ly))ρ ′(η−1(ly))
η′(η−1(ly))

]
dy, (A5)

where we applied the change of variables y = η(x)l and used
the assumptions of the RARE model. Note that

lim
l→0

η(η−1(ly))ρ ′(η−1(ly))
η′(η−1(ly))

= lim
x→∞

η(x)ρ ′(x)

η′(x)
= lim

x→∞
ρ ′(x)

[ln η(x)]′
= lim

x→∞
ρ(x)

ln[η(x)]
,

(A6)

where we used the change of variables x = η−1(ly), the
assumptions of the RARE model, and l’Hôpital’s rule. In
contrast,

∫ ∞

0

exp(−y) − exp(−yt)

y
dy

=
∫ ∞

0

1

y

(∫ t

1
y exp(−yu)du

)
dy

=
∫ t

1

(∫ ∞

0
exp(−yu)dy

)
du =

∫ t

1

1

u
du = ln(t), (A7)

by changing the order of the integration. From the combination
of Eqs. (A5)–(A7) we conclude that

lim
l→∞

Pr(T > lt)

Pr(T > l)
= exp

([
lim

x→∞
ρ(x)

ln[η(x)]

]
ln(t)

)
= t limx→∞ ρ(x)/ ln[η(x)]. (A8)

Equation (A8) proves Eq. (9).

APPENDIX B: HAZARD-RATE CHARACTERIZATION
OF HEAVY TAILS

1. Heavy tails at zero

Note that with l’Hôpital’s rule

lim
l→0

Pr(T � lt)

Pr(T � l)
= lim

l→0

∂ Pr(T � lt)/∂l

∂ Pr(T � l)/∂l

= lim
l→0

Pr(T > lt)hT (lt)t

Pr(T > l)hT (l)
= t lim

l→0

hT (lt)

hT (l)
,

(B1)

where in the last two steps we used Eq. (11) and applied the
fact that Pr(T > 0) = 1. From Eq. (B1) it is evident that the
cumulative distribution function Pr(T � t) is regularly varying
at zero with exponent ε0 = α if and only if the hazard rate hT (t)
is regularly varying at zero with exponent ε0 = α − 1.

2. Heavy tails at infinity

Equation (11) implies that

lim
l→∞

Pr(T > lt)

Pr(T > l)
= lim

l→∞
exp

(
−

∫ lt

l

hT (u)du

)

= lim
l→∞

exp

(
−

∫ t

1
hT (lv)ldv

)
, (B2)
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where we applied the change of variables u = lv. Further
transformations lead us to

lim
l→∞

Pr(T > lt)

Pr(T > l)

= exp

(
−

∫ t

1

1

v

[
lim
l→∞

lvhT (lv)
]
dv

)

= exp

(
−[

lim
τ→∞ τhT (τ )

] ∫ t

1

1

v
dv

)
= exp

{−[
lim

τ→∞ τhT (τ )
]

ln(t)
} = t− limτ→∞ τhT (τ ). (B3)

Equations (B2) and (B3) show that the tail distribution function
Pr(T > t) is regularly varying at infinity with exponent ε∞ =
−β if and only if β = limτ→∞ τhT (τ ).

APPENDIX C: HEAVY TAILS OF THE REACTION TIME
VIA HAZARD-RATE CHARACTERIZATION

In this section we rederive the results regarding the heavy
tails of the reaction time using the hazard-rate characterization
of heavy tails, given by Eqs. (13) and (14). In what follows
we assume that η(0) = ∞ and set ψ(y) = ρ(η−1(y)) (y > 0).
Note that Eqs. (11) and (A1) imply that

hT (t) = −1

t2

∫ ∞

0
exp(−s)sψ ′

(
s

t

)
ds. (C1)

Also note that limy→∞ ψ(y) = 0 and hence l’Hôpital’s rule
leads to

lim
l→∞

ψ(ly)

ψ(l)
= y lim

l→∞
ψ ′(ly)

ψ ′(l)
, (C2)

with y > 0.

1. Heavy tails at zero

By virtue of Eq. (C1) we have

lim
l→0

hT (lt)

hT (l)
= lim

l→0

−(lt)−2
∫ ∞

0 exp(−s)sψ ′(s/ lt)ds

−l−2
∫ ∞

0 exp(−s)sψ ′(s/ l)ds

= 1

t2
lim
l→∞

∫ ∞
0 exp(−s)sψ ′(ls/t)ds∫ ∞

0 exp(−s)sψ ′(ls)ds
. (C3)

With Eq. (C2), we perform the following steps:

lim
l→0

hT (lt)

hT (l)
= 1

t2

∫ ∞
0 exp(−s)s[liml→∞ ψ ′(ls/t)/ψ ′(l)]ds∫ ∞

0 exp(−s)s[liml→∞ ψ ′(ls)/ψ ′(l)]ds

= 1

t2

∫ ∞
0 exp(−s)s

[
t
s

liml→∞ ψ(ls/t)/ψ(l)
]
ds∫ ∞

0 exp(−s)s
[

1
s

liml→∞ ψ(ls)/ψ(l)
]
ds

= 1

t

∫ ∞
0 exp(−s)[liml→∞ ψ(ls/t)/ψ(l)]ds∫ ∞

0 exp(−s)[liml→∞ ψ(ls)/ψ(l)]ds
.

(C4)

From Eqs. (C3) and (C4) it follows that the hazard rate hT (t)
is regularly varying at zero if and only if the function ψ(y) is
regularly varying at infinity. Moreover, note that if the function
ψ(y) is regularly varying at infinity with exponent ε∞ = −α

(0 < α < 1) then

lim
l→0

hT (lt)

hT (l)
= 1

t

∫ ∞
0 exp(−s)(t/s)αds∫ ∞
0 exp(−s)(s)−αds

= tα−1 �(1 − α)

�(1 − α)
,

(C5)

with t > 0. We conclude that the hazard rate hT (t) is regularly
varying at zero with exponent ε0 = α − 1 (0 < α < 1) if and
only if the function ψ(y) is regularly varying at infinity with
exponent ε∞ = −α (0 < α < 1). In turn, the function ψ(y)
is regularly varying at infinity with exponent ε∞ = −α if and
only if it admits the form ψ(y) = φ(y)/yα , where the function
φ(y) is slowly varying at infinity. Since ψ(y) = ρ(η−1(y)),
applying the change of variables y = η(x) yields Eq. (8).

2. Heavy tails at infinity

Based on Eq. (C1) we see that

lim
t→∞ thT (t) = − lim

t→∞
1

t

∫ ∞

0
e−ssψ ′(s/t)ds

= −
∫ ∞

0
e−s

[
lim
t→∞(s/t)ψ ′(s/t)

]
ds

= −[
lim

y→∞ yψ ′(y)
] ∫ ∞

0
e−sds. (C6)

Differentiating the function ψ(y) = ρ(η−1(y)), applying the
change of variables y = η(x), and using l’Hôpital’s rule we
find

lim
t→∞ thT (t) = − lim

y→∞ y
ρ ′(η−1(y))
η′(η−1(y))

= − lim
x→∞ η(x)

ρ ′(x)

η′(x)

= − lim
x→∞

ρ ′(x)

[ln η(x)]′
= − lim

x→∞
ρ(x)

ln[η(x)]
. (C7)

Equations (C6) and (C7) imply that

lim
t→∞ thT (t) = β ⇔ lim

x→∞
ρ(x)

ln[η(x)]
= −β. (C8)

APPENDIX D: HEAVY TAILS OF THE REACTION RANGE

1. Heavy tails at zero

With Eq. (15) and l’Hôpital’s rule we find that

lim
l→0

Pr(X � lx)

Pr(X � l)
= lim

l→0

∫ lx

0 (1 − E{exp[−η(s)T ]})ρ(ds)∫ l

0 (1 − E{exp[−η(s)T ]})ρ(ds)

= lim
l→0

(1 − E{exp[−η(lx)T ]})ρ ′(lx)x

(1 − E{exp[−η(l)T ]})ρ ′(l)

= lim
l→0

1 − E{exp[−η(lx)T ]}
1 − E{exp[−η(l)T ]} lim

l→0

ρ ′(lx)x

ρ ′(l)

= lim
l→0

ρ(lx)

ρ(l)
. (D1)

From Eq. (D1) we see that the cumulative distribution function
Pr(X � x) is regularly varying at zero with exponent ε0 = γ

if and only if the scattering function ρ(x) is regularly varying
at zero with the same exponent.
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2. Heavy tails at infinity: The case of finite-mean reaction times

For finite-mean reaction times (E[T ] < ∞), we note that

lim
x→∞

Pr(X > x)

E[T ]
∫ ∞
x

η(s)ρ(ds)

= lim
x→∞

∫ ∞
x

(1 − E{exp[−η(s)T ]})ρ(ds)

E[T ]
∫ ∞
x

η(s)ρ(ds)

= lim
x→∞

(1 − E{exp[−η(x)T ]})ρ ′(x)

E[T ]η(x)ρ ′(x)
,

= lim
y→0

1 − E[exp(−yT )]

E[T ]y
= 1, (D2)

where we used Eq. (15), l’Hôpital’s rule, and the change of
variables y = η(x). Equation (D2) proves Eq. (17). Now with
Eq. (17) and l’Hôpital’s rule,

lim
l→∞

Pr(X > lx)

Pr(X > l)
= lim

l→∞
E[T ]

∫ ∞
lx

η(s)ρ(ds)

E[T ]
∫ ∞
l

η(s)ρ(ds)

= x lim
l→∞

η(lx)ρ ′(lx)

η(l)ρ ′(l)
. (D3)

Equation (D3) shows that the tail distribution function Pr(X >

x) is regularly varying at infinity with exponent ε∞ = −δ if and
only if the function η(x)ρ ′(x) is regularly varying at infinity
with exponent ε∞ = −1 − δ.

3. Heavy tails at infinity: The case of heavy-tailed reaction times

Consider the case of reaction times that are heavy tailed at
infinity with exponent β (0 < β < 1). We have

lim
x→∞

Pr(X > x)∫ ∞
x

Pr[T > 1/η(s)]ρ(ds)

= lim
x→∞

∫ ∞
x

(1 − E{exp[−η(s)T ]})ρ(ds)∫ ∞
x

Pr[T > 1/η(s)]ρ(ds)

= lim
x→∞

(1 − E{exp[−η(x)T ]})ρ ′(x)

Pr[T > 1/η(x)]ρ ′(x)
,

= lim
y→0

1 − E[exp(−yT )]

Pr(T > 1/y)
= �(1 − β), (D4)

where we used Eq. (15), l’Hôpital’s rule, the change of
variables y = η(x), and the Tauberian theorem (with respect
to the reaction time T ). Equation (D4) proves Eq. (19). Now,
with Eq. (19) and l’Hôpital’s rule, we obtain

lim
l→∞

Pr(X > lx)

Pr(X > l)
= lim

l→∞
�(1 − β)

∫ ∞
lx

Pr[T > 1/η(s)]ρ(ds)

�(1 − β)
∫ ∞
l

Pr[T > 1/η(s)]ρ(ds)

= x lim
l→∞

Pr[T > 1/η(lx)]ρ ′(lx)

Pr[T > 1/η(l)]ρ ′(l)
. (D5)

From Eq. (D5) we conclude that the tail distribution function
Pr(X > x) is regularly varying at infinity with exponent ε∞ =
−δ if and only if the function Pr[T > 1/η(x)]ρ ′(x) is regularly
varying at infinity with exponent ε∞ = −1 − δ.

APPENDIX E: POWER-LAW COUPLING

1. Derivation of Eqs. (22) and (23)

The power-law coupling of Eq. (21) implies that

ρ ′(x) = −αη(x)−α−1η′(x). (E1)

Substituting Eq. (E1) into Eq. (12) yields

hT (t) =
∫ ∞

0
exp[−η(x)t]η(x)[−αη(x)−α−1η′(x)]dx

= −α

∫ ∞

0
exp[−η(x)t]η(x)−αη′(x)dx

= α

∫ ∞

0
exp(−yt)y−αdy = �(1 − α)αtα−1, (E2)

with the change of variables y = η(x). Equations (E1) and
(E2) yield Eq. (23). Moreover, Eq. (E2) implies that∫ t

0
hT (τ )dτ =

∫ t

0
�(1 − α)ατα−1dτ = �(1 − α)tα. (E3)

Substituting Eq. (E3) into Eq. (11) yields Eq. (22).

2. Derivation of Eq. (24)

Equation (E1) implies that∫ ∞

x

η(s)ρ(ds)

=
∫ ∞

x

η(s)[−αη(s)−α−1η′(s)]ds = −α

∫ ∞

x

η(s)−αη′(s)ds

= α

∫ η(x)

0
u−αdu = α

1 − α
η(x)1−α, (E4)

with the change of variables u = η(s). Also,

E[T ] =
∫ ∞

0
Pr(T > t)dt =

∫ ∞

0
exp[−�(1 − α)tα]dt

=
∫ ∞

0
exp[−�(1 − α)u]

(
u1/α−1

α

)
du

= �(1/α)

α�(1 − α)1/α
, (E5)

using Eq. (22) and change of variables u = tα . Substituting
Eqs. (E4) and (E5) into Eq. (17) yields Eq. (24).

3. Derivation of Eqs. (25) and (26)

The conditional distribution of the reaction range X,
conditioned on the realization of the reaction time T , is given
by the tail distribution function

Pr(X > x|T = t) =
∫ ∞
x

exp[−η(y)t]η(y)ρ(dy)∫ ∞
0 exp[−η(y)t]η(y)ρ(dy)

, (E6)

with x > 0 [31]. By virtue of Eq. (E1) and the change of
variables u = η(y)t we have

I (x; t) :=
∫ ∞

x

exp[−η(y)t]η(y)ρ(dy)

=
∫ ∞

x

exp[−η(y)t]η(y)[−αη(y)−α−1η′(y)]dy (E7)
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= −α

∫ ∞

x

exp[−η(y)t]η(y)−αη′(y)dy

= α

∫ tη(x)

0
exp(−u)

(
t

u

)α 1

t
du = αtα−1

∫ tη(x)

0
exp(−u)u−αdu.

(E8)

In particular, Eq. (E8) implies that

I (0; t) = αtα−1
∫ ∞

0
exp(−u)u−αdu = �(1 − α)αtα−1. (E9)

Substituting Eqs. (E8) and (E9) into Eq. (E6) yields Eq. (25).
Also,

lim
x→∞

∫ tη(x)
0 exp(−u)u−α/�(1 − α)du

t1−αη(x)1−α/�(2 − α)

= �(2 − α)

�(1 − α)
lim
y→0

∫ y

0 exp(−u)u−αdu

y1−α

= (1 − α) lim
y→0

exp(−y)y−α

(1 − α)y−α
= 1, (E10)

using the change of variables y = tη(x) and l’Hôpital’s rule.
Equation (E10) yields Eq. (26).

APPENDIX F: EXPONENTIAL COUPLING

1. Derivation of Eqs. (31) and (32)

Note that the exponential coupling of Eq. (30) implies that
ρ ′(x) = −βη′(x)η(x). Substituting this relation into Eq. (12)
yields

hT (t) =
∫ ∞

0
exp[−η(x)t]η(x)[−βη′(x)/η(x)]dx

= −β

∫ ∞

0
exp[−η(x)t]η′(x)dx = β

∫ 1

0
e−ytdy

= β
1 − exp(−t)

t
, (F1)

with the change of variables y = η(x). Equation (F1) yields
Eq. (32). Moreover, Eq. (F1) implies that

∫ t

0
hT (u)du = β

∫ t

0

1 − exp(−u)

u
du. (F2)

Consequently, Eqs. (11) and (F2) imply that

lim
t→∞

Pr(T > t)

t−β
= lim

t→∞
Pr(T > t)

exp[−β ln(t)]
= lim

t→∞
exp

(−β
∫ t

0
1−exp(−u)

u
du

)
exp[−β ln(t)]

= lim
t→∞ exp

[
β

(∫ t

1

1

u
du −

∫ t

0

1 − e−u

u
du

)]

= lim
t→∞ exp

[
β

(∫ t

1

e−u

u
du −

∫ 1

0

1 − e−u

u
du

)]
= exp

[
β

(∫ ∞

1

e−u

u
du −

∫ 1

0

1 − e−u

u
du

)]
. (F3)

Equation (F3) yields Eq. (31).

2. Derivation of Eq. (33) for β > 1

Consider the case β > 1. Equation (F1) implies that∫ ∞

x

η(s)ρ(ds) =
∫ ∞

x

η(s)[−βη′(s)/η(s)]ds

= −β

∫ ∞

x

η′(s)ds = βη(x). (F4)

In the range β > 1 the mean is finite, E[T ] < ∞, and hence
substituting Eq. (F4) into Eq. (17) yields Eq. (33).

3. Derivation of Eq. (33) for β < 1

Consider the case β < 1. Equations (31) and (F1) imply
that∫ ∞

x

Pr[T > 1/η(s)]ρ(ds)

≈
∫ ∞

x

[bη(s)]β
(

−β
η′(s)

η(s)

)
ds = −bβ

∫ ∞

x

βη(s)β−1η′(s)ds

= bβ

∫ η(x)

0
βuβ−1du = bβη(x)β, (F5)

with the change of variables u = η(s). In the range β < 1 the
reaction time is heavy tailed at infinity and hence substituting
Eq. (F5) into Eq. (19) yields Eq. (33).

4. Derivation of Eq. (33) for β = 1

Consider the case β = 1. Let fT (t) denote the probability
density function of the reaction time T . Equations (11), (31),
and (32) imply that

fT (t) = Pr(T > t)hT (t) ≈ b

t

1

t
= b

t2
(F6)

at t → ∞. Equation (F1) implies that

∫ ∞

x

(1 − E{exp[−η(s)T ]})ρ(ds)

=
∫ ∞

x

(1 − E{exp[−η(s)T ]})
(

−η′(s)

η(s)

)
ds

=
∫ η(x)

0

1 − E[exp(−uT )]

u
du, (F7)
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with the change of variables u = η(s). Note that

lim
x→∞

∫ η(x)
0 {1 − E[exp(−uT )]}/udu

−η(x) ln[η(x)]

= lim
y→0

∫ y

0 {1 − E[exp(−uT )]}/udu

−y ln(y)
= lim

y→0

{1 − E[exp(−yT )]}/y
− ln(y) − 1

= lim
y→0

1 − E[exp(−yT )]

−y ln(y)

= lim
y→0

E[exp(−yT )T ]

− ln(y) − 1
= lim

y→0

E[exp(−yT )T 2]

1/y

= lim
y→0

y

∫ ∞

0
exp(−yt)t2fT (t)dt =

∫ ∞

0
exp(−u)

{
lim
y→0

[ (
u

y

)2

fT

(
u

y

)]}
du =

∫ ∞

0
exp(−u)bdu = b, (F8)

where we used the change of variables y = η(x), l’Hôpital’s rule, and Eq. (F6). Collecting our results, we conclude that

lim
x→∞

∫ ∞
x

(1 − E{exp[−η(s)T ]})ρ(ds)

−η(x) ln[η(x)]
= b. (F9)

Substituting Eq. (F9) into Eq. (15) yields Eq. (33).

5. Derivation of Eq. (34)

With Eq. (F1) and the change of variables u = η(y), we have

I (x; t) :=
∫ ∞

x

exp[−η(y)t]η(y)ρ(dy) =
∫ ∞

x

exp[−η(y)t]η(y)

(
−β

η′(y)

η(y)

)
dy

= −β

∫ ∞

x

exp[−η(y)t]η′(y)dy = β

∫ tη(x)

0
exp(−u)du = β{1 − exp[−tη(x)]}. (F10)

Equation (F10) implies that

I (0; t) = β[1 − exp(−t)]. (F11)

Substituting Eqs. (F10) and (F11) into Eq. (E6) yields Eq. (34).
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