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Determining the DNA stability parameters for the breathing dynamics
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We suggest that the thermodynamic stability parameters (nearest neighbor stacking and hydrogen
bonding free energies) of double-stranded DNA molecules can be inferred reliably from time series
of the size fluctuations (breathing) of local denaturation zones (bubbles). On the basis of the recon-
structed bubble size distribution, this is achieved through stochastic optimization of the free energies
in terms of simulated annealing. In particular, it is shown that even noisy time series allow the iden-
tification of the stability parameters at remarkable accuracy. This method will be useful to obtain the
DNA stacking and hydrogen bonding free energies from single bubble breathing assays rather than
equilibrium data. © 2011 American Institute of Physics. [doi:10.1063/1.3654958]

I. INTRODUCTION

The Watson-Crick double-helical form of DNA (Ref. 1)
is not a static structure: even at standard salt conditions and
room temperature the base pairs may intermittently open up
and expose the otherwise protected core of the nucleotides.
Such local denaturation bubbles are usually quite short-lived;
however, the propensity of double-stranded DNA towards
formation of longer-lived bubbles can be increased by
elevating temperature or lowering the salt concentration.2–6

In naturally underwound circular DNA, denaturation bubbles
are stabilized by partial twist release,7, 8 while in modern
single DNA molecule setups bubble formation may be facil-
itated by the exertion of longitudinal stretching forces.9–13

The preferred location of bubbles is connected with the
stability landscape of the genome, as quantified by maps
of stability parameters, which are functions of the specific,
underlying sequence of GC and AT base pairs.13–18 In a
biological context, bubbles correspond to so-called DNA
unwinding elements (DUE), which are central in processes
such as gene regulation, DNA replication, and transcription.19

Similarly, in higher organisms the thermodynamic stability
landscape of DNA is related to the coding versus non-coding
properties of the genome.20, 21 The denaturation of a long
DNA chain from double-strand to two separate single-strands
is a physical phase transition, whose order is determined
by the magnitude of the critical exponent c for the entropy
loss of a flexible polymer loop, see also the discussion
below.2–5, 12, 22, 23 The opening-closing dynamics of denatu-
ration bubbles can be quantified by simple nonequilibrium
models based on the gradient of the DNA free energy stability
landscape.24–28

a)Electronic mail: pinakc@rediffmail.com.
b)Electronic mail: metz@ph.tum.de.
c)Electronic mail: skbanik@bic.boseinst.ernet.in.

Melting profiles of DNA can be obtained from a host
of experimental techniques. These include UV spectroscopic
methods,6 circular dichroism,6 fluorescence resonant energy
transfer measurements,29 calorimetry,30 or nuclear magnetic
resonance,31 among others. Single DNA manipulation tech-
niques such as unzipping have recently been shown to pro-
vide high accuracy results for the stability parameters and
their salt dependence.13 From the respective melting or un-
zipping curves the DNA stability parameters are deduced,
which in bioinformatics serve to predict the melting profiles
of arbitrary, given DNA sequences.32 Up until now the dif-
ferent sets of stability parameters differ considerably from
each other.13–18 Alternative methods to measure these may
help to pin down optimized parameters. One way could be to
use dynamic information from bubble breathing. Indeed, by
fluorescence correlation spectroscopy the breathing dynam-
ics of single DNA bubbles has been monitored, producing
the breathing-induced fluorescence-fluorescence correlation
function, that is pronouncedly non-exponential.33, 34 Given the
recent progress in experimental methods, we expect that time
series of single bubble dynamics will soon become available,
in which opening or closing events of individual base pairs
can be monitored. A high potential for such time records lies
in nano-channel approaches as the one reported in Ref. 35,
after new labeling techniques will become available shortly.

In what follows, we pursue the question whether the bub-
ble size distribution obtained from single breathing time series
may, in principle, be used to obtain reliable information on the
DNA stability parameters. We show that indeed by stochas-
tic analysis methods such as simulated annealing (SA) accu-
rate estimates for the stability parameters may be obtained for
known DNA sequences.

The paper is structured as follows. We first introduce the
general statistical model of DNA base pairing, before pro-
ceeding to present the methodology of SA. In Sec. IV, we
present our results, before drawing our conclusions.
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II. STATISTICAL MODEL FOR DNA DENATURATION

A. Thermodynamics

The size of denaturation bubbles typically ranges from a
few broken base pairs (bps) at physiological temperature in
linear, unconstrained DNA, to some 200 broken bps closer
to the melting temperature of the DNA.2, 3, 5, 14, 34 Bubbles of
some hundred broken base pairs also occur in naturally un-
derwound DNA.8, 19 Following the notation of Ref. 14, the
stability of DNA is characterized by the free energies εhb(AT)
and εhb(GC) for the Watson-Crick hydrogen bonds between
complementary nucleotides (A and T, G and C, respectively)
as well as the independent stacking free energies εst for dis-
rupting the stacking interactions between nearest neighbor
bps. These stacking energies depend on the nature of the two
vicinal bps, as well as on their orientation along the DNA
molecule (3′ to 5′). The free energies are functions of tem-
perature and salt concentration. Depending on the used set of
stability parameters more or less pronounced asymmetries in
the stacking free energies are observed.13–18 In addition to the
hydrogen bonding and stacking free energies, there is an ad-
ditional energetic cost for initiating a bubble in the first place.
Roughly speaking, this term originates from the fact that two
stacking contacts need to be broken, while only one single
broken bp yields an entropic gain. This is either taken into
consideration by the cooperativity factor σ 0, or the so-called
ring factor ξ , see below.36

The L33B9 sequence37 we are analyzing in the present
work is given as follows:

5′ − cCGCCAGCGGCCTTTACTAAAGGCCGCTGCGCc − 3′,

(1)

where the double-strand is completed by adding the comple-
mentary single strand. The sequence (1) is linear, and the high
content of more stable GC bps at the two ends ensures that
these ends preferentially remain closed. A denaturation bub-
ble forms in the center of the chain that is rich in weaker AT
bonds. We therefore view the two extremities denoted by the
lower case symbol c as completely clamped. Labeling the se-
quence of bps by the coordinate x, ranging from x = 0 to
x = M + 1, we thus have M = 31 internal bps, which are
allowed to open up, while the bps at x = 0 and x = M + 1 re-
main closed by definition. In a mathematical sense, the bps at
the two extremities represent reflecting boundary conditions.
Furthermore, we call xL and xR the momentary positions of
the two closed bps embracing the denaturation bubble to the
left and right, such that the bubble size becomes m = xR − xL

− 1. In terms of the Boltzmann factors for hydrogen bonding
of the bp at position x,

uhb(x) = exp

(
εhb(x)

kBT

)
, (2)

and the stacking interactions between the bps at positions
x − 1 and x,

ust (x) = exp

(
εst(x)

kBT

)
, (3)

the bubble partition function becomes (m ≥ 1)

Z (xL,m) = ξ ′

(1 + m)c

xL+m∏
x=xL+1

uhb(x)
xL+m+1∏
x=xL+1

ust(x). (4)

At m = 0, we take Z (m = 0) = 1. In Eq. (4), the factor
(1 + m)−c takes care of the entropy loss upon formation of a
closed polymer loop. For a self-avoiding chain in three dimen-
sions, the critical exponent becomes c = 1.76 .22 Corrections
of c may occur due to interactions with the rest of the chain;23

however, for the short DNA construct used here, such effects
are not expected to be relevant. The ring factor is ξ ≈ 10−3,14

and we define ξ ′ = 2cξ . The ring factor may be interpreted
as the cooperativity parameter, divided by the Boltzmann fac-
tor for stacking, ξ = σ 0/exp (εst/kBT).14 In principle, the ring
factor depends on the position. However, a bubble will sta-
tistically always form at the weakest link. Considering this
we have used a constant value of ring factor, ξ in the present
work. With above notation, the equilibrium distribution for
finding a bubble of size m and with the leftmost broken bp
located at position x + 1, is given by

Peq(xL,m) = Z (xL,m)

Z (0) + ∑M
m=1

∑M−m
xL=0 Z (xL,m)

. (5)

B. Nonequilibrium: Bubble breathing

Powered by thermal fluctuations, the bubble size fluctu-
ates randomly as a function of time. Varying stepwise by fur-
ther unzipping of one bp at position xL or xR, or by zipping at
xL + 1 and xR − 1, the bubble size m performs a random walk
along the coordinate x, the bubble breathing dynamics.24–28, 34

This process is described by the master equation34

∂P (xL,m, t)

∂t
= WP (xL,m, t), (6)

where P(xL, m, t) is the probability distribution for finding a
bubble of size m with the leftmost open bp at position xL + 1,
at time t. The matrix W contains the transfer rates for all pos-
sible transitions in the (xL, m) space, for details see Ref. 34.
In the long time limit, the solution P of the master equation
(6) equilibrates to the distribution Peq of Eq. (5). To gener-
ate individual bubble breathing time series for m(t) and xL(t),
as well as construct the distribution Peq, one may employ the
Gillespie algorithm.38, 39

Following the experimental setup in Ref. 33, one may
study the dynamics of a tagged bp located at x = xT. In the typ-
ical experimental scenario fluorescence occurs if the bps in a
δ-neighborhood of the fluorophore position xT are open. Mea-
sured fluorescence time series thus correspond to the stochas-
tic variable I(t), with the properties I(t) = 1 if at least all bps
in (xT − δ, xT + δ) are open, and I(t) = 0 otherwise.34 In what
follows we probe whether a single bp is open or closed, i.e.,
we choose δ = 0.

III. STOCHASTIC OPTIMIZATION

Given the probability distribution Peq(m, xL), constructed
from an experimental or simulations time series m(t), xL(t),
for a bubble in the DNA construct under consideration: can
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we reliably extract the stability parameters? Here we show
that stochastic optimization is the method of choice.

Finding system parameters in a complex landscape is a
generic task across disciplines.40–46 Typically, a given prob-
lem is cast in such a manner that the seeked-for optimum
corresponds to an extremum of a functional in the complex
search space. For instance, to obtain the global minimum in
a rugged potential energy surface, one starts from any arbi-
trary point on this landscape and then moves on in the search
space, following certain rules, such as accepting a move if the
gradient norm for the new position decreases. This process
converges to a point for which the gradient norm is zero. To
verify whether this point is a minimum, one needs to check if
the eigenvalues of the Hessian matrix at that point are all posi-
tive. A completely deterministic optimization procedure such
as this minimization of the gradient norm, however, will gen-
erally fail to determine the global minimum if the search space
features multiple minima. Once a local minimum is found,
the deterministic search method will simply terminate. Such
a misguidance is avoided by true global optimizers, whose
search is not solely driven by a gradient. In particular, stochas-
tic optimization techniques turn out to be very successful.
Originally proposed by Kirkpatrick and co-workers to solve
the traveling salesman problem,47, 48 SA represents such a true
global optimizer, and has been applied to a broad range of
problems across disciplines, see, for instance, Refs. 49–57. In
SA, the search space is initially sampled at a high temperature
(Tat). The associated thermal fluctuations at a suitable value
of Tat will lift the optimizer out of local minima such that
the search may continue towards increasingly deeper minima.
Once the temperature becomes sufficiently small and/or the
search is carried out over a sufficient time span, the entire
search space is probed. Due to this ergodic property the global
minimum is indeed found unequivocally.48

Typically, an SA analysis is started at a sufficiently high
temperature. This makes nearly all moves acceptable, as the
criterion for accepting or rejecting a move is determined by
the Metropolis criterion. In our case, the associated cost func-
tion, which is being minimized, is the sum of the squares of
the difference of the occupation probabilities at the various
positions,

costi =
M∑
i=1

(Peq(xi) − PTat (xi))
2, (7)

where PTat (x) denotes the distribution at position x found in
the current SA step, when the simulation temperature is Tat.
If, on going from one SA step (i) to the next (i + 1) the mag-
nitude of the cost function decreases, we at once accept that
move. If it increases, we do not discard the move rightout.
Instead, we subject it to the Metropolis test:58 if the quantity
� = costi − costi − 1 has a positive value, the probability for
accepting the move is determined by the function

F = exp

(
− �

Tat

)
. (8)

For positive �, F is always between 0 and 1. For each evalua-
tion of F, we invoke a random number rand between 0 and 1.
If F > rand, we accept the move. If not, the move is rejected.

TABLE I. Magnitude of optimization parameters used in SA.

Parameter Magnitude

Annealing schedule 10%
Initial simulation temperature 1000
Magnitude of change δ 0.01

Thus, at very high Tat, F will be close to 1 and most moves
will be accepted, such that a greater region of the search space
will be sampled. As the simulation proceeds, Tat is decreased
by the annealing schedule. Once the correct path towards the
global minimum is followed, we need not search the entire
space and concentrate on a small region, which will guide us
specifically to the global minimum. That is, as Tat is lowered,
a decreasing number of moves pass the Metropolis test. Ul-
timately, in our problem we recover the stability parameters
from the SA analysis.

In SA, the crucial factor which determines the success
of optimization is the annealing schedule, which is basically
the rate at which the simulation temperature is decreased in
successive annealing steps. In the present study, we have kept
the initial temperature at 1000. The rate of cooling was kept
at 10% of the value of the present step. We have also en-
sured that after every 30 SA steps, the system is re-heated
to the initial starting value, i.e., the simulation temperature is
forcibly increased to a higher value. This is done to remove
any possibility of being trapped in a local minimum (coming
out of which will be difficult if the simulation temperature is
low). In successive SA steps, along with the temperature, the
individual stability parameters are changed by the following
strategy. If u is a parameter chosen for change in SA, it is up-
dated by the rule: u

′ = u + u × (−1)n × δ × rn, where n is a
random integer, δ is the amplitude of allowed change (kept
at 0.01), and rn is a random number between 0 and 1. The

TABLE II. Comparison of experimental (Ref. 14) and simulated free en-
ergy data. Each simulation data is a mean of 1000 different SA outputs. The
rightmost column shows the presence (

√
) or absence (×) of particular free

energies in sequence (1). Units of free energies (εst and εhb) reported here
are kcal/mol. The last two rows of the table gives a comparison of the ring
factor ξ and critical exponent c.

Experimental SA results

εst (AT-AT) − 1.729409 − 1.767474 ×
εst (TA-TA) − 0.579800 − 0.588968

√
εst (AA-TT) − 1.499484 − 1.510239

√
εst (GA-TC) − 1.819371 − 1.798201 ×
εst (CA-TG) − 0.939677 − 0.922743

√
εst (AG-CT) − 1.455363 − 1.462615

√
εst (AC-GT) − 2.199241 − 2.175124

√
εst (GG-CC) − 1.829370 − 1.801741

√
εst (CG-CG) − 1.299554 − 1.318516

√
εst (GC-GC) − 2.559130 − 2.549840

√
εhb (AT) 0.649775 0.651781

√
εhb (GC) 0.129955 0.113848

√

ξ 0.001 0.001034062
c 1.76 1.758298
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FIG. 1. Theoretical probability distribution for finding a tagged bp at po-
sition xT open (solid line), compared with the result from the converged
SA scheme (blue open squares). The underlying DNA sequence is given
in Eq. (1).

new u′ (changed stability parameter) is used to generate the
updated distribution profile. The magnitudes of the different
optimization parameters are collected in Table I.

IV. RESULTS AND DISCUSSION

In a first step, the equilibrium distribution for a tagged
bp at location xT in the DNA sequence (1) was determined
from the theoretical stability parameters from Ref. 14. SA was
then employed for successive convergence of PTat to this the-
oretical distribution through variation of the 12 independent
free energy parameters (compare Table II), by minimizing the
cost function. The SA analysis was terminated once the value
of the cost function becomes smaller than 10−4. Figure 1
shows the quite accurate convergence of the SA scheme in
terms of the equilibrium distribution.

To visualize the progress of the SA procedure, we dis-
play in Fig. 2 the gradual approximation of the twelve DNA
stability parameters of hydrogen bonding and base stacking
(compare also Table II) for 8000 SA steps, for three separate
SA runs starting with same initial simulation temperature. For
each simulation the initial free energy values are chosen via
random perturbation of the experimental u values,14 following
our SA strategy. In all cases the convergence is quite accurate.
Two parameters do not change during the SA scheme, these
correspond to the two pairs of bps, that do not occur in the
employed sequence (1). To be sure that the search proceeds
without being held up in local basins, the annealing temper-
ature was raised after every 30 SA steps and then allowed
to follow the usual annealing schedule. The sudden jumps in
the profile are a result of this effort. At an abruptly elevated
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FIG. 2. Evolution of the free energy parameters of hydrogen bonding and base stacking as function of SA steps (full lines) from three separate SA runs. The
black dashed horizontal lines represent the expected experimental values taken from Ref. 14, towards which convergence is expected to occur. Note the different
scales on the vertical axes. The values for two pairs of bps, AT-AT and GA-TC, do not change in the SA procedure; these two pairs do not occur in the underlying
sequence (1) and are thus not subject to the SA optimization criteria, i.e., they do not converge.
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FIG. 3. Evolution of ring factor ξ and critical exponent c from three different SA runs. The black dashed horizontal lines represent the expected literature value
towards which convergence is expected to occur.
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FIG. 4. Plot of PTat (xT ) against xT at various SA steps. In each panel the red solid lines represents the original noisy data, and the blue dashed line is the output
of SA runs. The blue open squares stand for the theoretical distribution Peq(xT). The plot for 1500 SA steps already matches quite well the expected distribution
Peq(xT).
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temperature, newer moves start to get accepted and hence the
zigzag pattern.

In terms of the free energy values for hydrogen bonding
and base stacking, the average results from the 1000 SA runs
are shown in Table II. We also indicate which combinations
of nearest neighbor pairs actually occur in the underlying se-
quence (1). The convergence of the SA algorithm in all cases
is quite remarkable. In addition to the free energy parameter
we also optimized the loop exponent c and the ring factor ξ .
The resultant simulation profiles (Fig. 3) show a good conver-
gence towards theoretical values.

In typical experimental data the distribution of the bub-
ble opening probability will be noisy, due to finite sampling
and measurement errors. To check if our SA algorithm is ro-
bust against such noise we randomly perturbed the theoreti-
cally expected equilibrium distribution by a gaussian random
processes with amplitude and width being the Peq and 10%
of Peq, respectively. Figure 4 shows how this noisy data was
quickly smoothened out to reach the theoretical distribution
profile. We show snapshots of the process for different SA
steps. In each figure, the original noisy data, the equilibrium
distribution profile and the evolving profile at the particular
SA step are shown. At 1500 SA steps, the noisy data com-
pletely matches with the equilibrium distribution.

V. CONCLUSION

Generalising our previous approach,59 we here demon-
strate the outstanding ability of stochastic optimization to
determine the stability parameters of double-stranded DNA
from time series of the breathing dynamics of individual bps.
Even for a short DNA sequence such as L33B9 [Eq. (1)]
with only 31 internal bps, the convergence of the chosen SA
scheme to all present base stacking and hydrogen bonding
free energies is recovered with appreciable accuracy. Even
when the input data are perturbed randomly, mimicking noisy
experimental or simulations data, the stochastic optimization
technique works successfully.

Optimization based on the bubble distribution Peq(x) is
not the only way to extract the DNA stability parameters. For
instance, one might use average values for the zipping and un-
zipping rates of individual bps and relate their ratio to the un-
derlying free energy difference. Alternatively, once from high
throughput fluorescence correlation experiments an accurate
result for the fluorescence autocorrelation function becomes
available, one might use this function as basis for the opti-
mization. In principle, one might also modify our approach
to analyse data from DNA unzipping. This, however, requires
detailed knowledge on the change of the stacking and hydro-
gen free energies upon stretching of the DNA strands.

In general, it may be worthwhile to also explore
the possibility to apply other techniques such as the
genetic algorithm,60 parallel tempering,61 or ant colony
optimization,62, 63 and to compare these methods.
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