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a b s t r a c t

We investigate the solution of space–time fractional diffusion equationswith a generalized
Riemann–Liouville time fractional derivative and Riesz–Feller space fractional derivative.
The Laplace and Fourier transform methods are applied to solve the proposed fractional
diffusion equation. The results are represented by using the Mittag-Leffler functions and
the Fox H-function. Special cases of the initial and boundary conditions are considered.
Numerical scheme and Grünwald–Letnikov approximation are also used to solve the
space–time fractional diffusion equation. The fractional moments of the fundamental
solution of the considered space–time fractional diffusion equation are obtained. Many
known results are special cases of those obtained in this paper. We investigate also the
solution of a space–time fractional diffusion equations with a singular term of the form
δ(x) ·

t−β
Γ (1−β) (β > 0).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fractional differential equations are a useful tool for modelling of various anomalous diffusion in complex systems
exhibiting pronounced deviations from Brownian diffusion, which is normally described by the standard diffusion equation

∂

∂t
u(x, t) = K1

∂2

∂x2
u(x, t), (1)

where K1 is the diffusion coefficient ([K1] = m2/s). For natural boundary conditions, its Green’s function is the famous
Gaussian

u(x, t) =
1

√
4πK1t

exp


−
x2

4K1t


(2)
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in one dimension, such that the mean squared displacement assumes the linear form ⟨x(t)2⟩ = 2K1t . Instead one often
observes the power-law behaviour [1]

⟨1x(t)2⟩ =
2Kγ tγ

Γ (1 + γ )
, (3)

where Kγ is the generalized diffusion coefficient of dimension [Kγ ] = m2/sγ . The anomalous diffusion exponent γ
distinguishes subdiffusion (0 < γ < 1) and superdiffusion (1 < γ ). There also exist processes, the so-called Lévy flights,
whose second moment diverges. Instead, fractional moments of the superdiffusive form ⟨|x|δ⟩2/δ ∝ t2/α (0 < δ < α ≤ 2)
may be defined, see below.

Examples for subdiffusion include tracer dispersion in subsurface hydrology [2], charge carrier motion in amorphous
semiconductors [3], diffusion on fractals [4], or the passive motion of lipid granules or telomeres in living cells [5]. Lévy
flights occur, for example, in optimized search processes [6].

Similarly, one frequently observes deviations from the exponential relaxation pattern governed by the Debye equation,

dφ(t)
dt

= −
φ(t)
τ
, (4)

where φ(t) is the Debye relaxation function [7,8]. The associated relaxation law φ(t) = φ0 exp(−t/τ) is replaced by
generalized patterns, such as the stretched exponential φ(t) = φ0 exp(−[t/τ ]β) (with 0 < β < 1) or the asymptotic
power-law φ(t) = φ0/(1 + [t/τ ])β . A natural extension of the exponential relaxation law is the Mittag-Leffler behaviour

φ(t) = φ0Eγ (−[t/τ ]γ ) = φ0

∞
n=0

(−[t/τ ]γ )n

Γ (1 + γ n)
, (5)

whose short-time behaviour φ(t) ∼ φ0 exp (−[t/τ ]γ /Γ (1 + γ )) matches the stretched exponential pattern, and whose
long-time behaviour φ(t) ∼ φ0[τ/t]γ /Γ (1 − γ ) is of inverse power-law form [7,8]. Such patterns were, for instance,
observed for different types of protein motion [9].

Anomalous diffusion and relaxation behaviours of the above type are often described in terms of fractional order
equations and generalized kinetic and stochastic equations [1,8,10–15]. For example, fractional Brownian motion
(FBM) [16,17] is a very useful approach to anomalous diffusion. It represents a randomprocess driven byGaussian noisewith
correlations ⟨ξ(0)ξ(t)⟩ ≃ α(α− 1)tα−2, the so-called fractional Gaussian noise. FBM is closely related with the generalized
Langevin equation (GLE) for a particle driven by fractional Gaussian noise. By the fluctuation dissipation relation [18],
the fractional Gaussian noise is compensated by a time-nonlocal noise term with memory integral including a power-law
memory kernel. The GLE for this specific choice of the driving noise is also called fractional Langevin equation [10].

An alternative approach to anomalous diffusion is the continuous time random walk (CTRW) theory with independent,
random jump increments andwaiting times between successive jumps [3,19,20] that generalizes the results of the standard
randomwalk concept. Subdiffusive CTRWdescribe anomalous diffusion characterized by a distribution of jump lengthswith
finite variance ⟨δx2⟩ and broad distribution of waiting times τ of the form ψ(τ) ≃ (τ∗)µ/τ 1+µ with 0 < µ < 1. Thus, the
characteristic waiting time


∞

0 τψ(τ)dτ diverges, and the distribution ψ(τ) is scale-free. For this process the probability
density f (x, t) in Fourier–Laplace space fulfils [1,20]

F̃(κ, s) =
1/s

1 + Kµs−µκ2
. (6)

The associated equation for this process is the fractional diffusion equation [1,11,21,22] (see the discussion in the next
section).

Lévy flights are another special type of CTRW. They are characterized by a finite characteristic waiting times, but have
a long-tailed distribution of jump lengths of the form λ(x) ≃ |x|−1−α with 0 < α < 2. Thus, the second moment


∞

−∞
|x|2

λ(x)dx diverges [1]. For the Lévy flight the Fourier transform of the probability density f (x, t) is

F(κ, t) = exp (−Kαt|κ|α) . (7)

A Lévy flight corresponds to a space fractional diffusion equation with Riesz–Weyl derivative [1] (see the discussion in the
next section).

In what follows, we propose and analyse a general fractional diffusion equation combining effects of subdiffusion
and Lévy flights. The composite fractional operator used for the generalization of the time derivative combines the
Riemann–Liouville and Caputo notation, leading to a very flexible framework for the description of complex processes.
Composite fractional operators were originally introduced by Hilfer based on fractional time evolutions [8]. In the relaxation
dynamics of glassy materials they were shown to provide an excellent description of experimental data over more than ten
orders of magnitude, with less parameters than traditional fit functions such as that of Havriliak–Negami [7].

Our analysis of these phenomena, carried out by means of fractional calculus and integral transforms (Laplace, Fourier),
leads to certain special functions in one variable of Mittag-Leffler (M-L) and Wright types. These useful special functions
are investigated systematically as relevant cases of the general class of functions which are popularly known as the Fox
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H-functions, after Charles Fox, who initiated a detailed study of these functions as symmetrical Fourier kernels [23].
Mathematical aspects of the boundary-value problems for the time-fractional diffusion equation and their applications in
physics have been treated in papers by Engler [24], Fujita [25], Gorenflo et al. [26], Mainardi [27], Metzler and Klafter [28],
Mainardi et al. [29], Mainardi and Pagnini [30], Prüss [31], Podlubny [32], Schneider and Wyss [21], Wyss [33], Hilfer [8],
Sandev et al. [34], etc. On the other hand, the space-fractional diffusion equation obtained by replacing the second order
space-derivative in the diffusion equation by an inverse Riesz potential of order β > 0 has been also considered (see
Ref. [35] and references therein). A further generalization of the classical diffusion equation is the so-called space–time
fractional diffusion equation (see Ref. [29] and references therein), where the first order time derivative is replaced with
a Caputo-time fractional derivative of order 0 < β < 2 and second-order space derivative with a Riesz–Feller space-
fractional derivative of order 0 < α < 2 (given as a pseudo-differential operator with the Fourier symbol −|κ|α; κ ∈ R).
Mainardi et al. [29] expressed the fundamental solutions of the Cauchy problem for the space–time fractional diffusion
equation in terms of the proper Fox H-function, based on their Mellin–Barnes integral representations. The Cauchy problem
for nonlinear conservation laws suppliedwith a space-fractional diffusion termof homogeneous Fourier symbol (−|κ|α)was
analysed by Biler et al. [36] using entropy estimates. Later, Droniou et al. [37] generalized this result by deriving amaximum
principle based on the non-negativity of the kernel of the corresponding semi-group. A similar problem was investigated
by Achleitner et al. [38], where the space-fractional derivative is of Riesz–Feller type with a non-homogeneous symbol. We
note that both space and time fractional operators correspond to the diffusion limit of continuous time randomwalkmodels
with long-tailed waiting time and/or jump length distributions [35,39–41]. The link between the CTRW’s and space–time
fractional diffusion equations has been very actively investigated by Scalas et al. [42], Fulger et al. [43], Germano et al. [44],
Metzler et al. [41,45], Meerschaert et al. [46], and so on.

The paper is organized as follows. In Section 2, definitions of fractional differential and integral operators are given,
and we explain the physical motivation of the problems considered in this paper. The exact solution of the generalized
space–time fractional diffusion equations in the infinite domain in terms of M-L and H-functions is obtained in Section 3.
The Fourier–Laplace transform method is used to solve the equation analytically. Some special cases are considered. The
asymptotic behaviours of the solution are derived, and fractional moments of the fundamental solution are obtained. In
Section 4, a numericalmethod for the solution of generalized fractional differential equations in terms ofGrünwald–Letnikov
derivatives is discussed for the first time. The numerical solution of the space–time fractional diffusion equation is presented
and compared with the asymptotic solution of Section 3. In Section 5, a fractional diffusion equation with a singular term is
considered and both exact and asymptotic results are obtained. The conclusions are presented in Section 5.

2. Preliminaries

The Riemann–Liouville (R–L) fractional integral of order µ > 0 with lower limit a is defined by [8,47]
Iµa+f


(t) =

1
Γ (µ)

 t

a

f (τ )
(t − τ)1−µ

dτ , t > a, ℜ(µ) > 0. (8)

For µ = 0,

I0a+f


(t) = f (t). From the other side, the R–L fractional derivative of order µ > 0 with lower limit a is defined

by [8,47]
Dµa+f


(t) =


d
dt

n 
In−µa+ f


(t), ℜ(µ) > 0, n = [ℜ(µ)] + 1, (9)

where [ℜ(µ)] denotes the integer part of the real number ℜ(µ).
The generalized R–L time fractional derivative of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 (named as the Hilfer fractional

derivative [34,48,49] or composite fractional derivative) Dµ,ν0+ is defined by [8]
Dµ,νa+ f


(t) =


Iν(1−µ)a+

d
dt


I(1−ν)(1−µ)a+ f


(t), (0 ≤ ν ≤ 1, 0 < µ < 1). (10)

Note that in case when ν = 0 the generalized R–L fractional derivative (10) would correspond to the classical R–L fractional
derivative

RLD
µ

0+f

(t) =

d
dt


I(1−µ)0+ f


(t), (11)

and in case when ν = 1 it would correspond to the Caputo fractional derivative [50]
CD

µ

0+f

(t) =


I(1−µ)0+

d
dt

f

(t). (12)

For the Hilfer-generalized R–L derivative the following formula holds true [49]
Dµ,νa+


(t − a)λ−1 (x) =

Γ (λ)

Γ (λ− µ)
(x − a)λ−µ−1, (x > a, ℜ(λ) > 0) . (13)
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It can be shown also that for a given function with a zero initial condition the following formula is valid [49]

Dµ,ν0+


CD

(1−ν)(1−µ)
0+ f


(t) =


CD

1−ν(1−µ)
0+ f


(t). (14)

In Ref. [8] it is found for 0 < µ < 1 that the Laplace transform L[g(t)](s) =


∞

0 g(t)e−stdt of the generalized R–L
fractional derivative (10) is given by

L

Dµ,ν0+ f (t)


= sµL [f (t)] − sν(µ−1)


I(1−ν)(1−µ)0+ f


(0+), (15)

where the initial-value term

I(1−ν)(1−µ)0+ f


(0+) is evaluated in the limit as t → 0+ in the space of summable Lebesgue

integrable functions

L(0,∞) =


f : ∥f ∥1 =


∞

0
|f (t)|dt < ∞


. (16)

The space fractional derivative ∂α

∂|x|α is the so-called Riesz–Feller space fractional derivative of order α (0 < α ≤ 2),
which is given as a pseudo-differential operator with the Fourier symbol −|κ|α, κ ∈ R [39]

dα

d|x|α
f (x) = F −1 [−|κ|αF(κ)] (x). (17)

Note that

F(κ) = F [f (x)] (κ) =


∞

−∞

f (x)e−ıκxdx (18)

is the Fourier transform of the function f (x).
The motivation of studying fractional equations of form (23) and (57) is, from one side, the Hilfer generalized R–L time

fractional derivative (10), which combine both the derivatives, Caputo and R–L. It is known, from the continuous time
random walk (CTRW) theory, that the probability density f (x, t), in case where the characteristic waiting time diverges
and the jump length variance is finite, can be obtained from the following two equivalent representations of the fractional
diffusion equation [1]

RLD
µ

0+f (x, t)− δ(x) ·
t−µ

Γ (1 − µ)
= Kµ

∂2

∂x2
f (x, t) (19a)

CD
µ

0+f (x, t) = Kµ
∂2

∂x2
f (x, t) (19b)

in the R–L and Caputo sense, respectively, where Kµ is the generalized diffusion constant of physical dimension [Kµ] =

m2/sµ, andµ is the anomalous diffusion exponent. This can be seen from the Laplace transform of the classical R–L (11) and
Caputo (12) fractional derivatives, from where it follows that by considering proper initial conditions the R–L and Caputo
derivatives are equivalent since

CD
µ

0+f

(t) =


RLD

µ

0+f

(t)− f (0+) ·

t−µ

Γ (1 − µ)
, (20)

where 0 < µ < 1. The foregoing equations describe anomalous diffusive processes, due to the non-linear dependence of
the variance of the process on the time variable [1], i.e.

⟨x2(t)⟩ ≃ Kµtµ. (21)

The divergence of the characteristic waiting time underlying the time-fractional forms of the Caputo or R–L operators causes
weak ergodicity breaking in the sense that for such processes the long-time average of physical quantities is no longer
equivalent to the corresponding ensemble averages [51]. In the recent years CTRWmodels with nonidentical trapping time
probability density function over the lattice points are investigated [52,53]. It was shown that even models with finite
characteristic waiting time for all lattice points are typically nonergodic [52,53].

From the other side, the case of finite characteristic waiting time and diverging jump length variance (Lévy flights) leads
to the following space fractional diffusion equation [1,12,39]

∂

∂t
f (x, t) = Kα

∂α

∂|x|α
f (x, t), (22)

where Kα is the generalized diffusion constant of physical dimension [Kα] = mα/s, and α is the Lévy index.We note that the
Riesz–Weyl operator in the space-fractional diffusion equation needs modification in the presence of non-natural boundary
conditions, due to the highly non-local nature of Lévy flight processes; see the discussion in Ref. [54].
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Similar problemswith Caputo or R–L time fractional derivatives and/or Riesz space fractional derivative are considered in
Refs. [1,7,8,15,21,27,34,40,45,55–62] and references therein. The solutions of such equations have been represented in terms
of M-L function and their generalizations [49,63–66], which for the first time was introduced by Gösta Mittag-Leffler [63],
as well as via the Fox H-function [1,34,58,60,67], introduced by Charles Fox [67].

3. Space–time fractional diffusion equation

We study the following generalized space–time fractional diffusion equation:

Dµ,ν0+ u(x, t) = Kµ,α
∂α

∂|x|α
u(x, t), t > 0, − ∞ < x < +∞, (23)

with boundary conditions

u(±∞, t) = 0, t > 0 (24)

and an initial condition
I(1−ν)(1−µ)0+ u(x, t)


(0+) = g(x), −∞ < x < +∞, (25)

where u(x, t) is a field variable, Kµ,α is the generalized diffusion constant of physical dimension [Kµ,α] = mα/sµ (the
dimension of Kµ,α can be obtained from definitions (10) and (17) by dimensional analysis), 0 < µ ≤ 1, 0 ≤ ν ≤ 1
and 0 < α ≤ 2. Note that the numerical value of Kµ,α depends also on ν, but we use simplified notation with indexesµ and
α because of the independence of [Kµ,α] on ν.

Let us comment on the importance of application of the Hilfer-composite fractional time derivative. It has been argued
that time fractional derivatives are equivalent to infinitesimal generators of generalized time fractional evolutions that arise
in the transition from microscopic to macroscopic time scales [7]. In contrast to the first order time derivative, which is
an infinitesimal generator of a simple time translation, the fractional derivative of order 0 < α ≤ 1 is an infinitesimal
generator of a macroscopic time evolution, whose kernel is the one sided stable probability density with stable index α [7].
This transition from first order time derivative to the fractional order time derivative arises in physical problems as shown
by Hilfer [8,22,68,69]. The Hilfer-composite time derivative was used by Hilfer to successfully describe the dynamics in
glass formers over an extremely large frequency window [7]. From a practical point of view the description in terms of
composite-fractional operators increases the versatility of the solution of the dynamic equation in the description of complex
data. The fact that with comparatively few parameters excellent fits are possible [7] points at the physical relevance of this
approach.

Theorem 1. The fractional diffusion equation (23) with boundary conditions (24) and an initial condition (25) in case when
0 < µ < 1, 0 ≤ ν ≤ 1, 0 < α ≤ 2 has a solution of the following form

u(x, t) =
1
2π


∞

−∞

t−(1−ν)(1−µ)Eµ,1−(1−ν)(1−µ)

−Kµ,α|κ|αtµ


· ĝ(κ) · e−ıκxdκ, (26)

where Eα,β(z) is the two parameter M-L function [64],

ĝ(κ) = F [g(x)] =


∞

−∞

g(x)eıκxdx (27)

is the Fourier transform of the function g(x)

g(x) = F −1

[ĝ(κ)] =
1
2π


∞

−∞
ĝ(κ)e−ıκxdκ


and

F(x, s) = L[f (x, t)], F̃(κ, s) = F [F(x, s)], F(κ, t) = L−1
[F̃(κ, s)]. (28)

Proof. By applying the Laplace transform with respect to the time variable t and Fourier transform with respect to the
spatial variable x in Eq. (23) and from the initial condition (25) and boundary conditions (24), we obtain

Ũ(κ, s) =
s−ν(1−µ)

sµ + |κ|αKµ,α
· ĝ(κ), (29)

where Ũ(κ, s) = F [U(x, s)], U(x, s) = L [u(x, t)]. Applying an inverse Laplace transform to relation (29), by using the
following formula [8,32,47]

L[tβ−1Eα,β(±atα)] =


∞

0
e−st tβ−1Eα,β(±atα)dt =

sα−β

sα ∓ a
, ℜ(s) > |a|1/α, (30)
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it follows

U(κ, t) = t−(1−ν)(1−µ)Eµ,1−(1−ν)(1−µ)

−Kµ,α|κ|αtµ


ĝ(κ). (31)

Finally, by finding inverse Fourier transform to relation (31) we prove Theorem 1. �

Example 1. The time fractional diffusion equation (23) with boundary conditions (24) and an initial condition g(x) = δ(x),
has a solution of the form

u(x, t) =
1
α|x|

t−(1−ν)(1−µ)H2,1
3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (1 − ν)(1 − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 , (32)

where Hm,n
p,q


z
(ap, Ap)(bq, Bq)


is the Fox H-function [67,70].

Indeed, by using ĝ(κ) = F [δ(x)] = 1, the cosine transform and the properties of the H-function [70], we obtain

u(x, t) =
1
π
t−(1−ν)(1−µ)


∞

0
cos(κx)H1,1

1,2


Kµ,α|κ|αtµ

(0, 1)(0, 1), ((1 − ν)(1 − µ),µ)


dκ

=
1
α|x|

t−(1−ν)(1−µ)H2,1
3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (1 − ν)(1 − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 . (33)

Note that if α = 2, from the definition of the Fox H-function, we obtain [34]

u(x, t) =
1

2|x|
t−(1−ν)(1−µ)H1,0

1,1


|x|

Kµ,2tµ
1/2



1 − (1 − ν)(1 − µ),

µ

2


(1, 1)


. (34)

Thus, in the case of the R–L time fractional derivative (ν = 0) solution (32) becomes [70]

u(x, t) =
1
α|x|

t−(1−µ)H2,1
3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

µ,
µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 . (35)

In the case of the Caputo time fractional derivative (ν = 1) solution (32) has the following form

u(x, t) =
1
α|x|

H2,1
3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1,
µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 . (36)

Here we note that solution (36), unlike solution (35), is normalized (see relation (48) from Example 3). Only if we consider a
proper singular termwith matching power, the solution in the case of a R–L time fractional derivative would be normalized
(see the discussion for equivalent formulation (19); see also Example 8 and Remark 3). This non-conservation of the norm
is important in certain cases, as described by the Hilfer idea of fractional generators of the dynamics (see for example
Ref. [68]).

Furthermore, if ν = µ = 1 from relation (32) we obtain the solution of the diffusion equation with space fractional
derivative, i.e.

u(x, t) =
1
α|x|

H1,1
2,2

 |x|
K1,αt

1/α


1,

1
α


,


1,

1
2


(1, 1),


1,

1
2


 , (37)

which is a closed-form representation of a Lévy stable law [1,71]. If in relation (37) we substitute α = 2, it follows the
solution of the classical diffusion equation [72], i.e.

u(x, t) =
1

2|x|
H1,0

1,1

 |x|
Kµ,αt



1,

1
2


(1, 1)

 =
1

4πKµ,αt
· e−

x2
4Kµ,α t . (38)
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a b 

c

Fig. 1. Graphical representation of solution (37) (µ = ν = 1, space fractional diffusion equation), Kµ,α = 1, t = 10, α = 2 (solid line), α = 1 (dashed
line); (a) linear–linear plot; (b) log–linear plot; (c) log–log plot.

a b

c

Fig. 2. Graphical representation of solution (37) for Kµ,α = 1, (a) (linear–linear plot) t = 10 (solid line), t = 20 (dashed line); left: α = 1 (the solution is
divided by a factor 1

10π ); right: α = 2 (the solution is divided by a factor 1
√
40π

); (b) (log–linear plot) t = 10 (solid line), t = 20 (dashed line); left: α = 1;
right: α = 2; (c) (log–log plot) t = 10 (solid line), t = 20 (dashed line); α = 1 (blue line); α = 2 (black line). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

In this case for Kµ,α = 1/2 note that u(x, t) =
1

√
2π t

· e−
x2
2t represents the probability density function of a Wiener process.

Solution (32) for different values of parameters is shown in Figs. 1–4.

Remark 1. Let us make few remarks on the fractional diffusion equation (23) with boundary conditions (24) and an initial
condition g(x) = δ(x) in the case when α = 2 [34]. This equation for ν = 1 describes diffusion of Montroll–Weiss type.
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Fig. 3. Graphical representation of solution (34) (α = 2, time fractional diffusion equation), µ = 1/2, Kµ,α = 1, t = 5, ν = 0 (lower line),
ν = 1/4, ν = 1/2, ν = 3/4, ν = 1 (upper line).

Fig. 4. Graphical representation of solution (36) (ν = 1, α = 1.6, space–time fractional diffusion equation with Caputo time fractional derivative),
Kµ,α = 1, t = 5 (solid lines), t = 10 (dashed lines), µ = 0.95 (black lines), µ = 0.9 (blue lines). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

It is shown that it can be related to the Montroll–Weiss CTRW, where µ is related to the long time tail exponent [22] (see
also Ref. [73]). In this case the solution u(x, t) is a probability density function, i.e. u(x, t) is normalized (see Example 3 and
Ref. [34]).

The case ν = 0, which is solved exactly by Hilfer [56], is not related to the Montroll–Weiss CTRW. In this case, a nonlocal
initial condition


I(1−µ)0+ u(x, t)


(t)|t=0+ = δ(x) should be considered [8,56,73]. Contrary to the case ν = 1, the solution

u(x, t) for ν = 0 is not normalized, so it does not have probabilistic interpretation [56] (see also Example 3 and Ref. [34]).

The same situation appears for 0 < µ < 1 and 0 < ν < 1, where the nonlocal initial condition of the form (I(1−ν)(1−µ)0+
u(x, t))(t)|t=0+ = δ(x) is considered [8,34]. In this case u(x, t) (32) is not normalized (see Example 3 and Ref. [34]) and
cannot be related to the Montroll–Weiss CTRW, but it can be used in the description of anomalous relaxation phenomena
in dielectrics and viscoelastic phenomena [7,66,74] (see also the discussion in Ref. [34]).

Remark 2. The fractional diffusion equation (23) with boundary conditions (24) and initial condition g(x) = δ(x) for
0 < α ≤ 2, 0 < µ ≤ 1 and ν = 1 is the governing equation for the infinitesimal generator of the semigroup for the process
Lα(Dβ(t)) (a Lévy α-stable process subordinated to the inverse β-stable subordinator with 0 < α ≤ 2 and 0 < β ≤ 1) [75].
This case is numerically studied in detail in Refs. [43,44].

Example 2 (Asymptotic Expansions). By using the series expansion of the FoxH-function [70], solution (32) can be expressed
by the following series

u(x, t) =
K−1/α
µ,α t−(1−ν)(1−µ)−µ/α

α

∞
k=0

(−1)k

k!
sin

 1+k
2 π


sin

 1+k
α
π


Γ


1 − (1 − ν)(1 − µ)−

1+k
α
µ

 |x|k
Kµ,αtµ

k/α
+

|x|α−1t−(1−ν)(1−µ)−µ

πKµ,α

∞
k=0

(−1)kΓ (1 − α(1 + k)) sin

(1+k)α

2 π


Γ (1 − (1 − ν)(1 − µ)− µ− µk)
|x|αk

Kµ,αtµ
k , (39)
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a b

Fig. 5. Graphical representation of asymptotic solution (40), t = 10, Kµ,α = 1, µ = ν = 1/2; left: α = 0.75 (blue line), α = 0.85 (green line), α = 0.95
(red line); right: α = 1.25 (red line), α = 1.5 (green line), α = 1.75 (blue line); (a) linear–linear plot; (b) log–log plot, α < 1 (solid lines), α > 1 (dashed
lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where we employed Γ (a)Γ (1 − a) =
π

sin(aπ) . Thus, for
|x|

(Kµ,α tµ)
1/α ≪ 1, we obtain

u(x, t) ∼
K−1/α
µ,α

α sin

π
α

 ·
t−(1−ν)(1−µ)−µ/α

Γ

1 − (1 − ν)(1 − µ)−

µ

α

 + |x|α−1 K−1
µ,α

2Γ (α) cos

απ
2

 ·
t−(1−ν)(1−µ)−µ

Γ (1 − (1 − ν)(1 − µ)− µ)
. (40)

Note that the second sum in (39) vanishes in the limitµ = 1. So it is obtained u(x, t) ∼
K−1/α
1,α Γ


1
α


πα

· t−1/α
− |x|2

K−3/α
1,α Γ


3
α


2πα ·

t−3/α , which for α = 2 yields u(x, t) ∼
1√

4πK1,2t


1 −

|x|2
√

4K1,2t


≈

1√
4πK1,2t

e
−

|x|2√
4K1,2t . Graphical representation of

asymptotic solution (40) is given in Fig. 5.
From the other side by using the properties and series expansion of the H-function [70] we can find the asymptotic

behaviour in case when |x|

(Kµ,α tµ)
1/α ≫ 1. Thus, it is obtained

u(x, t) =
1
α|x|

t−(1−ν)(1−µ)H1,2
3,3



Kµ,αtµ

1/α
|x|


(0, 1),


0,

1
α


,


0,

1
2



0,

1
α


,

(1 − ν)(1 − µ),

µ

α


,


0,

1
2




=
1

πα|x|
t−(1−ν)(1−µ)

∞
k=1

(−1)k+1Γ (1 + αk) sin

αkπ
2


Γ (1 − (1 − ν)(1 − µ)+ µk)


Kµ,αtµ

k
|x|αk

, (41)

from where it follows

u(x, t) ∼
Γ (α) sin


απ
2


πΓ (1 + µ− (1 − ν)(1 − µ))

· |x|−α−1Kµ,αtµ−(1−ν)(1−µ). (42)

For µ = 1 we obtain the known result typical for Lévy distributions u(x, t) ∼ |x|−α−1K1,αt [1,71].
The asymptotic behaviour of the solution (34) (α = 2, i.e. time-fractional diffusion equation) in case when |x|

(Kµ,α tµ)
1/α

≫ 1 is given by [34]

u(x, t) ∼
1

2
√
(2 − µ)π

·

µ
2

 (1−µ)(1−2ν)
2−µ

· |x|
(1−µ)(1−2ν)

2−µ ·

Kµ,2tµ

−
(1−ν)(1−µ)+1/2

2−µ

× exp

−

2 − µ

2

µ
2

 µ
2−µ

|x|
2

2−µ

Kµ,2tµ

−
1

2−µ


, (43)

where we used the following asymptotic expansion for large z of the H-function H1,0
1,1 (z) [21,70]

H1,0
1,1 (z) ∼ Bz(1−α)/m

∗

exp

−m∗C1/m∗

z1/m
∗

, (44)

where B = (2π)(m−p−1)/2C (1−α)/m
∗

m∗−1/2A1/2−a1
1 Bb1−1/2

1 , α = a1 − b1 +
1
2 ,m

∗
= B1 − A1 > 0 and C = AA1

1 B−B1
1 .

If ν = 1, the result (43) is equivalent to that obtained in Refs. [1,76]. For α = 2, ν = 1 and µ = 1 from (43) we obtain
the solution (38) of the classical diffusion equation.
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Example 3. The fractional moments
|x|ξ


= 2


∞

0
xξu(x, t)dx, ξ > 0 (45)

of the considered fractional diffusion equation (23) with g(x) = δ(x) are given by


|x|ξ


=

2
α

· t−(1−ν)(1−µ)

Kµ,αtµ

ξ/α
·

Γ (1 + ξ) sin

ξπ

2


Γ


1 − (1 − ν)(1 − µ)+

µξ

α


sin


ξπ

α

 . (46)

The case µ = 1 yields [1]


|x|ξ


=

2
α

·

K1,αt

ξ/α
·
Γ (1 + ξ)Γ


−
ξ

α


Γ


−
ξ

2


Γ


1 +

ξ

2

 =
2
α

·

K1,αt

ξ/α
·
Γ (1 + ξ) sin


ξπ

2


Γ


1 +

ξ

α


sin


ξπ

α

 . (47)

From (46), for ξ → 0 we obtain

lim
ξ→0


|x|ξ


=

1
Γ (1 − (1 − ν)(1 − µ))

· t−(1−ν)(1−µ), (48)

thus, the function u(x, t) is not normalized. Note that if ν = 0 it follows limξ→0

|x|ξ


=

1
Γ (µ)

· t−(1−µ) and if ν = 1,
limξ→0


|x|ξ


= 1.

The case ξ → 2 and α → 2 yields

lim
ξ→2


|x|ξ


=

2
Γ (1 + µ− (1 − ν)(1 − µ))

· Kµ,2tµ−(1−ν)(1−µ). (49)

If ν = 0 it is obtained limξ→2

|x|ξ


=

2
Γ (2µ) ·Kµ,2t

−1+µ and if ν = 1 it is obtained limξ→2

|x|ξ


=

1
Γ (1+µ) ·Kµ,2t

µ. Forµ = 1
it follows the linear time dependence of the mean square displacement


x2


= 2K1,2t . This fractional moments may be used,

for example, in single molecule spectroscopy [1,77].

4. Numerical scheme for solving the space–time fractional diffusion equation

Several numerical algorithms for solving time fractional differential equations have been developed [78]. Although
numerical schemes for solving fractional diffusion equations exist [79,80] the case of generalized fractional derivatives has
not been treated so far. We therefore briefly discuss a numerical scheme that was used to numerically solve the space–time
fractional diffusion equation of Section 3.

Solving the space–time fractional diffusion equations with a generalized R–L time fractional derivative of order 0 <
µ < 1 of type 0 ≤ ν ≤ 1 and with Riesz–Feller space fractional derivative of order 0 < α ≤ 2 numerically, is most
easily attempted in the Fourier domain, which is also suggested by the analytical calculations in the previous sections. The
Fourier transformed equations should then be solved numerically and finally a Fast Fourier Transform (FFT) can be used to
transform the found solution to the real space domain. We will treat the equation without the singular source here, as the
generalization to a fractional differential equation with a singular source term is straightforward.

By application of Leibnitz rule (71) we invert the order of the fractional derivative and of the Fourier transform.
Thus, in Fourier space the fractional diffusion equation (23) with boundary conditions (24) and initial condition (25)
reads

Dµ,ν0+ f̂ (κ, t) = −|κ|α f̂ (κ, t), (50)

where f̂ (κ, t) =


∞

−∞
eıκxf (x, t) dx. The initial condition (25) for g(x) = δ(x) is transformed to

I(1−ν)(1−µ)0+ f̂ (κ, 0) = 1 (51)

and the boundary conditions are f̂ (±∞, t) = 0.
We next perform a shift to obtain homogeneous initial conditions. For that we introduce a function ĥ(κ, t), defined as

ĥ(κ, t) = I(1−ν)(1−µ)0+ f̂ (κ, t)− 1. This relation can be inverted by using that RLD
(1−µ)(1−ν)
0+ I(1−ν)(1−µ)0+ f̂ (κ, t) = f̂ (κ, t) and that

the R–L and Caputo fractional derivatives of ĥ(κ, t) are equivalent since ĥ(κ, 0+) = 0. Thus, we find

f̂ (κ, t) = CD
(1−µ)(1−ν)
0+ ĥ(κ, t)+

t−(1−ν)(1−µ)

Γ (1 − (1 − ν)(1 − µ))
, (52)

where CD
(1−µ)(1−ν)
0+ ĥ(κ, t) denotes the Caputo derivative as before.
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Fig. 6. In (a) the numerical solution of (23) with g(x) = δ(x) for t = 5 with the same parameter values as in Fig. 3 is plotted. It can be clearly seen that
the numerical results are in excellent agreement with the exact solutions. In (b) we numerically reproduce the asymptotic results of Fig. 5 for t = 10. The
asymptotic solutions and the numerical results are in close agreement.

If we next substitute the definition of ĥ(κ, t) and its inverse (52) in Eq. (50) and use relations (13) and (14) we obtain the
following equation for ĥ(κ, t)

CD
1−ν(1−µ)
0+ + |κ|αCD

(1−ν)(1−µ)
0+


ĥ(κ, t) = −|κ|α

t−(1−ν)(1−µ)

Γ (1 − (1 − ν)(1 − µ))
−

t−1+ν(1−µ)

Γ (ν(1 − µ))
. (53)

Eq. (53) is solved numerically by approximating the fractional derivatives in the usual way by Grünwald–Letnikov
expressions. The Grünwald–Letnikov derivative of order α at time step tl = l1t of function h(t) is defined as GLDαtkh(t) [32]

GLDαtlh(t) = (1t)−α
l

j=0

(−1)j

α
j


h(tl − tj), (54)

where the binomial coefficient

α
j


is defined as


α
j


=

Γ (α+1)
Γ (j+1)Γ (α−j+1) . This derivative can be shown to be equivalent to the

R–L derivative for α ≤ 1 if h(t) is continuous [32]. The Grünwald–Letnikov derivative is commonly used as a discretization
needed for the numerical evaluation of fractional derivatives.

Discretizing Eq. (53) using the above-mentioned discretization leads immediately to the following backward numerical
scheme that determines ĥ at time step ti = i1t

ĥ(κ, ti) = −
|κ|α(1t)µi−(1−ν)(1−µ)

(1 + |κ|α(1t)µ)Γ (1 − (1 − ν)(1 − µ))
−

i−1+ν(1−µ)

(1 + |κ|α(1t)µ)Γ (ν(1 − µ))

−

i
j=1
(−1)j


1 − ν(1 − µ)

j


ĥ(ti − tj)+ |κ|α(1t)µ

i
j=1
(−1)j


(1 − ν)(1 − µ)

j


ĥ(ti − tj)

1 + |κ|α(1t)µ
. (55)

By applying the Grünwald–Letnikov approximation in relation (52) at time step ti, we find

f̂ (κ, ti) = (1t)−(1−µ)(1−ν)
i

j=0

(−1)j

(1 − ν)(1 − µ)

j


ĥ(κ, (i − j)1t)+

(i1t)−(1−ν)(1−µ)

Γ (1 − (1 − ν)(1 − µ))
. (56)

Example 4. We illustrate the accuracy of the numerical scheme by first solving Eq. (23) numerically for different values
of ν; this shows that the exact solution plotted in Fig. 3 and the numerical solutions are in excellent agreement. We
next compare the asymptotic results of Fig. 5(a) with the numerical solution for µ = ν = 1/2 and varying values
of α.

In Fig. 6 we plotted the numerical solutions of (23) for different values of ν and keeping µ = 1/2 fixed and α = 2.
The perfect agreement between Figs. 6(a) and Fig. 3 illustrates the way numerical solutions can be obtained for time
fractional partial differential equations that are in very good agreement with the exact results. In Fig. 6(b) we show that
the asymptotic expansion displayed in Fig. 5 is valid for t = 10, as the numerical calculations show almost exactly the same
behaviour.

We next turn to space–time fractional diffusion equations with a singular term.



Author's personal copy

2538 Ž. Tomovski et al. / Physica A 391 (2012) 2527–2542

5. Space–time fractional diffusion equation with a singular term

We also study a generalized space–time fractional diffusion equation with a singular term:

Dµ,ν0+ u(x, t) = Kµ,α
∂α

∂|x|α
u(x, t)+ δ(x)

t−β

Γ (1 − β)
, t > 0, − ∞ < x < +∞, (57)

where β > 0, with boundary conditions (24) and an initial condition (25).

Theorem 2. The fractional diffusion equation (57) with boundary conditions (24) and an initial condition (25) in case when
0 < µ < 1, 0 ≤ ν ≤ 1, 0 < α ≤ 2 has a solution of the following form

u(x, t) =
1
2π


∞

−∞

t−(1−ν)(1−µ)Eµ,1−(1−ν)(1−µ)

−Kµ,α|κ|αtµ


· ĝ(κ) · e−ıκxdκ

+
t−(β−µ)

α|x|
· H2,1

3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (β − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 (58)

where ĝ(κ) = F [g(x)] is the Fourier transform of the function g(x) and

F(x, s) = L[f (x, t)], F̃(κ, s) = F [F(x, s)], F(κ, t) = L−1
[F̃(κ, s)]. (59)

Proof. The Laplace transform with respect to the time variable t and Fourier transform with respect to the space variable x
to Eq. (57) and the initial condition (25) and boundary conditions (24) give

Ũ(κ, s) =
s−ν(1−µ)

sµ + |κ|αKµ,α
· ĝ(κ)+

sβ−1

sµ + |κ|αKµ,α
, (60)

where Ũ(κ, s) = F [U(x, s)], U(x, s) = L [u(x, t)]. The inverse Laplace transform to relation (60) yields

U(κ, t) = t−(1−ν)(1−µ)Eµ,1−(1−ν)(1−µ)

−Kµ,α|κ|αtµ


ĝ(κ)+ t−(β−µ)Eµ,1−(β−µ)


−Kµ,α|κ|αtµ


. (61)

Finally, by finding inverse Fourier transform to relation (61) we prove Theorem 2. �

Example 5. The space–time fractional diffusion equation (57) with boundary conditions (24) and an initial condition
g(x) = δ(x), has a solution of the form

u(x, t) =
1
α|x|

t−(1−ν)(1−µ)H2,1
3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (1 − ν)(1 − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2




+
t−(β−µ)

α|x|
· H2,1

3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (β − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 . (62)

This solution for α = 2 becomes [34]

u(x, t) =
t−(1−ν)(1−µ)

2|x|
· H1,0

1,1


|x|
Kµ,αtµ



1 − (1 − ν)(1 − µ),

µ

2


(1, 1)



+
t−(β−µ)

2|x|
· H1,0

1,1


|x|
Kµ,αtµ



1 − (β − µ),

µ

2


(1, 1)


. (63)

Graphical representation of the solution (63) for various values of the parameters is given in Fig. 7.
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Fig. 7. Graphical representation of solution (63) for Kµ,α = 1, t = 10, µ = ν = 1/2, β = 0.25 (upper line), β = 0.5, β = 0.75, β = 1 (lower line).

Example 6 (Asymptotic Expansions). The asymptotic behaviour of the solution (62) can be obtained in a same way as it was
done in Example 2. Thus, solution (62) can be expressed by the following series

u(x, t) =
K−1/α
µ,α t−(1−ν)(1−µ)−µ/α

α

∞
k=0

(−1)k

k!
sin

 1+k
2 π


sin

 1+k
α
π

 [A(k, t)+ B(k, t)]
|x|k

Kµ,αtµ
k/α

+
|x|α−1

πKµ,α

∞
k=0

(−1)kΓ (1 − α(1 + k)) sin

(1 + k)α

2
π


[C(k, t)+ D(k, t)]

|x|αk
Kµ,αtµ

k , (64)

where A(k, t) =
t−(1−ν)(1−µ)−

µ
α

Γ


1−(1−ν)(1−µ)− 1+k

α µ
 , B(k, t) =

t−(β−µ)−
µ
α

Γ


1−(β−µ)− 1+k

α µ
 , C(k, t) =

t−(1−ν)(1−µ)−µ
Γ (1−(1−ν)(1−µ)−µ−µk) ,D(k, t) =

t−β
Γ (1−β−µk) .

Thus for |x|

(Kµ,α tµ)
1/α ≪ 1, we obtain

u(x, t) ∼
K−1/α
µ,α

α sin

π
α

 ·
t−(1−ν)(1−µ)−µ/α

Γ

1 − (1 − ν)(1 − µ)−

µ

α

 + |x|α−1 K−1
µ,α

2Γ (α) cos

απ
2

 ·
t−(1−ν)(1−µ)−µ

Γ (1 − (1 − ν)(1 − µ)− µ)

+
K−1/α
µ,α

α sin

π
α

 ·
t−(β−µ)−µ/α

Γ

1 − (β − µ)−

µ

α

 + |x|α−1 K−1
µ,α

2Γ (α) cos

απ
2

 ·
t−β

Γ (1 − β)
. (65)

For |x|

(Kµ,α tµ)
1/α ≫ 1, one can obtain

u(x, t) =
1

πα|x|
t−(1−ν)(1−µ)

∞
k=1

(−1)k+1Γ (1 + αk) sin

αkπ
2


Γ (1 − (1 − ν)(1 − µ)+ µk)


Kµ,αtµ

k
|x|αk

+
1

πα|x|
t−(β−µ)

∞
k=1

(−1)k+1Γ (1 + αk) sin

αkπ
2


Γ (1 − (β − µ)+ µk)


Kµ,αtµ

k
|x|αk

, (66)

from where

u(x, t) ∼
Γ (α) sin


απ
2


πΓ (1 − (1 − ν)(1 − µ)+ µ)

· |x|−α−1Kµ,αtµ−(1−ν)(1−µ)
+

Γ (α) sin

απ
2


πΓ (1 + 2µ− β)

· |x|−α−1Kµ,αt2µ−β . (67)

As a special case α = 2 in case when |x|

(Kµ,α tµ)
1/α ≫ 1; from relation (44) we obtain the asymptotic behaviour of the

solution (63) [34]

u(x, t) ∼
1

2
√
(2 − µ)π

·

µ
2

 (1−µ)(1−2ν)
2−µ

· |x|
(1−µ)(1−2ν)

2−µ ·

Kµ,2tµ

−
(1−ν)(1−µ)+1/2

2−µ

× exp

−

2 − µ

2

µ
2

 µ
2−µ

|x|
2

2−µ

Kµ,2tµ

−
1

2−µ


+

1
2
√
(2 − µ)π

·

µ
2

 2β−µ−1
2−µ

· |x|
2β−µ−1

2−µ ·

Kµ,2tµ

−
(β−µ)+1/2

2−µ

× exp

−

2 − µ

2

µ
2

 µ
2−µ

|x|
2

2−µ

Kµ,2tµ

−
1

2−µ


. (68)
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Example 7. Following the procedure in Example 3, the fractional moments (45) of the fractional diffusion equation (57)
with g(x) = δ(x) are given by

|x|ξ

=

2
α

· t−(1−ν)(1−µ)

Kµ,αtµ

ξ/α
·

Γ (1 + ξ) sin

ξπ

2


Γ


1 − (1 − ν)(1 − µ)+

µξ

α


sin


ξπ

α


+

2
α

· t−(β−µ)

Kµ,αtµ

ξ/α
·

Γ (1 + ξ) sin

ξπ

2


Γ


1 − (β − µ)+

µξ

α


sin


ξπ

α

 . (69)

Example 8. The space–time fractional diffusion equation (57) with boundary conditions (24) and an initial condition
g(x) = 0, has a solution of the form

u(x, t) =
t−(β−µ)

α|x|
· H2,1

3,3

 |x|
Kµ,αtµ

1/α


1,

1
α


,

1 − (β − µ),

µ

α


,


1,

1
2


(1, 1),


1,

1
α


,


1,

1
2


 . (70)

This result follows directly from Theorem 2.

Remark 3. Note that the solution (70) of Eq. (57) for β = µ is equivalent to the solution (36) of Eq. (23) for ν = 1, which is
in fact a proof of the statement for the equivalent formulations (19). Thus for β = µ = 1 and α = 2 we obtain the solution
of the classical diffusion equation (38), which for Kµ,α = 1/2 is the same as the probability density function of a Wiener
process. Furthermore, if the singular term is of form δ(x) t−(1−ν)(1−µ)−µ

Γ (1−(1−ν)(1−µ)−µ) , the solution of Eq. (57) with boundary conditions
(24) and an initial condition g(x) = 0 is the same as the solution (32) of Eq. (23) with boundary conditions (24) and an initial
condition g(x) = δ(x) (see Example 1).

6. Conclusions

We found exact solution of the space–time fractional diffusion equationswith a generalized R–L time fractional derivative
of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 and Riesz–Feller space fractional derivative of order 0 < α ≤ 2. The
fundamental solution of the equation is obtained. The solutions of the equations are expressed in terms of the M-L function
and H-function. Asymptotic behaviours of the solutions are found. The fractional moments of the fundamental solution of
the considered space–time fractional diffusion equation are calculated. Many already known results are recovered. Exact
and asymptotic solutions and fractional moments of the space–time fractional diffusion equation with a singular term are
obtained as well. A numerical scheme for solving space–time fractional diffusion equations with a generalized composite
(Hilfer) time derivative is reported for the first time in the literature and the numerical results are compared with the
asymptotic and exact results. It is shown that they are in good agreement.

Given the successful application of the generalized composite (Hilfer) derivative for modelling of highly non-trivial
dielectric data by Hilfer [7], we believe that extended fractional equation discussed here will be useful in science and
engineering.
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Appendix. Leibnitz rule

Let f (x, ω) and ∂α

∂ωα
f (x, ω) be continuous functions of their variables for all x, ω ∈ R. Furthermore, let


∞

−∞
|f (x, ω)|dx <

∞ and
 ∂α f∂ωα

 ≤ h(x), where h(x) is a piecewise continuous such that


∞

−∞
h(x)dx < ∞. Then

dα

dωα


∞

−∞

f (x, ω)dx =


∞

−∞

∂α

∂ωα
[f (x, ω)] dx. (71)
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