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Inequivalence of time and ensemble averages in ergodic systems:
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Single-particle tracking has become a standard tool for the investigation of diffusive properties, especially
in small systems such as biological cells. Usually the resulting time series are analyzed in terms of time
averages over individual trajectories. Here we study confined normal as well as anomalous diffusion, modeled by
fractional Brownian motion and the fractional Langevin equation, and show that even for such ergodic systems
time-averaged quantities behave differently from their ensemble-averaged counterparts, irrespective of how long
the measurement time becomes. Knowledge of the exact behavior of time averages is therefore fundamental for
the proper physical interpretation of measured time series, in particular, for extraction of the relaxation time scale
from data.
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I. INTRODUCTION

Due to recent advances in single-particle tracking tech-
niques, analyses based on single-trajectory averages have been
widely employed to study diffusion in complex systems, e.g.,
of large biomolecules and tracers in living cells [1]. Examples
include the motion in the cellular cytoplasm of messenger RNA
molecules [2], chromosomal loci [3], lipid granules [4], and
viruses [5], telomeres in cell nuclei [6], or of protein channels
in the cell membrane [7]. Under the assumption of ergodicity,
i.e., the equivalence of (long) time averages (TAs) with
ensemble averages (EAs), the physical interpretation is often
based on the time series analysis of single trajectories. For
instance, particle-to-particle diffusion properties are typically
studied via TA mean squared displacements (MSDs) of
individual time series x(t),

δ2(�) = 1

T − �

∫ T −�

0
[x(t + �) − x(t)]2dt, (1)

where � is the lag time and T the length of the time series.
Invoking ergodicity arguments, it is tacitly assumed that δ2(�)
corresponds to the EA MSD 〈x2(t)〉 with the identification
t ↔ �, in the limit of long measurement times (i.e., T → ∞).
For free normal diffusion, one can indeed show analytically
that 〈x2(t)〉 = δ2(t) = 2K1t as T → ∞ [11,12]. At finite T ,
the result for δ2(�) will generally show trajectory-to-trajectory
variations. However, a similar equivalence still holds when δ2

is averaged over many individual trajectories: 〈x2(t)〉 = 〈
δ2(t)

〉
[11]. In what follows we use the symbol δ2 when T → ∞ and〈
δ2

〉
for finite T , unless specified otherwise. For anomalous dif-

fusion of the form 〈x2(t)〉 = 2Kαtα with anomalous diffusion
constant Kα of physical dimension cm2/secα and anomalous
diffusion exponent α (0 < α < 2) [13], the same conclusion
holds if the process is described by fractional Brownian motion
(FBM) or the fractional Langevin equation (FLE) [14–16].
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In contrast, disagreements between TAs and EAs are not
surprising for nonergodic processes. A prominent example is
anomalous diffusion described by continuous time random
walks (CTRWs) with diverging characteristic waiting times
[17–19]: while the EA MSD scales as 〈x2(t)〉 � tκ with 0 <

κ < 1, the TA MSD grows linearly with the lag time, δ2(�) �
� for free motion [11,12]. Under confinement, one observes
δ2(�) � �1−κ instead of the saturation plateau of the EA [15,
20,21]. Recently it was found that the TA MSD of tracers in
living cells indeed exhibit such CTRW behavior [4,7].

Here, we show that even for ergodic processes the TA may
differ from the EA. This a priori unexpected discrepancy
arises from the fact that generally dynamic variables are
not well defined in the TA sense, and therefore care is
necessary when interpreting a TA based on knowledge about
the corresponding EA. We explicitly study this effect for
stochastic processes of the regular Brownian motion, FBM,
and FLE types, confined in an harmonic potential. Processes
of the FBM and FLE kind are closely associated with the
motion of tracer molecules in viscous environments, single-file
diffusion, monomer motion in polymers, or the relative motion
of amino acids in proteins [8]. They have also been identified
as stochastic mechanisms for the tracer motion in living cells
and reconstituted crowding systems [3,4,9,10].

Consider first an overdamped Brownian particle in the
harmonic potential U (x) = kx2/2 of stiffness k. With initial
position x(0) = 0 the EA MSD is

〈x2(t)〉 = (1 − e−2kt/γ )/[βk], (2)

while the EA taken over the TA MSD, (1), becomes

〈
δ2(�,T )

〉 = 2

βk
(1 − e−k�/γ )

+ γ

2k(T − �)
(ek�/γ − 1)2(e−2kT /γ − e−2k�/γ ).

(3)

Here γ is the friction coefficient and β the Boltzmann
factor. Both quantities are identical initially, before confine-
ment effects come into play: 〈x2(t)〉 ∼ 2K1t ∼ 〈

δ2(t)
〉
, with
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FIG. 1. (Color online) EA and TA MSD for a Brownian particle
in an harmonic potential. Solid lines: Eqs. (2) and (3). Symbols:
simulations with γ = 1, β = 1, k = 1, time step δt = 0.001, and
measurement time T = 105. The flat curve corresponds to thermal
initial conditions.

K1 = 1/[βγ ]. However, for T ,� → ∞ (with T − � → ∞)
the TA MSD converges to δ2(�) → 2/[βk], twice the thermal
value 〈x2〉th = 1/[βk]. The difference between TA and EA
is shown in Fig. 1 for both the analytical results and the
simulations, with excellent agreement. Note the sudden dip
in the TA MSD at � ≈ T at the finite measurement time
T , at which the limiting behavior

〈
δ2(� → T )

〉 = 〈x2(T )〉 is
observed. These features are generic for the definition of the TA
MSD, (1), under confinement (compare Refs. [15] and [20]).

What results will be obtained for more complicated,
non-Brownian motion? We analyze the case of anomalous
diffusion governed by FBM and the FLE and show that the
entire relaxation dynamics is significantly different for the
TA, despite the ergodic nature of these processes. Knowledge

of the exact behavior of TA quantities is imperative for the
correct physical interpretation of time series, in particular, to
extract the relaxation time.

II. FRACTIONAL BROWNIAN MOTION

FBM xα(t) in the external harmonic potential U (x) =
kx2/2 follows the Langevin equation

dxα(t)

dt
= −kxα(t) + ξα(t), (4)

driven by fractional Gaussian noise ξα(t) of zero mean
〈ξα(t)〉 = 0 and slowly decaying, power-law autocorrelation
(t 
= t ′) [23,24]

〈ξα(t)ξα(t ′)〉 � αKα(α − 1)|t − t ′|α−2. (5)

In free space, 〈x2
α(t)〉 = 2Kαtα [14]. Note the change of

sign in Eq. (5) between antipersistent subdiffusion 0 < α < 1
and persistent superdiffusion 1 < α < 2. Different from sub-
diffusive CTRW processes with diverging waiting time scales,
FBM does not exhibit aging effects. In fact, the free-space
propagator is the Gaussian [25]

P (x,t) =
√

1

4πKαtα
exp

(
− x2

4Kαtα

)
, (6)

whose smooth shape contrasts with the pronounced cusps at
the initial position in subdiffusive CTRW processes [13,18].
Moreover, the propagator, (6), obeys a time-local diffusion
equation with time-dependent diffusivity [25].

The formal solution of the FBM Langevin equation (4),

xα(t) =
∫ t

0
e−k(t−t ′)ξα(t ′)dt ′, (7)

and Eq. (5) yield the position autocorrelation function,

〈xα(t1)xα(t2)〉 = Kα

{
e−kt1 tα2 + e−kt2 tα1 − |t2 − t1|α

}
+ Kα

2kα
{e−k|t2−t1|γ (α + 1,kt1) + ek|t2−t1|γ (α + 1,kt2) − ek|t2−t1|γ (α + 1,k|t2 − t1|)}

+ kKα

2(α + 1)
|t2 − t1|α+1e−k|t2−t1|M(α + 1; α + 2; k|t2 − t1|)

− kKα

2(α + 1)
tα+1
1 e−k(t1+t2)M(α + 1; α + 2; kt1) − kKα

2(α + 1)
tα+1
2 e−k(t1+t2)M(α + 1; α + 2; kt2). (8)

For the EA MSD we then find

〈
x2

α(t)
〉 = Kα

kα
γ (α + 1,kt) + 2Kαtαe−kt

− kKα

α + 1
tα+1e−2ktM(α + 1; α + 2; kt), (9)

where γ (z,x) = ∫ x

0 dte−t t z−1 is the incomplete γ function and

M(a; b; z) = 
(b)


(b − a)
(a)

∫ 1

0
ezt ta−1(1 − t)b−a−1dt (10)

is the Kummer function [22]. Figure 2 shows simulations
of FBM in an harmonic potential for various α values,
demonstrating excellent agreement with result (9). Asymptotic
expansion of Eq. (9) at short times t � k−1 yields free anoma-
lous diffusion 〈x2

α(t)〉 ∼ 2Kαtα . Close to stationarity, we find

〈
x2

α(t)
〉 ∼ 〈

x2
α

〉
th − 2

k2
α(α − 1)Kαtα−2e−kt , (11)

exponentially approaching the stationary value〈
x2

α

〉
th = Kα

kα

(α + 1) (12)
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FIG. 2. (Color online) EA MSD 〈x2
α(t)〉 for FBM in an harmonic

potential. Solid lines: Eq. (9). Symbols: simulations with parameters
k = 0.01, T = 2048, and x0 = 0.

with the single characteristic time scale k−1 in the exponential
function: as shown in Fig. 2, beyond t > k−1 the stationary
state is attained independent of α. This property enables one
to study the confinement effect by analyzing the relaxation
of 〈x2

α(t)〉. We also note an interesting feature of the
relaxation dynamics on intermediate time scales: somewhat
counterintuitively the subdiffusive particle overshoots 〈x2

α〉th

before a decrease back to this value, while for superdiffusion
we observe a monotonic increase [the sign of the second term
in Eq. (11) depends on α]. Note the α dependence of the
plateau value, (12), a reminder of the fact that FBM is driven
by an external noise and thus not subject to the fluctuation
dissipation theorem, in contrast to FLE motion, discussed
below. Phenomenologically, both processes are very similar.

For the TA MSD in the limit T → ∞ we obtain the
expression

δ2(�) = 2Kα
(α + 1)/kα + 2Kα�α

− Kα

kα
{ek�
(α + 1,k�) + e−k�
(α + 1)}

− kKα

α + 1
�α+1e−k�M(α + 1; α + 2; k�), (13)

where 
(z,x) = ∫ ∞
x

dte−t t z−1 is the complementary incom-
plete γ function. Comparison with the EA MSD, Eq. (9),
demonstrates a completely different functional behavior over
all time scales, except in the short-time limit, for which
confinement is negligible. In particular, at � → ∞, we find
δ2(�) = 2〈x2

α〉th for all α.
The fundamental difference in the relaxation dynamics

of δ2(�) and 〈x2
α(t)〉 is demonstrated in Fig. 3, in excellent

agreement with Eqs. (9) and (13). In contrast to the exponential
relaxation of Eq. (9), the TA MSD shows a power-law approach
to the limiting value 2〈x2

α〉th, except for the Brownian limit
α = 1. This is manifested in the asymptotic form of δ2(�) at
� → ∞,

δ2(�) ∼ 2
〈
x2

α

〉
th − Kα
(α + 1)

k2
e−k� − 2α(α − 1)Kα

k2�2−α
. (14)

The transient second term becomes the leading order at
α = 1. Surprisingly, in Eq. (14) the relaxation dynamics

FIG. 3. (Color online) EA and TA MSD, 〈x2
α(t)〉/Kα and

δ2(�)/Kα , for FBM in an harmonic potential (α = 0.40, 1.0, 1.4,
and 1.60, from bottom to top). Solid and dashed lines: analytical
results, (9) and (13), respectively. Symbols: simulations. Parameters
as in Fig. 2.

is determined by the power exponent α − 2. Moreover, no
characteristic time scale exists beyond which the MSD could
be regarded saturated. For subdiffusion, as the algebraic decay
is relatively fast (∼�−κ with 1 < κ < 2), the MSD appears
saturated at sufficiently long measurement times. However,
the superdiffusive MSD relaxes very slowly as α is closer to 2
(∼�−κ with 0 < κ < 1). Due to this, the corresponding MSD
does not show saturation even at long measurement time T .
Only in the limit � → T does the TA dip back to the plateau
value of the EA. In typical experiments, however, this feature
is typically obscured by poor statistics, and thus the relaxation
time would likely be overestimated by the TA MSD.

III. FRACTIONAL LANGEVIN EQUATION

The FLE describes ergodic anomalous diffusion and fulfills
the fluctuation-dissipation theorem [14]. In the potential U , the
FLE motion yα(t) follows the dynamic equation [14,26,28]

m
d2yα(t)

dt2
= −γ

∫ t

0
dt ′|t − t ′|α−2 dyα

dt ′
− kyα(t)

+
√

γ /[α(α − 1)βKα]ξα(t), (15)

where ξα(t) represents fractional Gaussian noise, m is the
particle mass, and γ the generalized friction coefficient. In
the FLE, the dynamic exponent of the noise is restricted to
1 < α < 2. This persistent noise results in subdiffusive motion
of the FLE in the overdamped limit. For unbiased motion
(k = 0), 〈y2

α(t)〉 = δ2(t) at T → ∞ [14], and

δ2(�) = 2�2

βm
Eα,3

[
− 
(α − 1)

γ

m
�α

]
, (16)

Eα,3(z) being a generalized Mittag-Leffler function. The latter
is defined via its Laplace image,∫ ∞

0
e−utEρ,δ(−η∗tα) = 1

uδ + η∗u1−α
. (17)
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In terms of a series expansion around z = 0 and z → ∞, this
function reads [27]

Eρ,δ(z) =
∞∑

n=0

zn


(δ + ρn)
= −

∞∑
n=1

z−n


(δ − ρn)
. (18)

The MSD, (16), accordingly turns from ballistic motion ∼�2

at short � to subdiffusion ∼�2−α at long � [26,28]. In
the presence of the potential, the FLE, (15), can be solved
analytically in the overdamped limit, the stationary state
yielding [28]

〈yα(t1)yα(t2)〉th = 1

βk
E2−α

[
− k

γ
(α − 1)
|t2 − t1|2−α

]
, (19)

with E2−α(z) = E2−α,1(z). Thus, 〈y2
α(t)〉 has the stationary

value 〈y2
α〉th = 1/(βk) for any α, contrasting with the α-

dependent result, (12), for FBM. Moreover, for T → ∞ we
obtain the TA MSD

δ2(�) = 2
〈
y2

α

〉
th

(
1 − E2−α

[
− k

γ
(α − 1)
�2−α

])
(20)

for � � τc, where the momentum relaxation time is [26]

τc =
(

m

(α + 3)

2
(α − 1)(2α+1 − 1)γ

)1/α

. (21)

The TA MSD, (20), behaves distinctly differently from its EA
counterpart as well as the TA MSD, (13), for FBM: the TA
MSD, (20), grows like ∼�2−α at intermediate lag times and
eventually converges to 2〈y2

α〉th for all α as � → ∞. Similarly
to our above observations, the long-time behavior of Eq. (20)
exhibits a power-law relaxation, namely,

δ2(�) ≈ 2
〈
y2

α

〉
th

(
1 − γ

k�2−α

)
. (22)

As for FBM, the dynamic exponent of the TA MSD is
independent of the confinement (k). Intriguingly, the speed of
convergence is slower as the driving noise ξα is more persistent
(i.e., when α → 2). Therefore, opposite to the tendency shown
in Fig. 3 for FBM, in the FLE case the slow particle appears
not to approach 2〈y2

α〉th.
In Fig. 4, we further analyze FLE motion in an harmonic

potential in terms of the TA MSD for various α. For times
� � τc and in the overdamped limit, the analytical form, (20),
agrees well with the simulation results for all cases. While the
TA MSD approaches the thermal value 2〈y2

α〉th algebraically, in
our simulation the slowest subdiffusive case (corresponding to
α = 1.8) does not show saturation even for long measurement
times. At times less than τc the TA MSD shows quadratic
scaling δ2 � �2. The dynamics within this time range is
explained well by the full solution of the free-space motion,
(16), shown for α = 1.2 and 1.8. An important feature resulting
from this inertia effect are the oscillations of δ2, which are
particularly pronounced as α approaches 2. These oscillations
are intrinsic in the sense that they occur regardless of the
confinement, due to the strong persistence in ξα and inertia
effects [29].

FIG. 4. (Color online) TA MSD for FLE motion in an harmonic
potential, for α = 1.2, 1.4, 1.6, and 1.8 (from bottom to top) and
T = 217. A representative EA MSD is included for α = 1.2. Symbols:
Simulations with time step δt = 0.001, stiffness k = 100, mass
m = 1, friction coefficient γ = 100, and β = 1, with an equilibrium
distribution of initial position yα(0) and velocity ẏα(0). Solid lines:
theoretical result, (20). Dotted lines: unbiased motion, Eq. (16), with
momentum relaxation at α = 1.4 and 1.8, illustrating ballistic scaling
∼�2 at � < τc.

IV. DISTRIBUTION OF TIME-AVERAGED MEAN
SQUARED DISPLACEMENTS

At finite sampling time T the TA MSD δ2(�,T ) is a
random variable, even for ergodic processes such as Brownian
motion, FBM, and FLE motion. In practice, this means that
δ2(�,T ) shows pronounced trajectory-to-trajectory variations.
This stochasticity of δ2 is measured by the scatter probability
density φ(ξ ), in which the dimensionless variable ξ is defined
through [11]

ξ = δ2〈
δ2

〉 . (23)

Such scatter distributions are of the Lévy stable type for
subdiffusive CTRW processes with diverging characteristic
time scales [11,15,20,30,31]. In Figs. 5–7 we show φ for free
and confined FBM and FLE motion, with fixed bin size 0.1.
Each graph shows the distributions at three lag times � and
α for a given measurement time T . In each graph two sets of
curves were shifted upward for comparison; the shift value is
indicated.

A. FBM in an harmonic potential

On the left in Fig. 5 we present the distributions of δ2 for the
data shown in Fig. 3. As expected from our previous study [30],
the distributions are centered around the ergodic value ξ = 1
and become wider as the lag time � increases. The wider
distribution at longer lag times means that the single TA MSD
trajectories tend to be more erratic as � approaches T . A new
finding is that at a fixed lag time � > 1 the scatter distribution
becomes broader as the motion is faster (i.e., increasing α).
This behavior is mainly due to the inherent property of FBM
itself, as the same tendency is also found without a potential
(see left panel in Fig. 7). This dependence on α is attributed to
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FIG. 5. (Color online) Scatter distributions for fractional Brownian motion in an harmonic potential. Left: T = 211 = 2048. Right:
T = 217 = 131 072. In each graph we compare the results for three lag times. The upper two sets of curves were shifted by the indicated
amount, for clarity.

the fact that FBM is a Gaussian stationary process in which the
spatial displacement x for time difference � is governed by the
distribution ∼exp(−x2/[4KH �α]). On the right in Fig. 5 we
show the corresponding distributions when the measurement
time is increased to T = 217. The distributions now appear to
be insensitive to α and �. The fact that they are less sharp
than the analytically predicted Gaussian is due to the finite
size effect of the binning; see below.

B. FLE motion in an harmonic potential

The left and right panels in Fig. 6 depict the distributions
corresponding to the parameters used in Fig. 4, with T = 211

and 217, respectively. Note that the variation of α was restricted
to the range [1.0, 2.0], as FLE motion is only well defined for
subdiffusion. The anomalous diffusion exponent in this case
is given by κ = 2 − α in terms of the scaling exponent α

of the fractional Gaussian noise. Generally the distributions
are bell shaped. Notably, at a fixed lag time the distribution
of FLE motion tends to be wider as the overdamped motion
becomes slower (i.e., for increasing α), as opposed to the
case of FBM. We also observe that the distributions of FLE
motion appear generally to be wider than those of FBM (e.g.,
Fig. 5, left), due to the fact that the initial values of position and

velocity for FLE were chosen as the corresponding equilibrium
distributions. For the case of a long measurement time (right),
the distributions again appear to be insensitive to α and � for
the given bin size.

C. FBM and FLE motion in free space

To appreciate the effect of confinement on the distribution,
we simulated the free FBM and FLE motion for the same
parameters as in Figs. 3 and 4. As shown in Fig. 7, in both
cases the scatter distributions manifest features consistent
with the confined cases. Only the width of the distribution
becomes narrower by the presence of the confining potential,
in particular, at longer lag times.

D. Influence of bin size

Typically, experimental probing windows are limited, and
meaningful quantitative analysis requires more or less coarse
binning. In the context of the scatter plots shown here,
this practically means that for a bin size of 0.1 the peak
cannot exceed the value 10, for reasons of normalization,∫ ∞

0 φ(ξ )dξ = 1. For simulation data we can arbitrarily in-
crease the accuracy and thus reduce the bin sizes while still
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FIG. 6. (Color online) Scatter distributions for the fractional Langevin equation motion in an harmonic potential. Left: T = 211. Right:
T = 217. In each graph we compare the results for three lag times. The upper two sets of curves were shifted by the indicated amount, for
clarity.
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FIG. 7. (Color online) Scatter distributions for free fractional Brownian and Langevin equation motion. Left: T = 211. Right: T = 217. In
each graph we compare the results for three lag times. The upper two sets of curves were shifted by the indicated amount, for clarity.

maintaining good statistics. Such a result is shown in Fig. 8 for
bin size 0.01. For this resolution we may compare the shape
of the distribution φ(ξ ) determined from simulations with the
theoretical approximation valid for short lag times �,

φ(ξ ) ≈
√

T − �

4πτ ∗ exp

(
− (ξ − 1)2(T − �)

4τ ∗

)
, (24)

as derived in Ref. [30]. Here, the scale τ ∗ is only introduced
to account for correct dimensions and can be taken to 1 [time
unit] (cf. Ref. [30]). The graph in Fig. 8 shows nice agreement
with the measured data from simulations. Interestingly, the
agreement is somewhat better in the confined case. At larger �

the distribution becomes wider than predicted by Eq. (24), due
to the strong correlation in successive square displacements,
[x(t + �) − x(t)]2 (see Ref. [30]), and the curves split up for
the different α.

V. DISCUSSION

Studying the representative example of ergodic FBM and
FLE motion in an external harmonic potential, we have demon-
strated that the TA MSD behaves significantly differently from
the EA MSD. Thus, naive interpretation of single trajectory
TAs based on the knowledge of the ensemble behavior

may lead to false conclusions on the physics underlying
the observed motion. This so far overlooked discrepancy is
particularly relevant for the relaxation behavior: while for
the EA MSD the relaxation time can be read off directly,
the corresponding TA MSD appears to suggest a scale-free
behavior. Hence it is imperative to compare to analytical or
simulation results for the TA of the system. We note that
while here we have focused on an harmonic external potential,
the findings reported here also pertain to other forms of
confinement.

What is the reason for this disagreement between the EA
and the TA? We find that for stochastic processes converging
to a stationary state, as 〈[x(t + �) − x(t)]2〉th depends only on
�, the definition of the TA MSD, (1), in the limit of long-time
measurement leads to the general relation

lim
T →∞

δ2(�,T ) = 2〈x2〉th[1 − Cx(�)], (25)

which is independent of diffusion models and details of
confinement. Here

Cx(�) = 〈x(t)x(t + �)〉th

〈x2〉th
(26)

is the normalized position autocorrelation function. Therefore,
the time-averaged variable δ2(�) in fact is an indicator of
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FIG. 8. (Color online) Scatter distribution for confined (left) and free (right) FBM with T = 211 and � = 1. Data are the same as shown
in Figs. 5 and 7 on the left, but analyzed with bin size 0.01. As shown by the thick (gray) line, the measured scatter agrees nicely with the
predicted Gaussian distribution, (24).
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the correlation of the spatial displacement, not the TA MSD
of a trajectory. For ergodic systems satisfying the Khinchin
theorem [Cx(� → ∞) = 0], the TA MSD always saturates
to δ2 → 2〈x2〉th, where the relaxation dynamics reflecting the
spatial correlation can be very slow, although the system is
already fully relaxed, as shown in this study. Accordingly, in
performing single-trajectory analysis, one should be aware of
the potential pitfalls in using δ2(�). In contrast to nonergodic
systems [11,15,20], the anomalous diffusion exponent α and
the anomalous diffusion constant Kα can be estimated from
the log-log plot of the TA MSD at short lag times. Meanwhile,
physical quantities associated with confinement such as the
effective confinement size and the relaxation time could be
incorrectly deduced from the long-� behavior of δ2(�).

What alternative definitions of the TA MSD could be used
to mend this problem? Instead of Eq. (1) it would be a
straightforward idea to consider

x2(t) = 1

t

∫ t

0
x2(t ′)dt ′. (27)

For ergodic processes with a stationary state, x2(t) at t → ∞
equals

〈x2〉th =
∫

x2e−βU (x)dx

/ ∫
e−βU (x)dx. (28)

However, the time dependence of x2(t) is different from that of
〈x2(t)〉. Even for free diffusion exhibiting 〈x2(t)〉 = 2Kαtα , the

ensemble mean of x2(t) is 2Kα

α+1 tα , and thus this definition does
not even work for the Brownian case. If a dynamic variable
like the MSD as a function of time is concerned, it appears
that no systematic way exists for defining a TA expectation
compatible with the analogous EA.

For finite measurement time T the TA MSD δ2 shows
trajectory-to-trajectory variations, even for Brownian motion.
Consistent with previous findings [30] for ergodic processes,
the distributions are centered around the ergodic value ξ = 1.
Importantly, in all cases the distribution is almost independent
of confinement, except for some narrowing at long lag times.
For both the FBM and the FLE at long T the distributions are
sharply peaked.

In conclusion, the study of single-trajectory averages is
a nontrivial extension of the theory of stochastic processes,
knowledge of which is necessary to establish quantitative
models for diffusion-limited processes in small complex
systems. The current work contributes to the development
of such a theory and to a toolbox of diagnosis methods
for the exact stochastic mechanism underlying experimental
single-particle trajectories [4,7,10,32–34].
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