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Abstract

Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated
diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-
dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a
simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of
transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we
determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental
measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as
a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very
sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal
conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly
accelerate the mean search time within our model.

Citation: Bauer M, Metzler R (2013) In Vivo Facilitated Diffusion Model. PLoS ONE 8(1): e53956. doi:10.1371/journal.pone.0053956

Editor: Yaakov Koby Levy, Weizmann Institute of Science, Israel

Received October 31, 2012; Accepted December 4, 2012; Published January 18, 2013

Copyright: � 2013 Bauer and Metzler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Academy of Finland (FiDiPro scheme): www.aka.fi/eng; and German Federal Ministry for Education and Research: www.
bmbf.de/en/index.php. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rmetzler@uni-potsdam.de

Introduction

Transcription factors (TFs) are able to locate and bind their

target sequence on DNA at surprisingly high rates. This became

clear when in 1970 it was measured that in vitro the lac repressor

associates with the operator at a rate of ka~7|109 M{1 s{1 [1].

This is about two orders of magnitude faster than a rate calculated

with the well-known Smoluchowski formula for three-dimensional

diffusion control [2]. The results obtained in the in vitro

experiments by Riggs et al. and by Winter et al. were successfully

explained with the by now classical facilitated diffusion model,

introduced by Berg, von Hippel and co-workers [3,4]: the TF

alternates between three-dimensional diffusion through the bulk

solution and sliding along the DNA contour which can be

considered as one-dimensional diffusion. While a large majority of

subsequent reformulations of this target search problem are based

on this facilitated diffusion model [5–8], there are also critical

reviews focusing on limitations of the traditional model [9,10].

Even if it is accepted by most of the scientists that in vitro TFs

perform facilitated diffusion to find their targets, there is a vivid

debate on whether this mechanism indeed plays a role in vivo. The

interest in this long-standing topic was boosted by the development

of new experimental techniques, namely single-molecule assays

studying DNA-binding proteins, or more generally the diffusion of

proteins within cells [11–18]. After finding indirect evidence some

years ago, Elf and coworkers recently demonstrated that the lac

repressor does display facilitated diffusion in live Escherichia coli (E.

coli) cells [19,20].

Thus it is important to study how the present facilitated

diffusion models need to be translated to the in vivo situation. In

comparison to the dilute situation studied in vitro the most

important changes are: the influence of the confinement to the

cell body or the nucleoid and the compactified DNA conforma-

tion, and the impact of the presence of many large biomolecules.

The latter, which is often referred to as macromolecular crowding

has two major effects: the equilibrium for DNA-binding proteins is

shifted favoring the associated state and the diffusion in the

cytoplasm is slowed down [21,22]. There is an on-going debate

whether this reduced diffusion is still Brownian, following

experimental evidence that for larger molecules such as mRNA

[23,24] or lipid granules [25] the motion follows the laws of

anomalous diffusion [26,27]. Indeed, there are indications that

particles of the size of several tens of kilo Daltons exhibit

anomalous diffusion [28,29]. In what follows we model TFs in the

bulk by normal Brownian diffusion and point at potential

implications of anomalous diffusion in the conclusions.

We note that theoretical work on facilitated diffusion in vivo has

also been reported by Mirny and coworkers as well as by Koslover

and coworkers [9,30]. A different approach for the situation in

living cells, based on a fractal organization of the chromatin in the

nucleus, showed that also in eukaryotes facilitated diffusion can be

beneficial [31].

With respect to the impact of the cell’s finite size Foffano et al.

recently studied the influence of (an-)isotropic confinement on the

facilitated diffusion process for rather short DNA chains [32]. To

build a theoretical model for facilitated diffusion on the entire

genome in living cells we shortly review what is known about the

organization of the bacterial DNA [33]. The emerging general

consensus points at a distinct separation of the genome into

connected subunits, that may be dynamic. Using atomic force

microscopy the size of structural units of the E. coli chromosome

was studied, finding units of size 40 nm and 80 nm [34]. By means
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of two complementary approaches the average size of the

structural domains was measured to be 10 kilobasepairs (kbp)

[35]. Romantsov et al. studied the structure with fluorescence

correlation spectroscopy, yielding units of size 50 kbp with a

diameter of (70+20) nm [36]. Chromosome conformation

capture carbon copy(5C) was used to determine a three-

dimensional model of the Caulobacter genome [37]. For the same

bacterium Viollier et al. determined that the location of genes on

the chromosome map correlates linearly with its position along the

cell’s long axis [38].

Based on these experimental observations several models for the

DNA structure in bacterial cells have been proposed: entropy is

spotted to be the main driver of chromosome segregation, and ring

polymers are used to model the bacterial chromosome [39,40].

Buenemann and Lenz showed that a geometric model based on a

self-avoiding random walk (SAW) is sufficient to explain the linear

positioning of loci along the cell’s longest axis [41]. Finally, the

chromosomal structure and, in particular, the accurate positioning

of loci was proposed as resulting from regulatory interactions

[42,43].

In this paper we survey if it is possible to extend our previous

generalized facilitated diffusion model [44] to the in vivo situation

and compare the results with the ones obtained by Koslover et al.

[30]. Therefore in the following section we detail how we obtain a

coarse-grained model for the bacterial genome and state our semi-

analytical model for the search process. Then the general theory

will be applied to the specific case of a lac repressor in an E. coli

cell, and we favorably compare our results with related experi-

mental measurements [19]. Finally we conclude our findings and

give an outlook on future research directions.

Theory

The quantity we investigate is the average time a TF needs to

find a target sequence in a living bacterial cell after starting at a

random position within the cell. In principle it is possible to apply

our previous generalized diffusion model using rescaled rates,

lengths and diffusion constants to account for the crowded in vivo

environment [44]. However, for parameters typical for the interior

of cells the effective contact radius between TF and DNA is larger

than the average distance between neighboring DNA segments.

Consequently a direct translation is not possible.

Moreover, as we will see below, already the simpler one-state

model of facilitated diffusion is sufficient to obtain a fairly good

estimate of the experimental results without any further free

parameters. Thus we do not distinguish between search and

recognition states of the TF-DNA complex [5]. Intersegmental

jumps and/or transfers [6,8,16,45] of TFs between DNA

segments, that are close-by in the embedding space but distant

when measured in the chemical coordinate along the genome, are

to some extent indirectly included in terms of re-attachment to the

DNA within one of the geometric subunits of the chromosome. In

future studies these effects could be explicitly included to refine the

model.

Our approach is based on the general picture of the facilitated

diffusion mechanism: the TF diffuses three-dimensionally through

the bulk solution until it encounters a stretch of DNA to which it

can bind. Then a sliding motion along the DNA contour is

possible, during which the TF probes for the target. If the target is

not found, the TF will dissociate from the chain after a certain

time span and resume its 3D-diffusion through the cell until the

next binding event. This scheme continues until the target is

found. The major difference to the dilute in vitro situation lies in the

DNA conformation which is heavily influenced by the confine-

ment to the cell volume or the nucleoid volume: As the contour

length of (the typically circular) bacterial DNA is about three

orders of magnitude larger than the longest cell axis in which it is

placed, there is clearly a need to compact it. To proceed we

present our model for the compacted genome.

Model for the compacted genome
Without dwelling on details to which extent nucleoid-structur-

ing proteins and/or supercoiling is responsible for DNA compac-

tion in bacterial cells, we adapt the model of Buenemann and Lenz

and assume that the DNA is assembled structurally into spheres

(‘blobs’) containing one loop each [41]. Thus, the whole genome is

modeled as a closed SAW of these uniformly large blobs on a

lattice representing the nucleoid volume (here we diverge from ref.

[41], where the full cell volume was taken). To mimic the

cylindrical shape of the nucleoid one of the cuboid lattice’s edges is

taken to be longer than the other two of equal length.

The key quantities are the blobs’ radius of gyration rg and the

number of basepairs within a blob, Nb. While the latter parameter

determines how many blobs make up the DNA, since the number

of bps on the DNA is a fixed parameter, the first one effectively

determines the lattice size (see figure 1).

To obtain individual DNA conformations we follow a routine

similar to the one described in ref. [41]: as a starting point we use a

closed loop of minimal extension which touches both end faces

along the longest cell axis. Then the chain is elongated by inserting

hooks at random positions until it reaches the desired length (due

to the form of the algorithm only chains with an even number of

blobs are considered). Only elongation steps which yield a

conformation within the nucleoid volume are executed. After-

wards the genome is equilibrated in the following manner: we

randomly choose one of the three transformation types of the

MOS algorithm [46]. Then it is checked if the resulting

conformation is still an SAW, otherwise the old conformation is

kept. Finally only attempts are counted in which the SAW is still

confined to the nucleoid volume. This is repeated 100,000 times

for each individual model genome.

Afterwards the resulting DNA conformations are centered on a

larger lattice representing the full cell volume and remain

unchanged during the subsequent simulation of the target search

process. This approach is affirmed by recent results that DNA

dynamics only have little effect on target search rates [30]. For the

sake of simplicity we assign the target to be in a blob in the middle

of the DNA.

Figure 1. Two-dimensional schematic of the DNA conforma-
tion. The circles denote single DNA blobs. The lattice spacing is twice
the blob radius: dg~2rg . A part of an exemplary search trajectory is
depicted by the arrow.
doi:10.1371/journal.pone.0053956.g001

In Vivo Facilitated Diffusion Model

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e53956



Target search process
The TF is assumed to start its search at a random position in the

cell volume and its motion is modeled as a random walk on the

effective lattice (fig. 1), during which we keep track of how often

sites containing a blob are passed. The search process is

schematically depicted in fig. 2. The TF starts its search diffusing

in 3D (S-state). With certainty (probability 1) after some time it will

encounter a blob, which it enters in its unbound state (U). We first

study the case where this blob does not contain the target DNA.

Based on the microscopic model be outlined below, we assign a

probability pr that the TF will bind to the DNA within this blob. If

so it changes to the B-state. As there is no target to be found on the

DNA, after some time the TF will dissociate and return to the

unbound U-state. With probability pr it can bind again, or it may

leave the blob (with probability 1{pr) and start a new random

walk on the lattice (S-state). The same procedure will take place

when subsequent blobs are encountered.

A qualitatively new event occurs when the site containing the

target DNA is encountered for the first time. Now the tendency to

quit the corresponding blob competes with the probability to find

the target. For this reason, in general several encounters with the

target blob are necessary. The corresponding scheme is depicted

in figure 3: Once again after entering the blob in the unbound U-

state, with probability 1{pr not a single binding event takes place.

However, if the TF binds to DNA (with probability pr),

subsequently with probability pt the target will be found (T-state)

before dissociating. If the target is not found and the TF

dissociates, again with probability 1{pr, the blob is left. Otherwise

(with probability pr) a new chance to find the target while being

bound is opened up. As in the simpler scheme without target, a

new random walk (S-state) is started on a neighboring site if the

blob is left. To proceed we relate the probabilities pr and pt to

microscopic quantities and determine the time steps of the

individual processes, before calculating the typical search time

for the target.

Microscopic model
To determine pr, that is the probability to bind to DNA after

entering a blob or after dissociation from the DNA within the blob

we employ the approximation that locally the DNA can be treated

as a random coil [3,44]. Thus we have to solve the diffusion

equation for an initially homogeneous probability distribution

within a sphere of radius rg. Inside this sphere nonspecific

association to a basepair on the DNA occurs with the constant,

intrinsic rate kass (in units of M{1s{1). We introduce a second

concentric sphere of radius arg whose surface is absorbing,

modeling the TFs leaving the domain of the blob. Thus, the

dimensionless quantity a measures (in units of rg ) where the blob’s

area of influence ends, see below and Supporting Information S1.

The corresponding problem is solved in the SI S1, yielding the

binding probability

pr~1{
3aw(c)

az(a{1)c2w(c)
, ð1Þ

with the dimensionless quantity c~rg

ffiffiffiffiffiffiffiffiffiffiffi
k=D3

p
. Here D3 denotes

the 3D-diffusion constant, and k~nkassNb. Moreover,

n~3=(4pr3
g) represents the density of DNA within the coil. In

Eq. 1 we also introduced the auxiliary function

w(c)~(c coth(c){1)=c2 [47].

Note that pr is a monotonic function of c. Keeping the values of

k,a and rg fixed, for decreasing, yet finite values of D3 the

probability to escape the blob (which is given by 1{pr) becomes

smaller, as in this case the TF moves slower and spends more time

within the blob, where it can be caught by a stretch of DNA.

Exactly at D3~0 one obtains pr~0, an apparent paradox.

However, while it is true that an immobile TF is unable to leave a

blob, the converse argument that the TF will bind to DNA with

certainty is not obvious, as binding requires the motion of a TF

towards DNA within the blob. Because this complementarity is

implicitly assumed in the present model, it only yields meaningful

results for finite values of c. Only this situation will be considered

in the following.

If binding occurs, the average time this takes is given by a

somewhat complicated formula for arbitrary values of a (see SI

S1). Here we report the simpler result for the special case a~2.

This case is of interest, as in the numerical evaluation we use the

value a~
ffiffiffiffiffiffiffiffiffiffi
23=5

p
&2:14, see below.

ta~2
b ~

1

2k

20z(8c2{30)w(c)z(4c2{36)c2w2(c)

(2zc2w(c))(2z(c2{6)w(c))
: ð2Þ

Conversely, the average time it takes the TF to leave the blob is

ta~2
e ~

1

2k

6{2w{1(c)zc2(4w(c)z 4
3

)z c4

3
w(c)

2zc2w(c)
: ð3Þ

While diffusing in 3D, a single random walk step on average takes

t3D~d2
g=(6D3). Once the TF binds non-specifically to the blob

containing the target, the probability to find the target before

dissociating can be found by considering a one-dimensional

diffusion problem. We assume that the target is located in the

middle of the corresponding blob. Then we consider a DNA

stretch of length L~Nbb=2 with the target at one end. Here b

denotes the size of a basepair, b~0:34 nm.

Due to the DNA’s coiled conformation within a blob, we use the

standard assumption that the first binding event occurs at a

Figure 2. Schematic of the microscopic events within a blob
(without target). B denotes a bound TF, and U an unbound TF within
a blob. Finally, S represents a searching TF which is currently not in a
blob.
doi:10.1371/journal.pone.0053956.g002

Figure 3. Schematic of the microscopic events within the target
blob. Same notation as in the previous figure. Additionally, T denotes a
TF which has found the target.
doi:10.1371/journal.pone.0053956.g003
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random position on the DNA and that dissociation and

reassociation positions are completely uncorrelated, see for

example [48]. Formally this implies that the TF initially is

uniformly distributed on the DNA along which it diffuses with the

diffusion constant D1. The TF can leave the DNA with the

dissociation rate koff . We furthermore assume that the other

extremity of the DNA acts as a reflecting boundary [48], possibly

due to compacting proteins that obstruct further 1D-diffusion at

this position. The calculation detailed in the SI S1 yields:

pt~
tanh(L=‘)

L=‘
, ð4Þ

with ‘~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=koff

p
, which denotes a typical distance covered

sliding on DNA before dissociating. If the target is found, the

conditional time this successful event takes on average, reads

tt~
1{1= pt cosh2 L

‘

� �� �

2koff

~
1{ L

‘ = sinh L
‘

� �
cosh L

‘

� �� �

2koff

: ð5Þ

However, an unsuccessful event implies that the DNA is (on

average) left after the time span td~1=koff . Inspection of Eq. (5)

shows that in the limit D1?0, i.e. when TFs are (nearly) incapable

of sliding, tt approaches the finite value 1=(2koff ), which is at first

sight a surprising result. However, in this limit the probability to

reach the target as given by Eq. (4) approaches zero, ensuring that

meaningful results are obtained. It should be stressed that our

model only allows target detection via sliding, and not via direct

detection solely through three-dimensional diffusion.

Mean search time
To determine the mean time it takes to find the target at first we

specify how often the ‘‘loop’’ of binding and unbinding events (B

and U in figures 1 and 2) is executed during an encounter with a

blob. In all the blobs without the target this happens on average

pr=(1{pr) times. As one loop lasts tc~tbztd the average time

that is spent within a blob is tblob~teztcpr=(1{pr).

In the blob containing the target, the average number of

binding and unbinding loops is g(pr,pt)~x=(1{x), where

x~pr(1{pt). Note that the number of executed loops in blobs

without target is the special case pt~0 of the general case,

g(pr,pt~0)~pr=(1{pr). In the same sense figure 2 can be

considered a special case of figure 3. The combined probability to

find the target before leaving the blob reads prpt=(1{przprpt),
consequently the probability for a failed attempt is

puns~(1{pr)=(1{x). Thus, a successful event during which the

target is found, on average takes tsuc~tbzttzg(pr,pt)tc, and an

unsuccessful one tuns~tezg(pr,pt)tc.

The mean total search time can be dissected into three

contributions: first, the mean time the TF needs to arrive at the

target blob for the first time. Then the mean time it takes to return

to the target after an unsuccessful search event. The latter has to

be multiplied with the average number of failed attempts. Finally

the average time it takes to successfully bind the target at the

corresponding blob has to be added.

To quantify this model two parameter pairs from the random

walk simulation are needed as inputs: the mean number of steps it

takes to encounter the target blob for the first time nf,3D after

starting at a random position within the cell and how many blobs

without target are encountered during this time, nf,enc. Further-

more we determine the mean number of steps and blob-

encounters in a random walk starting on a site next to the target

blob: nr,3D,nr,enc and ending in the target blob. Altogether the

mean total search time reads:

t~nf,3Dt3Dznf,enctblob

z
puns

1{puns
tunsznr,3Dt3Dznr,enctblobð Þ

ztsuc:

ð6Þ

This formula is the main result of our study, which will be

discussed quantitatively for the case of the lac repressor in an E. coli

cell.

Results

As input parameters for our TF search model in a living cell we

use data deduced from experimental studies. For the DNA

configuration we use two parameter sets for the blob size and the

number Nb of basepairs within a blob: (a) rg~15 nm and

Nb~104 [35,41] and (b) rg~35 nm and Nb~5|104 [36]. The

volume of the nucleoid can be approximated as a cylinder of

diameter dnuc~0:24 mm and length lnuc~1:39 mm [39]. We use a

cuboid with edge lengths lx~ly~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p|d2

nuc=4
p

&213 nm and

lz~lnuc. This corresponds to nucleoid lattices of size 7|7|46
and 3|3|20. As the E.coli genome consists of *4639 kbps, we

compose a closed SAW consisting of (a) 464 blobs and (b) 92 blobs,

respectively. For the parameter sets we create three and five

sample conformations. The total cell volume can be approximated

as a cylinder with dcell~0:5 mm and length lnuc~2:5 mm [39].

Accordingly, we use embracing lattices of size 15|15|83 and

6|6|36 to mimic the full cell volume. Besides, we employ

a~
ffiffiffiffiffiffiffiffiffiffi
23=5

p
in order to obtain the correct asymptotic behavior for

small values of kass as detailed in the SI S1 and we use

D3~3 mm2=s and D1~0:046 mm2=s [19]. The results of the

random walk simulation are summarized in table 1.

A first inspection of the values of nr=f,3D and nr=f,enc shows that

the ones obtained with parameter set a are approximately one

order of magnitude larger than the ones obtained with set b. This

is clear as set a corresponds to a finer model of the DNA, in which

the respective value of rg is smaller. Next, we consider the ratios

qf ~nf ,enc=nf ,3D and qr~nr,enc=nr,3D, that is the fractions of sites

containing a blob encountered during a trajectory. The results are

very close to the total fraction of sites that are occupied by a blob:

for parameter set a, this is: 464=(15|15|83)&0:0248 and for b:

92=(6|6|36)&0:0710. This and the fact that the values for the

first encounter and for the returning trajectories are similar,

support the statement that the TF experiences an effective medium

through which it diffuses [30]. If we only consider the mean search

times, this medium is mainly characterized by the mean DNA

density within the cell.

Table 1. Simulation results.

Set nf,3D nf,enc qf nr,3D nr,enc qr

a 31514 766:41 0:0243 18689 463:48 0:0248

b 2594:7 175:63 0:0677 1291:9 90:848 0:0703

Simulation results for parameter sets a and b.
doi:10.1371/journal.pone.0053956.t001
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Non-monotonic behavior
In figure 4 the mean search time averaged over the ensembles

with parameter set a is shown as a function of the association rate

kass and the dissociation rate koff . We find a non-monotonic

dependence both on the association and the dissociation rate

typical for facilitated diffusion models: for a fixed value of kass

there exists a value of koff that minimizes the search time. This

minimal value decreases if both rates are increased while keeping

them at a constant ratio.

In figure 5 the ratio of the search time obtained with parameter

set b with the search time obtained with parameter set a is plotted

for the same range as in figure 4. Even though set b always yields

slightly smaller search times, the results are very similar, especially

in the range usually studied in experiments, as we will see below.

Therefore in the following we solely consider results obtained with

set a. In the SI S1 we moreover show that the approach to use an

ensemble average to obtain the mean search time is justified as the

scatter between data obtained with individual conformations is

negligible (see figure S1). Only at very low values of koff , when the

TF spends considerable time in the non-specifically bound state,

the individual conformation does play a role.

We saw that for fixed values of kass, there exists an optimal of

koff , for which the target localization occurs fastest. It is insightful

to study whether a living E. coli cell operates close to this point.

Comparison to experimental results
We choose the rates according to the results of Xie and

coworkers [19]: they measured that the lac repressor spends 87%

of the total time non-specifically bound and determined the

residence time on DNA tR to be in the range

0:3 msvtR~1=koffv5 ms: ð7Þ

To incorporate these values, we calculate the fraction of time, fb,

that the TF spends non-specifically bound. This is obtained from

Eq. 6 by only considering the terms involving td and tt. The result

is plotted in figure 6, again as a function of dissociation and

association rate.

We see that contour lines of a constant fraction appear as

straight lines in this log-log-plot. A numerical analysis yields that

the condition fb~0:87 is fulfilled for

log10 (kass(M
{1s{1))~1:04 log10 (koff (s

{1))z2:76: ð8Þ

The observation that the slope of this curve is (nearly) unity,

reflects the fact that specifying the bound fraction of time is

equivalent to specifying the equilibrium binding constant which is

simply given by the ratio of kass and koff . We plug Eq. 8 into our

model and plot the resulting mean search time as a function of the

single residual parameter koff in figure 7 in the range given by Eq.

7. Additionally, in figure 7 we plot the minimal search time in this

regime which is obtained by choosing the optimal value of kass.

In both cases we obtain a monotonically decreasing function of

koff . Most interestingly, the values obtained in this biologically

relevant parameter regime are only marginally larger than the

optimal ones. At koff *> 500 s{1 the two data sets nearly lie on top

of each other. This means that within our model an E. coli cell

seems to operate quite close to conditions, which are optimal for

target localization. At koff~200 s{1, which was used in the

discussion in ref. [30], we obtain t&311 s. This is approximately

12% below the experimental result 6|59 s~354 s [19], implying

a very favorable agreement.

Figure 4. Mean search time. The mean search time is plotted as a
function of the dissociation rate koff and the association rate kass (using
parameter set a). The blue bar and the blue dotted lines denote the
range of koff which is biologically relevant [19].
doi:10.1371/journal.pone.0053956.g004

Figure 5. Difference between the two parameter sets. The plot
shows the ratio of the mean search time obtained with parameter set b
with the ones obtained with set a.
doi:10.1371/journal.pone.0053956.g005

Figure 6. Bound fraction of time. The fraction of time during which
the TF is non-specifically bound is shown (using parameter set a).
doi:10.1371/journal.pone.0053956.g006
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Local searches
There is some evidence that many TFs are produced close to

their target positions, a phenomenon called colocalization [14,49].

These local searches would obviously be faster than a global search

starting at a random position within the cell. To quantify this in

figure 8 we plot how many percent of the total search time is still

needed to find the target if the TF starts its search in the target

blob while all other parameters remain unchanged. In mathemat-

ical terms this corresponds to omitting the terms in the first line of

Eq. 6. We see that only for relatively large values of kass an

appreciable acceleration is obtained for local searches. This is clear

as large values of the association rate imply that all the blobs

encountered en route act as traps slowing down the transport.

Interestingly, in the regime typical for the interior of cells the

acceleration is of little amount. This can also be interpreted in the

more general context of ‘‘geometry-controlled kinetics’’, see the

works of Bénichou and coworkers [50,51]. These authors showed

that for non-compact exploration of space - as is the case in the

present model - the initial position of a searching particle has little

influence.

Discussion

We analyzed the facilitated diffusion mechanism in a living cell

using a coarse-grained model of the bacterial genome. Just like in

dilute in vitro systems there is a non-monotonic dependence both

on the dissociation rate and the association rate of TFs from and to

DNA. The respective optimal conditions mark a trade-off between

spending too much time on DNA where the motion is rather slow,

but the target can be found, and spending too much time in the

cytoplasm where the motion is faster, but the TF is insensitive to

the target.

When calculating the mean search time as an input from our

random walk simulation we solely use the mean number of steps

taken and the number of blobs encountered during the trajectory.

This corresponds to treating the nucleoid body as an effective

medium through which the TF diffuses, which agrees with the

observations made by Koslover et al. that within a short time span

the TF starts an effective diffusive motion [30]. Accordingly, we

see that the exact values of the parameters describing the DNA

conformation have only little effect on our results. Only the fact

that there is an effective medium characterized by the DNA

density matters.

Calibrating our results with the experimental observation that

the TF spends 87% of the time non-specifically bound [19], we

obtain search times that only slightly underestimate the experi-

mentally known results. In a previous study we showed that the

introduction of a search and a recognition state in order to resolve

the speed-stability paradox slows down the search [44]. Thus, a

refined model taking this effect into account could yield a result

even closer to the experimental one.

Most importantly, within our model the results in the

biologically relevant regime of dissociation rates are quite close

to the ones minimizing the search time, indicating that living E. coli

cells function near conditions optimal for TF target location.

Our results for the mean search times are similar to those

obtained by Koslover et al. [30]. However, in their model for in

vivo facilitated diffusion they distribute the DNA over the entire cell

volume and assume a random coil configuration. If one were

confining the DNA to the smaller nucleoid volume, the effective

DNA-TF contact radius in that model would then become smaller

than the average distance between DNA segments. Besides, our

model is less idealized. In that sense our current approach has the

advantage that the DNA is realistically confined to the nucleoid

volume, and based on input parameters deduced from experi-

mental studies we also obtain mean search times, that are very

close to experimental in vivo values. Moreover, our model offers the

advantage that in future studies additional information may be

deduced, for example, by studying the underlying probability

densities of nr,3D, nr,enc, etc., in addition to their mean values

determined here.

Colocalization effects
Comparing the mean search times for TFs starting at a random

position in the cell volume with those TFs that already start close

to the target, we only observe a minor acceleration. This is due to

the fact that most of the search time is spent returning to the target

blob after a failed attempt to find the target. For a wide range of

parameters the first encounter with the target blob only represents

a small fraction of the whole search time. Leaving the picture of

mean values for the search time of an ensemble of TFs, on the

level of single trajectories immediate returns to the target blob are

indeed possible and thus may lead to search times much shorter

than the average search time. Such scenarios may in fact be

relevant for biological cells.

Should observations of anomalous diffusion for TFs in the

cytoplasm of living cells be substantiated, the effect of colocaliza-

tion should become significantly more pronounced, if the nature of

the exploration of space is compact [50,51]: subdiffusion implies

Figure 7. Mean search time and minimal search time. The mean
search time and the minimal search time (with appropriately chosen
kass) are plotted as a function of the dissociation rate at parameters
relevant for the interior of living cells.
doi:10.1371/journal.pone.0053956.g007

Figure 8. Acceleration due to local searches. The ratio of the time
needed in a local search with the one in a global search (with parameter
set a) is shown.
doi:10.1371/journal.pone.0053956.g008
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an increased occupation probability near the initial position

[23,52,53], and thus increases the likelihood for successful TF-

DNA binding after repeated attempts. In that sense subdiffusion

may even be beneficial for molecular processes in living cells, as

argued recently [52,54,55].

We believe that this relatively simple model for facilitated

diffusion in vivo will instigate new experiments and more detailed

theories, to ultimately obtain a full understanding of bacterial gene

regulation.

Supporting Information

Figure S1 Ratio of the mean search times obtained with
individual conformations with the respective ensemble
averaged mean search time at kass~105M{1s{1.

(EPS)

Supporting Information S1 In this supporting informa-
tion we detail the explicit calculations which are beyond
the scope of the main text.

(PDF)
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