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Using Langevin dynamics simulations in three dimensions, we investigate the dynamics of polymer
translocation into the regions between two parallel plane walls with separation R under a driving
force F. Compared with an unconfined environment, the translocation dynamics is greatly changed
due to the crowding effect of the partially translocated monomers. The translocation time � initially
decreases rapidly with increasing R and then saturates for larger R, and the confined environment
leads to a nonuniversal dependence of � on F. © 2010 American Institute of Physics.
�doi:10.1063/1.3466922�

I. INTRODUCTION

The transport of biopolymers through a nanopore has
attracted broad interest because it is a challenging problem in
polymer physics and is also related to many biological pro-
cesses, such as DNA and RNA translocation across nuclear
pores, protein transport through membrane channels, and vi-
rus injection.1 Moreover, the translocation process has been
argued to have potentially revolutionary technological appli-
cations, including rapid DNA sequencing, gene therapy and
controlled drug delivery.2–8 From both the basic physics as
well as a technology design perspective, an important mea-
sure is the scaling of the average translocation time � with
the polymer length N, ��N�, and the value of the corre-
sponding scaling exponent �.

For unbiased translocation, standard equilibrium Kram-
ers analysis9 of diffusion through an entropic barrier yields
��N2.10,11 However, as noted by Chuang et al.,12 the qua-
dratic scaling behavior for unbiased translocation cannot be
correct for a self-avoiding polymer. The reason is that the
translocation time would be shorter than the Rouse equilibra-
tion time of a self-avoiding polymer, �R�N1+2�, where the
Flory exponent �=0.588 in three dimensions �3D� and �2D

=0.75 in two dimensions �2D�.13–15 This observation renders
the concept of equilibrium entropy and the ensuing entropic
barrier inappropriate for polymer translocation dynamics.
Chuang et al.12 performed numerical simulations with Rouse
dynamics for a 2D lattice model to study the translocation
for both phantom and self-avoiding polymers. They decou-
pled the translocation dynamics from the diffusion dynamics
outside the pore by imposing the restriction that the first
monomer, which is initially placed in the pore, is never al-
lowed to escape back out of the pore. Their results show that
for large N, �=1+2�, which scales in the same manner as
the equilibration time but with a considerably larger prefac-
tor. This finding implies the anomalous nature of the trans-
location dynamics.16 The exponent �=1+2� was corrobo-

rated by extensive numerical simulations based on the
fluctuating bond �FB�17 and Langevin dynamics �LD� models
with the bead-spring approach.18,19 Some recent studies20,21

suggest that the translocation process may be even slower
than that dictated by the relaxation time. The accuracy of
these claims is questioned in further work.22

The passage of a flexible chain through a nanopore in-
volves a large entropic barrier, thus polymer translocation
needs driving forces, which can be provided by an external
applied electric field in the pore,18,23–34 a pulling force ex-
erted on the end of a polymer,23,35,36 binding particles
�chaperones�,37,38 or geometrical confinement of the
polymer.39–44

Most of the studies focus on driven translocation under
an external applied electric field in the pore. Standard equi-
librium Kramers analysis9 of diffusion through an entropic
barrier yields ��N �assuming friction to be independent of
N�.10,11 Kantor and Kardar23 demonstrated that the assump-
tion of equilibrium in polymer dynamics breaks down more
easily and provided a lower bound �=1+� for the translo-
cation time by comparison to the unimpeded motion of the
polymer. Using FB24 and LD18,25 models, a crossover from
�=2� for relatively short polymers to �=1+� for longer
chains was found in 2D. Recently, however, alternate scaling
scenarios have been presented. For driven translocation,
Dubbeldam et al.26 show �=1.55 in 2D and �=1.50 in 3D,
while Panja et al.27 find �=1.43 in 2D and �=1.37 in 3D.
Obviously, these two views disagree with each other.28 Most
recently, we find that for faster translocation processes �
=1.37 in 3D,22,30 while it crosses over to �=1+� for slower
translocation, corresponding to weak driving forces and/or
high friction.30

However, the above physical pictures are based on trans-
location into an unconfined trans side. Very little attention is
paid to the dynamics of translocation into confined environ-
ments. It is known that the crowding due to macromolecular
aggregates and other inclusions in the cellular cytoplasm can
be as high as 50% by volume and has considerable influence
on reaction rates, protein folding rates, and equilibria in
vivo.45 Similarly, polymer translocation into a confined envi-
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ronment is subject to a large entropic penalty which should
dramatically affect the translocation dynamics. In addition,
studies on translocation into confined geometries will shed
light on the dynamics of DNA packaging.46

We here investigate the dynamics of polymer transloca-
tion into the region between two parallel plane walls �3D�
using Langevin dynamics simulations. The paper is orga-
nized as follows. In Sec. II, we briefly describe our model
and the simulation technique. In Sec. III, we present our
results. Finally, the conclusions and discussion are presented
in Sec. IV.

II. MODEL AND METHODS

In our numerical simulations, the polymer chains are
modeled as bead-spring chains of Lennard-Jones �LJ� par-
ticles with the finite extension nonlinear elastic �FENE� po-
tential. Excluded volume interaction between monomers is
modeled by a short range repulsive LJ potential: ULJ�r�
=4���� /r�12− �� /r�6�+� for r�21/6� and 0 for r�21/6�.
Here, � is the diameter of a monomer and � is the depth of
the potential. The connectivity between neighboring mono-
mers is modeled as a FENE spring with UFENE�r�
=−�1 /2�kR0

2 ln�1−r2 /R0
2�, where r is the distance between

consecutive monomers, k is the spring constant, and R0 is the
maximally allowed separation between connected mono-
mers.

We consider a geometry as shown in Fig. 1, where two
walls with separation R are formed by stationary particles
within a distance � from each other. One wall has a pore of
diameter 2�. Between all monomer-wall particle pairs, there
exists the same short range repulsive LJ interaction as de-
scribed above. In the Langevin dynamics simulation, each
monomer is subjected to conservative, frictional, and random
forces, respectively, with47 mr̈i=−��ULJ+UFENE�+Fext−	vi

+Fi
R, where m is the monomer’s mass, 	 is the friction coef-

ficient, vi is the monomer’s velocity, and Fi
R is the random

force which satisfies the fluctuation-dissipation theorem. The
external force is expressed as Fext=Fx̂, where F is the exter-

nal force strength exerted exclusively on the monomers in
the pore, and x̂ is a unit vector in the direction along the pore
axis. We should mention that in our model the polymer-pore
interactions are neglected, which play a very important role
in translocation dynamics.48

In the present work, we use the LJ parameters � and �
and the monomer mass m to fix the energy, length, and mass
scales, respectively. The time scale is then given by tLJ

= �m�2 /��1/2. The dimensionless parameters in our simula-
tions are R0=2, k=7, 	=0.7, and kBT=1.2 unless otherwise
stated. The driving force F is set between 0.5 and 15, which
corresponds to the range of voltages used in the
experiments.2,3 The Langevin equation is integrated in time
by a method described by Ermak and Buckholz49 in 3D.

Initially, the first monomer of the chain is placed in the
entrance of the pore, while the remaining monomers are un-
dergoing thermal collisions described by the Langevin ther-
mostat to obtain an equilibrium configuration. Typically, we
average our data over 1000 independent runs.

III. RESULTS AND DISCUSSION

According to the blob picture,13 a chain confined be-
tween two parallel plates with separation �
R
Rg will
form a 2D self-avoiding walk consisting of nb blobs of size
R. Each blob contains g= �R /��1/� monomers and the number
of blobs is nb=N /g=N�� /R�1/�. Thus, the blob picture pre-
dicts the longitudinal size of the polymer to be13,14 R�

�nb
�2DR�N�2D��� /R��2D/�−1�N3/4��� /R�0.28, where the

Flory exponent �2D=0.75 in 2D and �=0.588 in 3D. Figure 2
shows the radius of gyration as a function of the chain length
with wall separation R=4.5. We confirm Rg,y =Rg,z=R�

�N�2D �N3/4. Rg,x almost does not change with N, but Rg

also scales with N in the same way as R�. The R dependence
of R� is shown in Fig. 3, where Rg,y =Rg,z=R� ��1 /R��2D/�−1

��1 /R�0.28. For 10.0�R�2.5, Rg,x shows linear behavior
with R, but Rg�R−0.28.

The longitudinal relaxation time �� is defined as the time
for a polymer moving a distance of order of its longitudinal

size, R�. Thus, �� scales as �� ��R�
2 / D̃��N1+2�2DR2�1−�2D/��

�N2.50R−0.55, where � is the segment length and D̃�1 /N is

FIG. 1. Schematic representation of polymer translocation into a confined
environment under an external driving force F in the pore. The simulations
are carried out in a planar confinement �3D�, where two plates are separated
by a distance R. One plate has a pore of length L=� and diameter W=2�.
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FIG. 2. The radius of gyration at equilibrium state as a function of the chain
length confined between two walls with separation R=3.5. In the figure,
Rg,y =Rg,z=R� is the direction parallel to the wall, while Rg,x=R� is the
direction perpendicular to the wall.
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the diffusion constant. The free energy cost of the confined
chain in units of kBT is simply the number of the blobs,
F=N�� /R�1/�.

For polymer translocation into confined environments, a
driving force is necessary to overcome the entropic repulsion
f�R� exerted by already translocated monomers. Due to the
highly nonequilibrium property of the translocation process,
it is difficult to estimate the resisting force f�R�. For polymer
translocation into the region between two parallel plane
walls with separation R, we assume that the resisting force
f�R� scales as f�R�=CR� for slow translocation processes,
with C and � being the prefactor and the scaling exponent,
respectively. Then, under an external driving force F in the
pore the translocation time � can be written as ���N� /F
− f�R����N� /F�1−CR� /F�� with � being the scaling expo-
nent of � with chain length N. Due to ���N� /F� for the
unconfined system with R� for slow translocation pro-
cesses, we have 1− �� /���CR� /F. Based on this relation-
ship, we can examine the dependence of � on R.

A. Translocation times as a function of the chain
length

Figure 4 shows the translocation time � as a function of
the chain length N. For a strong driving force F=5, we find

��N� with �=1.39�0.01 and 1.37�0.01 for R=3.5 and
1.5, respectively, which are quite close to that for an uncon-
fined system �R=�.22,31,32,44 For the case with very strong
driving force F=15 and R=3.5, the scaling exponent also
does not change, �=1.37�0.02. We have checked the trans-
location velocity with respect to the last monomer and found
v�N� with ��−0.8, which is also the same as that for an
unconfined system.31,44 Under a planar confinement, during
the translocation process the translocated monomers cannot
have time to diffuse away from the pore corresponding to a
pronounced nonequilibrium situation. After the translocation
the distance the last monomer has moved is always the ra-
dius of the gyration of a chain Rg�N�� for its unconfined
state. Thus, the translocation time can be estimated by �
��Rg /v�, which is confirmed by our numerical results.

The above scaling behavior can be understood by mea-
suring the radius of gyration of the chain before translocation
and at the moment just after the translocation, as shown in
Fig. 5. For the chain at the moment just after the transloca-
tion, Rg�N0.55 and Rg� �N0.60, significantly lower than their
equilibrium values and different from the equilibrium scaling
of N3/4 as shown in Fig. 2. These results indicate a pro-
nouncedly nonequilibrium compression of the chain imme-
diately after translocation, as shown in Fig. 6.

With decreasing the driving force to F=1.0 and 0.8, the
scaling exponent remains the same only for longer chains.
For shorter chains N�32, the translocation is much faster
due to considerably lower confinement.

Decreasing the driving force further to F=0.5, we find
the translocation dynamics crosses over to another regime
with �=2.44�0.03 at least for N�64. For longer chains,
the computation is very expensive due to lower translocation
probability and a longer translocation time. This result is
completely different compared with the case without the pla-
nar confinement �R=�, where we have found ��N1+� for
F=0.5 in our previous studies.30 Without the planar confine-
ment, the previous prediction by Chuang et al.12 shows that
the translocation time scales in the same way as the relax-
ation time of the chain for unbiased translocation. Here, our
exponent �=2.44�0.03 for F=0.5 is very close to 2.50,
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FIG. 3. The radius of gyration at equilibrium state under the confinementi
between two walls with separation R for N=128. In the figure, Rg,y =Rg,z

=R� is in the direction parallel to the wall, while Rg,x=R� is in the direction
perpendicular to the wall.
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FIG. 4. Translocation time � as a function of the chain length N for different
R and F in 3D.
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FIG. 5. The radius of gyration of the chain before translocation �t=0� and at
the moment just after the translocation �t=�� for F=15 and R=3.5. Here, the
x direction is perpendicular to the wall, while y and z are along the wall. The
dashed lines are equilibrium values of Rg, R�, and Rx for chains confined
between two walls, as shown in Fig. 2.
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which demonstrates that � scales in the same way as the 2D
longitudinal relaxation time for the weak driving force. The
reason is that the weak driving force F is almost balanced by
the resisting force due to the confinement entropy and the net
driving force is close to zero. Compared with strong driving
cases, the chain conformation is not so compressed, as
shown in Fig. 6. Here, we also should point out that the
exponent �=2.44 is a little smaller than 2.50 due to the fact
that during the translocation process the untranslocated
monomers are not confined. To obtain the exponent 2.5, one
should initially squeeze the whole chain into the confined
spaces between two plates and then record the time during
the chain moving a distance of order of R�.

B. Translocation times as a function of R

Figure 7 shows the R dependence of the translocation
time for F=5.0 and N=128. Initially, � decreases rapidly
with increasing R and then almost saturates for larger R.
Quantitatively, we check 1− �� /�� as a function of R, see the
insert of Fig. 7. For R�3, we find �=−1.61�0.06. It is
close to the exponent −1 /�=−1.70, which is the theoretical
value for equilibrium translocation processes with f�R�
�R−1/�. This result also shows that for R�3, the chains
really feel strong confinement and the translocation is slow
enough for the chain to be close to local equilibrium. Figure
8 shows the radius of gyration of the chain as a function of R
at the moment after the translocation. We find Rg,y =Rg,z

�R−0.20 for R�9, which is slightly lower than the equilib-
rium exponent �0.28. In addition Rg,x�R1.43 for R�3,
somewhat lower than the equilibrium exponent 1 /�=1.70.
For larger R, such as R=19, Rg,x=Rg,y =Rg,z.

C. Translocation times as a function of the driving
force

According to the Langevin equation, when the inertia
term can be neglected, the balance of the frictional force and
the driving force, 	v=F, gives ��	 /F for the case without
planar confinements. The Langevin dynamics simulation
results18,30 confirm ��1 /F only for slow translocation with
lower values of F /	. For fast translocation with higher val-
ues of F /	, we have found ��F−0.8 due to the highly de-
formed chain conformation on the trans side, reflecting a
pronounced nonequilibrium situation.30 Figure 9 shows the
plot of � as function of F for translocation into a region of a
planar confinement. Under strong driving forces, such as
F�5, compared with the case without confinement
��F−0.80�0.02 is still observed. Under a planar confinement,
it is more difficult for translocated monomers to diffuse away
from the pore, which slows down the translocation. As a
result, the exponent must be lower than �1. Under weak
driving forces F�2.5, we find ��F−1.25�0.03. For transloca-
tion into two parallel plates with separation R, the effective
driving force is F�1−Cf�R� /F�. For weaker driving forces,
the resisting force f�R� becomes more and more important
because �1−Cf�R� /F� is closer to zero. Therefore, with de-
creasing F the translocation is greatly slowed down, resulting
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FIG. 6. The chain conformation projected onto the yz plane for N=128
under strong and weak driving forces, respectively.
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FIG. 7. Translocation time � as a function of R for chain length N=128
under F=5 in 3D.
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FIG. 8. The radius of gyration of the chain before translocation �t=0� and at
the moment just after the translocation �t=�� for N=128, F=5, and different
R. Here, the x direction is perpendicular to the wall, and y and z are along
the wall. The dashed lines are equilibrium values of Rg, R�, and Rx for chains
confined between two walls, as shown in Fig. 3.
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in stronger dependence of � on F. In our previous results,48

we find that the polymer-pore interactions can also lead to
this behavior.

D. Waiting time distribution

The time of an individual segment passing through the
pore during translocation is an important quantity consider-
ably affected by the translocation dynamics. The nonequilib-
rium nature of translocation has a significant effect on it. We
have numerically calculated the waiting times for all mono-
mers in a chain of length N. We define the waiting time of
monomer s as the average time between the events that
monomer s and monomer s+1 exit the pore. Figure 10�a�
shows the waiting time distributions for different chain
lengths for R=3.5 and F=5. One obvious feature is that be-
fore reaching their maxima the waiting times almost follow
the same pathway, which is dominated by the strong driving
force. In addition, the maxima occur at smax�N /2, such as
smax�0.65N and 0.67N for N=96 and 128, respectively. Fig-
ure 10�b� shows the waiting time distributions for N=128
and F=5 for different R. As expected, with decreasing R, the
waiting times increase. Figure 11 shows the waiting time

distributions for N=64 and R=3.5 under the weak driving
force F=0.5. After half of the polymer has been translocated,
it still takes a considerably long time to exit the pore for the
remaining monomers, compared with strong driving cases
shown in Fig. 10. This implies different translocation dynam-
ics in the two regimes.

IV. CONCLUSIONS

Using Langevin dynamics simulations, we investigate
the dynamics of polymer translocation into the region be-
tween two parallel plane walls with separation R. Compared
with the chain passage into an unconfined environment, the
translocation dynamics is greatly changed. In particular, the
translocation time � initially decreases rapidly with R and
then saturates for larger R in 3D, and the confined environ-
ment leads to nonuniversal dependence of � as a function of
the driving force. For polymer translocation into 3D confine-
ments with R=3.5, we find that under the weak driving force
F=0.5 the translocation time � scales with chain length N as
��N2.44, which is in the same manner as the relaxation time
of a chain under a planar confinement, while it crosses over
to N as ��N1.39 for fast translocation. These behaviors are
interpreted by the waiting time of individual monomers.

By systematically treating the entropic penalty due to
randomly distributed spherical obstacles �crowding�,
Gopinathan and Kim43 demonstrate that the translocation dy-
namics are significantly altered, resulting in novel scaling
behaviors of the translocation time. Depending on the extent
of crowding, transmembrane chemical potential asymmetry,
and polymer length, there are new and qualitatively different
translocation regimes. Therefore, for this kind of crowding
environment, translocation dynamics is also expected to be
changed under an external applied electric field in the pore.
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