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Abstract. We consider the mean first-passage time of a random walker moving
in a potential landscape on a finite interval, the starting and end points being at
different potentials. From analytical calculations and Monte Carlo simulations
we demonstrate that the mean first-passage time for a piecewise linear curve
between these two points is minimized by the introduction of a potential barrier.
Due to thermal fluctuations, this barrier may be crossed. It turns out that the
corresponding expense for this activation is less severe than the gain from an
increased slope towards the end point. In particular, the resulting mean first-
passage time is shorter than for a linear potential drop between the two points.
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1. Introduction

In classical mechanics, Bernoulli’s 1696 brachistochrone problem addresses the curve
between two points that is covered by a point particle in the least time, under the influence
of gravity. If the particle starts at rest, the brachistochrone curve is a cycloid. More steeply
at first, the particle is accelerated, keeping its momentum in the absence of friction. In
particular, at no point along this curve is the particle elevation higher than that of the
starting point, for reasons of energy conservation. An overdamped, diffusing particle may
appear to behave classically: driven by a constant external force the mean first-passage
time (MFPT) T from one point to another along the direction of the force equals L/V ,
the ratio of distance L to the particle velocity V [1]. However, as the diffusing particle is
coupled to a heat bath, thermal fluctuations may lift it across a potential barrier. At the
same time, the overdamping does not allow the particle to take along its momentum. To
minimize the MFPT, one would thus naively expect that the particle should constantly
move downhill. As we are going to show here for the case of a piecewise linear potential,
it is indeed beneficial for the MFPT if the particle first crosses a potential barrier, that is,
the particle initially moves uphill. As a consequence the following downhill slope becomes
steeper, leading to a smaller overall MFPT.

Generally, the question of the interplay between the potential landscape and diffusion
properties is of great interest, resulting in often surprising behaviour such as giant
diffusivity [2]. But which shape of the potential should one choose in order to optimize
the escape time on an interval? A large number of previous studies were concerned
with problems of the escape from a potential well [3], following Kramers’ classical
work [4]. Optimization of the escape time may involve phenomena such as resonant
activation [5]. One of the simplest models for a potential landscape is a piecewise
linear potential (figure 1). Only recently was it realized that an asymmetry in this
kind of potential is important for escape properties in resonant activation [6, 7]. The
asymmetry of the potential also plays a crucial role in systems with periodic potentials
relevant to molecular motor models [8]–[10], or for molecular shuttles in suprachemical
compounds [11]. However, to the best of our knowledge the role of asymmetry for the
MFPT for a static potential as displayed in figure 1 has not been discussed.
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Figure 1. Scheme of the piecewise linear potential (blue line) considered here.
The particle is initially placed at point O (at x = 0), at which we impose a
reflecting boundary condition. The end point is X, and we choose xX = 1. At
the turnover point A the slope of the potential changes. v1 and v2 are the drift
velocities on the two linear slopes (v1 < 0 and v2 > 0). The red line shows the
inversely symmetrical potential resulting in the same MFPT (see the text).

2. Mean first-passage time minimization

We consider a particle diffusing from the starting point O at x = 0, to point X located
at xX = 1, in a piecewise linear potential going through point A at xA. This situation is
sketched in figure 1. The values of the potential at these points are UO, UA, and UX = 0,
without loss of generality. At the starting point O we impose a reflecting boundary
condition while at the end point X we apply an absorbing boundary condition for the
calculation of the MFPT. The question that we pursue is: which shape of the piecewise
linear potential minimizes the MFPT from O to X?

The MFPT for the piecewise linear potential with bias velocities v1 (on 0 ≤ x ≤ xA)
and v2 (on xA < x < 1) on the unit interval, shown in figure 1, is readily obtained
analytically [1, 12]. A unit current j(0, t) = δ(t) is injected at x = 0, and the output is
calculated from the solution of the Fokker–Planck equation,

∂P (x, t)

∂t
=

(
∂

∂x

U ′(x)

mη
+ D

∂2

∂x2

)
P (x, t), (1)

where U ′(x) is the derivative of the external potential. Moreover m is the particle
mass, η the friction experienced by the particle, and D is its diffusion constant. For
the gravitational potential U(x) = mgh(x) for a particle at elevation h(x) at position
x and with the gravitational constant g, the drift term in the Fokker–Planck equation
becomes ∂/∂x(gh′(x)/η)P (x, t). The ratio g/η has the dimension of a velocity, so the
Fokker–Planck equation may be rewritten in the form

∂P (x, t)

∂t
=

(
−vi

∂

∂x
+ D

∂2

∂x2

)
P (x, t), (2)
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with piecewise constant drift velocity vi, where i = 1, 2 denotes the two domains with
piecewise linear potential. Note the sign of the drift velocity: an increase of the potential
causes a drift to the left, and vice versa. The reflecting and absorbing boundary conditions
at x = 0 and x = 1, respectively, read ∂P/∂x|x=0 and P (1, t) = 0. Requiring continuity
of the distribution P and the probability flux at point A, the MFPT is yielded in the
form [1]

T =
D

v1v2
(1 − e−v1xA/D)(1 − e−v2(1−xA)/D) +

xA

v1
+

1 − xA

v2
+

D(e−v1xA/D − 1)

v2
1

+
D

(
e−v2(1−xA)/D − 1

)
v2
2

, (3)

as a function of xA, v1, and v2. We note that all variables occurring in equations (1)–(3)
are dimensional. In what follows we measure lengths in units of cm and time in s. Thus
when writing L = 1 for the distance between the starting and end points, this actually
means 1 cm. In the following we use a unit diffusion constant, D = 1 cm2 s−1.

Let us study the MFPT (3) in detail. We first note that expression (3) is symmetric
under the simultaneous exchanges v1 ↔ v2 and xA ↔ 1 − xA, i.e., inversion through the
midpoint of the line connecting O and X. This inverse case corresponds to the red line
in figure 1. Secondly, we observe that on increasing the elevation of point A with respect
to O and X and shifting the turnover point A towards the starting point O such that
|v1xA| � 1, |v2|(1 − xA) � 1, and xA � 1, the MFPT (3) reduces to

T ≈ D

v2
1

e|v1xA|/D +
1

v2
. (4)

This is the sum of the MFPTs on the two subintervals. Indeed, the first term corresponds
to the Kramers rate for crossing of a high potential barrier—see below—while the second
term represents the MFPT at constant drift v2 over the unit distance. Result (4)
demonstrates that the overall MFPT T and both individual terms are reduced by the
increase of A’s elevation while keeping the product v1xA constant. This is one of the
central results of our study: the introduction of a high but narrow barrier reduces the
MFPT.

For the thermally activated crossing of a sufficiently high potential barrier the
corresponding barrier crossing time was obtained by Kramers [4, 13]:

TK =
2π√

U ′′(xmin)|U ′′(xmax)|
e[U(xmin)−U(xmax)]/D. (5)

Here xmin and xmax denote the positions of the potential minimum (where the particle
is initially placed) and the saddle of the potential. According to expression (5) this
characteristic time depends on both the potential difference ΔU = U(xmax) − U(xmin)
and the curvature of the potential at these two points. If we imagine that we smooth
the piecewise linear potential around the minimum and maximum points, it becomes
clear that for fixed ΔU a decrease of the distance between xmin and xmax implies an
increase of the respective curvatures and thus a decrease of the barrier crossing time.
This observation underlines that our above result for the MFPT in the piecewise linear
potential is consistent with the physics of barrier crossing.
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Figure 2. Minimal MFPT in the piecewise linear potential for vanishing potential
difference between the starting and end points, as a function of the turnover
point position xA (blue curve). The corresponding optimum value for the value
of the potential at the turnover point is shown as the red line. The dashed line
emanating from the turnover point in the schematic diagram of the potential
profile (bottom of graph) intersects the two curves at the associated values of
MFPT and UA.

What happens in the case opposite to equation (4), when the two drift velocities are
small: |v1|, |v2| � 1? Expansion of equation (3) up to first order yields

T ≈ 1

2D
− v1x

2
A

6D2
(1 + 2(1 − xA)) − v2(1 − xA)2

6D2
(1 + 2xA). (6)

Here, the first term represents the MFPT of free diffusion on the unit interval. The next
two terms are the first-order corrections in v1 and v2. Depending on the actual values of
v1 and v2 these terms may lead either to a decrease or to an increase of the MFPT.

While the MFPT can be arbitrarily reduced by increasing v1 (and thus also v2) and
simultaneously decreasing the position xA of the turnover point, a finite potential barrier
may still reduce the MFPT. We analyse the three possible, different cases in figures 2–4.
Starting with the case where the starting and end points are at the same potential level,
in figure 2 we show the minimal value for the MFPT (3) together with the corresponding
optimal value for the potential at A, UA, as a function of the position xA of the turnover
point. This minimization was performed numerically with Mathematica. We see that the
largest value of the MFPT is obtained when the turnover point is located in the middle
of the interval at xA = 0.5. In this special case the optimum is reached in the absence
of a potential barrier (UA = 0), i.e., for unbiased diffusion. Away from the midpoint,
the MFPT appears dramatically reduced. For xA → 0 and xA → 1, the fastest MFPT
is obtained when the potential diverges, UA → ±∞. Notice the symmetries of both the
MFPT and the profile of optimal turnover points with respect to the midpoint, xA = 0.5.

For the case of very asymmetric positions of turnover points xA → 0, the
optimal value for the drift v1 can be computed analytically if the potential difference
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Figure 3. Minimal MFPT and corresponding height of the potential at the
turnover point A as a function of the position xA, in the case where the potential
difference between the starting and end points is 10kBT .

ΔU = v1xA + v2(1 − xA) and xA are fixed. Expansion of expression (3) as a series for
small xA leads to the first-order approximation

T ≈ 1

ΔU
+

DΩ−
ΔU2

− D(ΔU − v1) ((ΔU/D)Ω+ + 2Ω−)

ΔU3
xA, (7)

where Ω± = exp(−ΔU/D)±1. Here the first two terms are the MFPT for a uniform linear
bias with potential difference ΔU . The third term is the correction linear in xA. Analysing
its form shows that an increase of the height of the turnover point (i.e., an increase of
|v1|) always leads to a decrease of the MFPT if ΔU is positive. For the optimal slope v1

we obtain the approximate expression

v1 ≈ −ΔU

2xA

((ΔU/D)Ω+ + 2Ω−) (2 − 4xA − (ΔU/D)xA)

(6Ω− + (ΔU2/D2)e−ΔU/D + 2(ΔU/D)(1 + 2e−ΔU/D))
. (8)

In the range of small xA and ΔU > 0 all terms in the brackets are positive. Hence,
expression (8) proves analytically that in this case a barrier does indeed optimize the
MFPT. Note that the numerical accuracy of this approximation is actually not too good.
In order to reproduce the functional behaviour over a longer range of xA, higher order
terms need to be considered.

For the case where the starting point is higher than the end point, the result for
the minimal MFPT is displayed in figure 3. Here the MFPT shows an extended plateau
around xA = 0.5. Exactly at this midpoint the minimum MFPT corresponds to the
naively expected case of a constant slope from starting to end point. For xA closer to zero
the MFPT again drops down to zero while the value of the potential at the turnover point
diverges. Both curves for the MFPT and the potential at the turnover point are again
symmetric with respect to the midpoint. In contrast to the case for figure 2, however, the
curve for the MFPT is not symmetric around the zero-line of the potential.
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Figure 4. Minimal MFPT and associated turnover potential for the case where
the potential difference between the starting and finishing points is −10kBT (the
end point is higher than the starting point).

For completeness we consider the case where the end point is elevated with respect to
the starting point. While a classical particle would never reach this end point, a thermally
driven particle may gain the necessary energy from the heat bath. The corresponding
optimal potential of the turnover point in the piecewise linear potential and the associated
MFPT are shown in figure 4. This turns out to be beneficial when an initial barrier exists
whose height exceeds the overall potential difference |ΔU | between the starting and end
points, such that the drift velocity v2 is positive.

Let us compare the minimal MFPTs in the three cases of positive, zero, and negative
potential difference between the initial and end points of our set-up, for xA1 = 10−3 and
xA2 = 0.5 (i.e., the longest MFPT). For ΔU = 10kBT (figure 3) the ratio T (xA1):T (xA2) ≈
0.7, for ΔU = 0 (figure 2) it is T (xA1):T (xA2) ≈ 0.29, and for ΔU = −10kBT (figure 4)
we find T (xA1):T (xA2) ≈ 0.01. Thus, the introduction of a potential barrier or kink
does indeed have the largest effect on the MFPT when the end point has a higher energy.
That is, when it is harder to reach the end point energetically, the benefit from a potential
turnover is larger. This is the second central result of our study.

We simulated the Brownian motion of a particle in a piecewise linear potential with
a Monte Carlo approach, based on the Metropolis algorithm: if the potential difference
δU between the current position and the potential new position is positive, δU > 0,
then the step is accepted with probability exp(−δU/[kBTM]), where kBTM is a measure of
temperature. Otherwise the step is immediately accepted.

Comparison with the analytical results was achieved by consideration of the
continuum limit of a discrete biased random walk on a lattice. The probability distribution
of jumps of length �, p(�), defines the Fokker–Planck equation for the continuum
probability density function p(x, t) [14]

∂p(x, t)

∂t
= −Δ

τ
m1

∂p(x, t)

∂x
+

Δ2

2τ
m2

∂2p(x, t)

∂x2
(9)
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Figure 5. Comparison of Monte Carlo simulations (squares) with the analytical
result from equation (3) shown as the full line. The lattice size is N = 1001, and
the number of runs is 100 000.

where it is assumed that the lattice spacing and time step are infinitely small: Δ → 0,
τ → 0, and m1 =

∑
�p(�), m2 =

∑
�2p(�). Hence,

D = lim
Δ,τ→0

m2Δ
2

2τ
, v = lim

Δ,τ→0

m1Δ

τ
. (10)

In the case that we considered, the values of diffusion constants and the slopes in the
continuum limit are

D ≈ 1

2N2τ
, |v1| ≈ UA

2xAN2kBTMτ
, |v2| ≈ UA

2(1 − xA)N2kBTMτ
, (11)

where N is the lattice size and xA the position of the turnover point.
The simulations demonstrate excellent agreement with our analytical results. We

show the comparison between the simulations and equation (3) for the case ΔU = 0 for
xA = 0.1, kBTM = 1, and N = 1001 in figure 5.

3. Discussion

On a flat potential landscape, significant progress has been achieved in the theory of
MFPTs on arbitrary, finite domains [15]. In particular, the role of compact versus non-
compact explorations has been revealed in generality [16]. Much less is known about
MFPT properties in potential landscapes.

We analysed the value of the MFPT in a finite interval for a piecewise linear potential,
finding that the introduction of a barrier reduces the MFPT. In the ideal case where the
barrier height is unlimited, the MFPT can be reduced arbitrarily. These a priori surprising
results were shown to be in line with physical arguments such as Kramers escape theory,
and may be of interest in the design of potential energy landscapes, for instance, for
functional molecules (molecular shuttles), or for molecular motors. Conversely, our results
may shed new light on the role of barriers in known landscapes, for instance, in the folding
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Figure 6. The MFPT in case (a) is larger than that in case (b) as long as UA is
fixed.

Figure 7. MFPT for the case of fixed potential UA corresponding to figure 6(b)
as a function of the position xA of the turnover point. Here, ΔU = 5kBT .

landscape of proteins. Indeed, it was shown in [17] that intermediate barriers of height
>1kBT increase the folding rate of proteins.

All results presented above demonstrate the critical importance of the asymmetry
of the potential barrier for optimization of the MFPT. This gain rests on the significant
facilitation of the passage on the long easy slope which overcompensates losses for crossing
of the barrier. The result (3) allows the adjustment of the MFPT to any finite value,
including infinitely large and infinitely small times. However, if one wants to decrease
the MFPT to some specific, small value, this result also shows that, to compensate an
increase in barrier height, a substantial reduction of the position xA of the turnover point
is required.

What happens if the height of the potential barrier is limited? Consider the situation
sketched in figure 6. If the values of U at the starting and end points of the interval
are fixed and the height of the potential at point A is fixed, it is clear that in case (a)
the MFPT is higher than that in case (b). This changes considerably the answer to the
MFPT minimization problem. Starting with a horizontal slope we could still imagine that
a shift of the turnover point A may optimize the MFPT: if it is shifted to the right we
have an increase in the time taken to reach A but a gain from an increased drift velocity
v2. Variation of xA in this case leads to the dependence shown in figure 7. At the right
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end of the interval between the starting and end points the behaviour tends to the value
T = 0.5 s, corresponding to unbiased diffusion. The gain at the optimum value for xA in
this case is in fact only a few per cent, compared to the case of a linear potential drop
(xA = 0).

In classical mechanics the cycloid is the optimal curve for a point particle in the
absence of friction: after an initial steep descent, i.e., high acceleration, the momentum
of the particle carries on. For a diffusing, overdamped particle in the case of a piecewise
linear potential, the answer is qualitatively the opposite: in order to minimize the MFPT
there should be a steep and short ascent.

It will be interesting to consider more complex shapes of the potential, in particular,
the case of multiple barriers as mentioned in the context of protein folding [17]. Moreover,
numerical analysis of the first-passage distribution associated with the process considered
herein will be of interest, as well as the consideration of the full motion including inertial
effects. Although it is possible to optimize the potential by trial and error for a fixed
set of potential shapes, the question about whether the optimization algorithm exists in
generality remains to be investigated. Another interesting question is that of whether
similar results could be obtained under anomalous diffusion conditions [18].
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