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Abstract
While the Watson–Crick double-strand is the thermodynamically stable state of DNA in a wide
range of temperature and salt conditions, even at physiological conditions local denaturation
bubbles may open up spontaneously due to thermal activation. By raising the ambient
temperature, titration, or by external forces in single molecule setups bubbles proliferate until
full denaturation of the DNA occurs. Based on the Poland–Scheraga model we investigate both
the equilibrium transition of DNA denaturation and the dynamics of the denaturation bubbles
with respect to recent single DNA chain experiments for situations below, at, and above the
denaturation transition. We also propose a new single molecule setup based on DNA constructs
with two bubble zones to measure the bubble coalescence and extract the physical parameters
relevant to DNA breathing. Finally we consider the interplay between denaturation bubbles and
selectively single-stranded DNA binding proteins.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Deoxyribonucleic acid (DNA) is the molecule of life, encoding
the complete genetic information of an entire organism. This
information is kept in terms of the four letter alphabet
comprised by adenine, guanine, cytosine, and thymine. The
genetic code is stabilized by base pairing through hydrogen
bonding that creates two complementary strands subject to the
key-lock principle. This way it is made sure that exclusively
AT and GC nucleotides pair. Within this ladder structure
(figure 1) the bases and thus the genetic code are protected
against unwanted action of chemicals and proteins. The three-
dimensional structure of DNA is the famed Watson–Crick
double-helix, the equilibrium structure of DNA within a broad
range of salt and temperature conditions. Sufficiently close to
physiological conditions the typical conformation of double-

stranded DNA is the B form with a pitch of 3.4 Å between
successive base pairs and approximately 10.5 base pairs needed
to form one complete turn of the helix. This thermodynamic
stability, apart from hydrogen bonding between paired bases,
is mainly effected by base stacking between nearest neighbour
pairs of base pairs [1–6].

By temperature increase or variation of the pH (titration
with acid or alkali) the double-stranded DNA progressively
denatures. The comparatively stiff DNA double-strand
(persistence length about 50 nm) is thereby interrupted by
emerging zones of the flexible single-strand (persistence length
about 1 to a few nm). These so-called DNA bubbles then grow
and merge until the double-strand is fully molten (figure 2).
This is the helix–coil transition. The melting temperature Tm

is experimentally defined as the temperature at which half
of the DNA molecule has undergone denaturation [3, 7, 8].
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Figure 1. Ladder structure of DNA showing the Watson–Crick
bonding of the bases A, T, G, and C which are suspended by a
sugar-phosphate backbone. Each phosphate carries a negative charge.
The longitudinal distance between adjacent base pairs is 3.43 Å
while approximately 10.5 base pairs are needed to form a complete
helical turn. Under normal salt conditions the persistence length of
double-stranded DNA is approximately 50 nm, the hard core
diameter is approximately 2 nm. Locally (i.e., for lengths shorter
than the persistence length), DNA appears thin and stiff while on
longer scales it can be perceived as a flexible polymer. The length of
a single DNA molecule varies from several μm of viral DNA over
several mm in bacteria up to many cm in eukaryotic cells.

Typically, the denaturation starts in regions rich in the weaker
AT base pairs, and subsequently moves to zones of increasing
GC content. The occurrence of zones of different stability
within the genome was shown to be relevant when separating
coding from non-coding regions [9, 10] and is believed to be
related to DNA function, for instance the occurrence of weak
regions (e.g. the TATA motif) at transcription initiation points.

Albeit rare, already at room temperature thermal
fluctuations cause opening events of small intermittent
denaturation bubbles [11]. The size of these bubbles fluctuates
by step-wise zipping and unzipping of the base pairs at the
zipper forks where the bubble connects to the intact DNA
double-strand (bubble breathing). Initiation of a bubble in
a stretch of the double-strand requires the crossing of a
free energy barrier Fs of approximately 8 kcal mol−1 (some
10 kBT at physiological temperature) corresponding to a
Boltzmann factor σ0 = exp(−Fs/kBT ) ∼ 10−5···−3. σ0 is
often referred to as the cooperativity factor. Once formed
below the melting temperature Tm a bubble will eventually
zip close. Above Tm, a bubble will preferentially stay open
and, if unconstrained, grow in size until it merges with other
denaturation bubbles, eventually leading to full denaturation.
Constraints against such full unzipping could, for instance, be
the build-up of twist in smaller DNA-rings [12], the highly
positively supercoiled state (linking excess) in the DNA of
extremophile bacteria existing at high temperatures in deep-

Figure 2. Thermal denaturation of double-stranded DNA: fraction θh

of double-helical domains within the DNA as a function of
temperature. Schematic representation of θh(T ), showing the
increased formation of bubbles and unzipping from the ends, until
full denaturation has been reached. Note that bacterial DNA is
predominantly circular so that no end effects occur. Also viral DNA
circularizes once injected into a host cell.

sea vents [13], or the chemical connection of the two strands
by short bulge-loops, compare [14]. In heteropolymer DNA
mechanical stretching experiments show that even at the end
of the overstretching transition and beyond, the two strands do
not separate completely [15–17] but are still held together by
isolated GC-rich regions along the chain with average distance
of a few hundreds of base pairs [16]. These GC-rich regions
break only at a much larger force than the melting force Fm of
the overstretching plateau.

Biologically the physical conformations of DNA molecules
are recognized to be of inalienable relevance for its function,
see, for instance, the review [18] and references therein. In par-
ticular, the existence of intermittent though infrequent bubble
domains is important as the opening up of the Watson–Crick
base pairs by breaking of the hydrogen bonds between comple-
mentary bases disrupts the helical stack. The associated flip-
ping out of the ordered stack of the unpaired bases allows the
binding of specific chemicals or proteins, that otherwise would
not be able to access the reactive sites of the bases [3, 6, 7, 11].
Indeed there exists a competition of timescales between the
survival of DNA bubbles and the binding kinetics of selec-
tively single-stranded DNA binding proteins [19–21]. An im-
portant aspect to the biological function of DNA is believed to
be that DNA breathing assists transcription initiation [22–25],
see below. Altogether it appears fair to say that the quantitative
knowledge of the energetics of the denaturation as well as the
dynamics of bubbles is imperative to a better understanding of
genomic biochemical processes. Additionally DNA denatura-
tion is a fine example of a well defined and chemically stable
system whose physical properties can be probed in detail on the
level of single molecules. DNA is therefore studied from both
viewpoints: biological physics with respect to DNA’s role in
biochemical processes and statistical physics for which DNA
provides an ideal system to study quantitatively polymer mod-
els.

In what follows we will base our analysis on the Poland–
Scheraga free energy model treating the DNA molecule as

2



J. Phys.: Condens. Matter 21 (2009) 034111 R Metzler et al

an Ising-type system of a sequence of ‘spins’ with open
or closed states, plus a non-local term that takes care of
polymeric effects within denaturation bubbles made up of
highly flexible DNA single-strand. A prominent alternative
description of DNA denaturation and breathing is the Peyrard
Bishop Dauxois (PBD) model [26, 27] based on the set of
Langevin equations [28]

m
d2yn

dt2
= −dV (yn)

dyn
− dW (yn+1, yn)

dyn
− dW (yn, yn−1)

dyn

− mγ
dyn

dt
+ ξn(t). (1)

Here, V (yn) = Dn[exp(−an yn) − 1]2 is a Morse potential
for the hydrogen bonding, Dn and an assuming two different
values for AT and GC bps; W (y, y ′) = k

2 [1 + ρ exp{−β(y +
y ′)}](y− y ′)2 is a nonlinear potential to include bp–bp stacking
interactions between adjacent bps y and y ′. The parameters
k, ρ, β , γ , and m are invariants of the sequence. The
equation is driven by the thermal noise ξn(t). Usually, the
stochastic equations (1) are integrated numerically [28]. There
is also a helicoidal version of the Peyrard–Bishop model to
study the torque-induced denaturation of DNA [29, 30]. Due
to its formulation in terms of a set of Langevin equations,
the DPB model is very appealing, and it is a useful model
to study some generic features of DNA denaturation. Its
slight disadvantage is that somewhat arbitrary values for the
model parameters need to be chosen while (apart from the
characteristic timescale) all parameters in the Poland–Scheraga
model are available from a large body of experiments.

We first address the denaturation transition at equilibrium
both in the absence and presence of an external stretching
force. Subsequently we will present two model approaches
to the breathing dynamics of a single denaturation bubble.
In section 4 we discuss the coalescence dynamics of two
DNA bubbles. Finally, in section 5 we address the coupling
of the breathing dynamics of a DNA bubble with the
binding/unbinding of proteins that specifically bind to single-
stranded DNA.

2. DNA denaturation in presence of a modest
stretching force

A convenient method to treat the denaturation transition is
to consider the chain in the grand canonical ensemble in
which the total number N of bps and the end-to-end vector
L fluctuate. The partition function in d = 3 of the DNA chain
under external forcing with force F in x direction becomes [31]

Z(z, F) =
∞∑

N=1

∫
d3 LZcan(N,L)zN exp(βF Lx) (2)

with β = 1/(kBT ). Zcan(N,L) is the canonical partition
function of a chain of N bps with fixed end-to-end vector L,
z is the fugacity, and Lx the x-component of L (figure 3).
Assuming that bound segments and bubbles are independent,
Z factories:

Z(z, F) = �e+�e

{ ∞∑

n=0

[B�]n

}
B�e = �e+ �2

e B

1 −�B
. (3)

Figure 3. Stretched DNA in the PS model with bound segments B
and denatured loops �. The DNA is attached between O and L and
subject to the stretching force F in the x-direction. Perfect matching
in heterogeneous DNA requires both arches of a loop to have equal
length 	.

The alternating sequence of bound segments and bubbles with
weights B and � in equation (3) is complemented by the
weight �e of an open end unit at both ends of the chain. We
assume that only one strand of the end unit is bound to the, say,
magnetic bead, while the other strand is moving freely. Thus
the first term on the right hand side of equation (3) denotes
the two unbound single strands of completely denatured DNA;
here we assume that one of the two strands is still attached
between origin O and end point L, being subject to the
stretching force F .

A bound segment with k = 1, 2, . . . bps is modelled as a
rigid rod of length ak where a = 0.34 nm is the length of a
bound bp in B-DNA [32]. Here we assume a homopolymer
with binding energy E0 < 0 per base pair. However, we
assume perfect matching throughout the transition such that in
a denaturation bubble both single-stranded arches carry equal
length. This assumption is in line with the above remark that
due to stable GC-rich islands in the structure during a force-
induced denaturation the sequence of separated denaturation
bubbles and intact double-strand persists to much larger forces
than the melting force Fm of the overstretching plateau [16].
The statistical weight of a segment with fixed number k and
fixed orientation is then ωk with ω = exp(βε) and ε = −E0 >

0. Assuming that k fluctuates with fixed fugacity z, and rotates
around one end while subject to the force F (figure 3), the
statistical weight of the segment for fixed z and F becomes [31]

B(z, ω, F) = 1

2y
ln

(
1 − ωz e−y

1 − ωz ey

)
, y ≡ βFa. (4)

At F = 0, B(z, ω, 0) = ωz/(1 − ωz) as found previously for
free DNA [33].

A denatured loop is considered as a closed random walk
with 2	 monomers, corresponding to 	 broken bps. The loop
starts at O and visits the point r after 	 monomers (figure 3).
The number of configurations of such a loop becomes

�(	, r) = C0(2	)p	(r) (5)

where C0(2	) counts the configurations of a loop of length
2	 starting at O and p	(r) is the probability that the loop
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visits r after 	 monomers. For an ideal random walk in
d = 3, C0(2	) ∼ μ2		−3/2 (μ is the connectivity constant6)
and p	(r) ∼ R−3 exp[−λ(r/R)2] where λ > 0, r = |r|,
R = b	1/2 is the scaling length of the walk and b its persistence
length. The coefficient b is proportional to the persistence
length. Thus, �(	, r) ∼ s		−3 exp[−λ(r/R)2] where s = μ2.
We assume that r moves freely and is subject to the force F in
the positive x-direction. The weight of an ideal random loop
for fixed 	 and F is given by the Gaussian integral

�(	, F) =
∫

d3r �(	, r) eβF x = As		−c exp(αy2	) (6)

where A is an amplitude proportional to the cooperativity
factor σ0, c = 3/2, and α = b2/(4λa2).

Generally, the loop free energy in both presence and
absence of the external forcing is of the power-law form

� � 	−c. (7)

For free DNA it was found that the nature of the denaturation
transition is determined by the value of the critical exponent c:
for c � 1 there is no phase transition in the thermodynamic
sense; for 1 < c � 2 the transition is second order, and for c >
2 it is first order [33–35]. One finds c = 3/2 < 2 if the loops
are ideal random walks. Self-avoiding interactions within a
loop modify this value to c = 3ν = 1.76 with ν = 0.588 in
d = 3. In both cases the transition is second order. Including
self-avoiding interactions between denatured loops and the rest
of the chain was found to produce c = 2.12 > 2, driving the
transition to first order [9, 33, 36]. These results suggest that
the inclusion of self-avoiding interactions generally shifts the
loop exponent c to larger values, possibly effecting a change of
the transition from second to first order.

Using scaling arguments in the presence of self-avoiding
interactions within a loop we find a modified expression for the
statistical weight [31]

�(	, F) = As		−c y1/(2ν)−1 exp
(
αy1/ν	

)
(8)

for κ = βbF	ν → ∞ and with the new loop exponent in
d = 3,

c = 4ν − 1/2 = 1.85. (9)

Thus, in the presence of self-avoiding interactions within a
denatured loop and F > 0 the transition remains second order,
but moves closer to first order compared to free DNA (with
c = 3ν = 1.76 obtained within the same approach). In the
Gaussian limit the same result obtains as in the absence of the
force corresponding to the ideal Hookean chain behaviour of a
phantom chain.

Within this formalism it is also possible to obtain
the force–extension behaviour of the chain as well as the
temperature–force phase diagram, see figure 4 [31, 33]7. The
6 For an ideal chain embedded in d-dimensional space μ = 2d while for
a self-avoiding walk the connectivity constant becomes reduced compared to
that value. On average μ ≈ 4.68 in d = 3 [37].
7 To obtain the phase diagram shown in figure 4 we ignore the singularity
of �e in equation (3) and only consider the singularity that occurs if the
denominator 1 − �B approaches zero. The reason is that for heteropolymer
DNA even at the end of the overstretching transition and beyond the two
strands do not separate completely but are still held together by isolated, GC-
rich islands along the chain. Thus the size of the end units �e is bounded by
the first GC-rich region at either end of the DNA and the statistical weight �e

cannot diverge.

shape of the transition line fm(t) depends on A, α, and s.
Figure 4(a) shows fm(t) for A = 1, α = 1, and s = 5 for
the case that denatured loops are ideal random walks (θ = 0,
ν = 1/2). The transition line for a more realistic value
A 	 1 is also shown (here A = 0.01).8 The line fm(t)
separates a finite region of bound states from an infinite region
of denatured states. The point (t0, f = 0)with t0 = tm( f = 0)
corresponds to the traditional melting transition for free DNA
(F = 0). The line fm(t) for A = 1 contains a region in
which fm(t) decreases with t , such that increased stretching
forces f lower the melting temperature tm( f ), corresponding
to force-induced destabilization of DNA [32]. Interestingly,
for A = 0.01 the line fm(t) is not single-valued. Moreover,
fm(t) vanishes for both t → t0 (as |t − t0|1/2) and t → 0
(as α−1/2t1/2). This ‘reentrant behaviour’ [38] means that for
given 0 < f0 < fmax, where fmax is the maximum of fm(t),
the chain does not only denature at a large t+

m ( f0) but also at a
small t−

m ( f0). This behaviour can be traced back to a balance
of the terms (βFa)2 and βFa in zm(F) = exp(−αy2)/s
and equation (4), respectively. For (βFa)2 	 βFa, i.e.,
kBT 
 Fa, the melting transition at t+

m ( f0) is mainly driven
by the entropy gain on creation of fluctuating loops, similar
as for free DNA. For kBT 	 Fa the transition at t−

m ( f0)

is due to the fact that B[zm(F), ω, F] decreases with y =
βFa = f/t in the denatured state, due to the rapid decay of
zm(F) (cf equation (4))9. Figure 4(b) shows the line fm(t) for
self-avoiding loops with c = 1.85 demonstrating analogous
behaviour.

At very high forces corrections to this treatment are
expected. However the fact that already at moderate
(in fact, any positive) external force F the value of the
critical exponent c changes indicates that the force-induced
denaturation employed in single molecule experiments is
physically different from thermal denaturation. This is
intuitively clear as the pulling alters not only the free energy
of intact base pairs but also the number of accessible degrees
of freedom of the polymer loops forming the denaturation
bubbles. Recently, the Poland–Scheraga model for stretched
DNA was extended to model both the double-stranded
segments and the single-stranded segments forming a bubble
as freely jointed chains, including distinct bending rigidities
for both types of segments [39]. Phase diagrams and force–
extension curves were obtained by generalizing the matrix
technique for single persistent chains to describe the branching
bubbles. The authors found reentrance behaviour similar to
that observed in figure 4 in that the DNA may be bound at
intermediate values of the force but melts at both weak and
strong force [39].

We here treat the DNA denaturation in presence of the
external stretching force in analogy to thermal denaturation.
The transition, that is, goes from the double-stranded state
to the fully denatured single-strand. While this view is

8 The amplitude A is proportional to the cooperativity factor σ0 	 1.
9 This relies on the assumption that p	(r) is Gaussian for ideal random loops
and as described above equation (8) for self-avoiding loops. For very large
βF denatured loops are stretched out and aligned along F so that the partition
function is dominated by parameter values for which p	(r) deviates from this
form. A suitable p	(r) should be used to obtain the phase diagram in this
regime.
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Figure 4. Transition lines fm = Fma/ε as function of t = kBT/ε for α = 1, s = 5 for denatured loops modelled as (a) ideal random walks
and (b) self-avoiding walks. Note the reentrant behaviour at lower temperatures where the required melting force decreases.

in accord with a large body of experiments [19, 40–42]
and theoretical approaches [32, 43, 44] as well as recent
simulations [45] one cannot exclude the possibility that an
intermediate state of DNA exists, so-called S-DNA. A number
of recent contributions address this question [39, 44, 46–49]
but for now this point remains unresolved.

3. Single DNA bubble dynamics

Below the melting temperature Tm, DNA bubbles are
intermittent, i.e., they form spontaneously due to thermal
fluctuations and after some time close again. DNA breathing
can be thought of as a biased random walk in the phase space
spanned by the bubble size m and its position denoted, e.g.,
by the left zipper fork position xL [24, 25]. The bubble
creation can be viewed as a nucleation process, whereas the
bubble lifetime corresponds to the survival time of the first
passage problem of relaxing to the m = 0 state after a random
walk in the m > 0 half-space [24, 25, 50–52]. Apart from
NMR techniques [6, 11] bubble breathing could be measured
on the single DNA bubble level by fluorescence correlation
spectroscopy [14]. This technique employs a designed stretch
of DNA, in which weaker AT bps form the bubble domain, that
is clamped by stronger GC bonds. In the bubble domain, a
fluorophore–quencher pair is attached, see figure 5. Once the
bubble is created, fluorophore and quencher are separated, and
fluorescence occurs.

3.1. Continuum approach for homopolymer DNA

Originally bubble breathing was considered in a random energy
model with scaling arguments and numerical solution [53] and
for a homopolymer by mapping on a Fokker–Planck equation
for a random walker in the bubble free energy landscape
with approximate analytical and numerical solution [50]. An
analytical approach to bubble breathing in a homopolymer
DNA with explicit solution for the distribution of bubble
lifetimes is indeed possible by mapping onto the quantum
Coulomb problem [54, 55] as we discuss here. In the following
subsection we consider explicitly given DNA sequences in a
discrete approach.

The Poland–Scheraga free energy for a single bubble has
the continuum form [50, 54]

F = γ0 + γ x + ckBT ln x (10)

Figure 5. Clamped DNA domain with internal bps x = 1–M ,
statistical weights uhb(x), ust(x), and tag position xT. The DNA
sequence enters through the statistical weights ust(x) and uhb(x) for
disrupting stacking and hydrogen bonds respectively. The bubble
breathing process consists of the initiation of a bubble and the
subsequent motion of the forks at positions xL and xR. See [25] for
details.

in terms of the bubble size x � 0. Expression (10) corresponds
to a logarithmic sink in F at x = 0 proportional to the loop
exponent c. To be consistent with the notation in [50, 54] we
choose the bubble initiation free energy γ0 = −kBT logσ0

(i.e., equal to the boundary energy Fs mentioned earlier)
instead of the cooperativity factor σ0 and the free energy
γ = −kBT log(uhbust) to break a base pair in an already
existing loop made up of the Boltzmann factor for the stacking
free energy ust and the corresponding factor for the hydrogen
bonding uhb used in the discrete model below. We recognize
from equation (10) that a characteristic bubble size is set by
x1 = ckBT/|γ |. We rewrite the free stacking energy in terms
of γ ≡ γ1(Tm − T )/Tm through the melting temperature Tm,
and similarly, we introduce ε = γ1/[2kB](T −1

m − T −1).
For large bubble size x > x1 the linear term dominates

and the free energy grows as F ∼ γ0 + γ x . For small bubbles
x < x1 (or close to Tm, where γ (T ) ≈ 0) the free energy is
characterized by the logarithmic sink but has, strictly speaking,
a minimum at F = γ0 for zero bubble size. We distinguish
two temperature ranges: (i) For γ < 0, i.e., T > Tm, F has
a maximum Fmax = γ0 + ckBT (log x1 − 1) at x = x1. The
free energy profile thus defines a Kramers escape problem in
the sense that an initial bubble can grow in size corresponding
to the complete denaturation of the double-stranded DNA. The
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escape probability Pesc ∝ exp(−�F/kBT ), where the free
energy barrier is �F = ckBT (log x1 − 1). Thus

Pesc ∝
(

ckBT

|γ |
)−c

(11)

has a power-law dependence on temperature typical for
entropic barriers. In contrast a Kramers escape across a high
energetic barrier leads to an Arrhenius behaviour. An example
for the latter would be the initiation process of a bubble during
which the barrier σ0 = exp(−βFs) needs to be crossed.

(ii) For γ > 0, i.e., T < Tm, the free energy increases
monotonically from F = γ0 at x = 0 and the finite size
bubbles are stable. The change of sign of γ at T = Tm thus
defines the bubble melting.

The gradient of the free energy profile then enters as a
force term in a Langevin equation for the bubble size x . Such a
treatment is possible since x is the slow variable of the system
compared to the polymeric degrees of freedom of a bubble and
even the entire chain unless the chain size becomes too large.
The Langevin equation can then be mapped onto the Fokker–
Planck equation for the probability density P(x, t) to find a
bubble of size x at time t :

∂P(x, t)

∂ t
= DkBT

∂

∂x

([ c

x
− ε

]
+ ∂2

∂x2

)
P(x, t). (12)

Here D is the noise strength of the thermal environment
measured in units of kBT and time. It is now the task
to derive from this dynamical description physically relevant
and measurable quantities. These are the bubble lifetime
and its distribution as well as autocorrelation functions of
the bubble dynamics. We here concentrate on the former
while addressing the autocorrelation function in the subsequent
section dealing with the discrete formalism. More details on
the autocorrelation function in the continuum limit can be
found in [54–56].

The single bubble dynamics can be analysed in different
ways; namely in terms of the underlying Langevin equation
including the interpretation of the single bubble dynamics
below the melting temperature as a noisy finite time singularity.
Alternatively a weak noise analysis allows one to interpret the
dynamics through orbitals in phase space portraits. Finally, one
may turn to the Fokker–Planck equation (12). For more details
we refer to [50, 54, 55].

To determine the lifetime distribution of a bubble once
opened we face a technical problem posed by the c/x term
in the drift term of equation (12). One way to circumvent this
is to map this Fokker–Planck equation onto the corresponding
imaginary time Schrödinger equation of the quantum Coulomb
problem [54, 55]. From this formulation one is able to deduce
the behaviour of the bubble lifetime. We distinguish three
cases.

(i) Below the melting temperature. At T < Tm one can
determine the density of the bubble lifetime distribution
analytically in the long time limit obtaining

℘(t) � x1+c
0 e|ε|x0 e−ε2 t/2t−3/2−c/2. (13)

Thus, we observe a power-law behaviour t−3/2−c/2 with
an exponential cutoff at τ = 2/ε2 such that the bubble
lifetime is always finite. This form for ℘(t) generalizes
the expression of the first passage time density of a bubble
without entropy loss correction (i.e., c = 0) with constant
drift |ε| towards bubble closure [50]. For the mean bubble
lifetime we find the approximate expression

T =
∫ ∞

0
t℘(t) dt � x0

|ε|
K(c−1)/2(x0|ε|)
K(c+1)/2(x0|ε|) . (14)

For large sufficiently large values of x0|ε| the ratio
of the two Bessel functions tends to 1, in particular,
for the Gaussian chain limit c = 3/2 we find
K1/2(x0|ε|)/K3/2(x0|ε|) = 1/(1 + |ε|/x0). This result for
T includes the characteristic bubble lifetime x0/|ε| when
the loop entropy correction is neglected (c = 0) [50].

(ii) At the melting temperature. Right at T = Tm the drift
exerted by the free stacking energy ε vanishes, and the
dynamics is almost free diffusion. The result for the
density of bubble lifetimes reads

℘(t) = 2x1+c
0

�(1/2 + c/2)
e−x2

0 /2t(2t)−3/2−c/2 (15)

and is normalized and exact for all times. In this case the
power-law t−3/2−c/2 determines the long time behaviour.
While for free diffusion (c = 0) the corresponding mean
bubble lifetime

∫ ∞
0 t℘(t) dt diverges [50], for all c > 1

we encounter the mean bubble lifetime

T = x2
0

c − 1
(16)

which interestingly grows as the square of the initial
bubble size in contrast to the linear scaling in the case
of diffusion with linear drift in case (i). In addition to
the finite mean bubble lifetime a value c > 2 would also
cause a power-law decay C(t) ∼ t1−c/2 of the associated
correlation function at long times in contrast to the plateau
C(t) ∼ 1 reached for 1 < c < 2 [56].

(iii) Above the melting temperature. At T > Tm the situation
is opposite to case (i); namely the drift is now directed
towards the complete denaturation of the chain. In
a long chain the one bubble picture would no longer
hold and bubble coalescence needs to be taken into
account. However in shorter DNA constructs preferring
one single bubble the density of bubble lifetimes would
decay exponentially [54, 55].

3.2. Discrete approach and sequence dependence

The natural coordinate for the unzipping and zipping of base
pairs in DNA breathing dynamics is the location x of a
respective base pair along the chemical backbone of the DNA
molecule. By its very nature this is a discrete variable. While
in the continuum approach one may include certain given
distributions of more and less stable regions (predominantly
GC-rich versus predominantly AT-rich) the use of a truly
discrete x allows one to consider any given sequence. This
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is of particular importance when analysing actual biologically
relevant sequences or those designed sequences that are used
in a given experiment. Such a discrete approach in terms of
the master equation will be described here. We note that a
disadvantage of this method is the limited system size one can
de facto analyse due to computational constraints.

With a discrete coordinate we are also able to explicitly
distinguish hydrogen bonding and stacking energies and use
the parameters for the free energies from Krueger et al [6].
For the setup sketched in figure 5 we then find the partition
function. The positions xL and xR of the zipper forks
correspond to the right and leftmost closed bp of the bubble.
xL and xR are stochastic variables, whose time evolution in the
energy landscape defined by the partition factor (m � 1)

Z (xL,m) = ξ ′

(1 + m)c

xL+m∏

x=xL+1

uhb(x)
xL+m+1∏

x=xL+1

ust(x) (17)

characterizes the bubble dynamics. Z is written in terms of xL

and bubble size m = xR − xL − 1, with Z (m = 0) = 1.
Here, ξ ′ = 2cξ , where ξ ≈ 10−3 is the ring factor for
bubble initiation from [6] that is related to the cooperativity
parameter σ0 ≈ 10−5 [7, 57] by σ0 = ξ exp(εst) [6]. For the
entropy loss on forming a closed polymer loop we assign the
factor (1 + m)−c [57, 58] and take c = 1.76 for the critical
exponent [35]. This corresponds to the Flory form 3ν for the
entropy loss factor for a polymer ring with excluded volume.
The best known value for ν is 0.588 [59–61]. Note that there
exist alternative models taking into account the self-avoiding
interactions of the bubble with the rest of the chain, leading to
an increased value for c (c ≈ 2.1) such that the denaturation
transition becomes first order [33, 35]. Note also that a bubble
with m open bps requires breaking of m hydrogen bonds and
m + 1 stacking interactions.

The zipper forks move step-wise xL/R → xL/R ± 1 with
rates t±L/R(xL/R,m). We define for bubble size decrease

t+L (xL,m) = t−R (xL,m) = k/2 (m � 2) (18)

for the two forks10. The rate k characterizes a single bp
zipping. Its independence of x corresponds to the view that bp
closure requires the diffusional encounter of the two bases and
bond formation; as sterically AT and GC bps are very similar,
k should not significantly vary with bp stacking. k is the only
adjustable parameter of our model, and has to be determined
from experiment or future MD simulations. The factor 1/2 is
introduced for consistency [51, 52]. Bubble size increase is
controlled by

t−L (xL,m) = kust(xL)uhb(xL)s(m)/2,

t+R (xL,m) = kust(xR + 1)uhb(xR)s(m)/2,
(19)

for m � 1, where s(m) = {(1 + m)/(2 + m)}c. Finally, bubble
initiation and annihilation from and to the zero bubble ground
state, m = 0 ↔ 1 occur with rates

t+G(xL) = kξ ′s(0)ust(xL + 1)uhb(xL + 1)ust(xL + 2)

t−G(xL) = k.
(20)

10 Due to intrachain coupling (e.g., Rouse), larger bubbles may involve an
additional ‘hook factor’ m−μ [51, 52].

Figure 6. Scaling plot of At(xT, t) at various T for the sequence AT9
from [14] as indicated in the figure. This experimental construct is
designed with a weak AT-rich bubble domain in the core, a GC clamp
at both ends and additional bulge-loop of DNA single-strand
consisting of four T bases. The symbols represent experimental data
at various temperatures, see [24, 25] for more details. We also
include results from our master equation model. Inset: relaxation
time spectrum. See text for more details.

The rates t fulfil detailed balance conditions. The annihilation
rate t−G(xL) is twice the zipping rate of a single fork, since
the last open bp can close either from the left or right. Due
to the clamping, xL � 0 and xR � M + 1, ensured by
reflecting conditions t−L (0,m) = t+R (xL,M − xL) = 0. The
rates t together with the boundary conditions fully determine
the bubble dynamics.

In the FCS experiment fluorescence occurs if the bps in a
�-neighbourhood of the fluorophore position xT are open [14].
Measured fluorescence time series thus correspond to the
stochastic variable I (t), that takes the value 1 if at least all bps
in [xT − �, xT + �] are open, else it is 0. The time averaged
(·) fluorescence autocorrelation

At(xT, t) = I (t)I (0) − I (t)
2

(21)

for the sequence AT9 for various temperatures from [14] are
rescaled in figure 6.

DNA breathing is described by the probability distribution
P(xL,m, t) to find a bubble of size m located at xL whose time
evolution follows the master equation

∂P(xL,m, t)

∂ t
= WP(xL,m, t). (22)

The transfer matrix W incorporates the rates t. Detailed
balance guarantees equilibration toward

Peq = lim
t→∞ P(xL,m, t) = Z (xL,m)

Z
, (23)

with Z = ∑
xL,m

Z (xL,m) [51, 52, 62]. The master
equation and the explicit construction of W are discussed at
length in [25, 51, 52, 63]. Eigenmode analysis and matrix
diagonalization produce all quantities of interest such as the
ensemble averaged autocorrelation function

A(xT, t) = 〈I (t)I (0)〉 − (〈I 〉)2. (24)
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〈I (t)I (0)〉 is proportional to the survival density that the bp is
open at t and that it was open initially [24, 63].

In figure 6 the curve labelled ME49 ◦C shows the predicted
behaviour of A(xT, t), calculated for T = 49 ◦C with the
parameters from [6]. As in the experiment we assumed
that fluorophore and quencher attach to bps xT and xT +
1, that both are required open to produce a fluorescence
signal. From the scaling plot, we calibrate the zipping rate
as k = 7.1 × 104 s−1, in good agreement with the findings
from [14]. The calculated behaviour reproduces the data
within the error bars, while the model prediction at T =
35 ◦C shows more pronounced deviation. Potential causes
are destabilizing effects of the fluorophore and quencher, and
additional modes that broaden the decay of the autocorrelation.
The latter is underlined by the fact that for lower temperatures
the relaxation time distribution f (τ ), defined by A(xT, t) =∫

exp(−t/τ) f (τ ) dτ , becomes narrower (figure 6 inset).
Deviations may also be associated with the correction
for diffusional motion of the DNA construct, measured
without quencher and neglecting contributions from internal
dynamics [64]. Indeed, the curve labelled corr ME49 ◦C shown
in figure 6 was obtained by a 3% reduction of the diffusion
time11 which should roughly account for the presence of the
quencher.
Stochastic simulation. Based on the rates t, stochastic
simulations give access to single bubble fluctuations [65]. The
corresponding Gillespie algorithm uses the joint probability
density of waiting time τ and path μ = +/−,

P(τ, μ, ν) = tμν (xL,m) exp

(
−τ

∑

μ,ν

tμν (xL,m)

)
, (25)

defining for given state (xL,m) after which time τ the next step
of fork ν ∈ {L, R} occurs. The formulation via the waiting
time density

∑
μ,ν P is economical computationally, avoiding

a large number of unsuccessful opening attempts in traditional
Langevin simulations when high activation barriers have to be
crossed. Using (25) we obtain the single bubble time series in
figure 7 for two different tag positions in the T7 bacteriovirus
promoter sequence

(26)

whose TATA motif is underlined [23]. A promoter is a
sequence (often containing the so-called TATA motif) placed
at the start of a gene, to which RNA polymerase is then
recruited to initiate transcription [66]. Motives such as TATA
are believed to assist polymerase during the transcription
initiation [22, 25]. Figure 7 shows the signal I (t) at 37 ◦C
for the tag positions xT = 38 in the core of TATA, and
xT = 41 at the second GC bp after TATA. Bubble events
occur much more frequently in TATA (the TA/AT stacking
interaction is particularly weak [6]). This is quantified by the

11 For diffusion time τD = 150 μs measured for an RNA construct of
comparable length in [64].

Figure 7. Top: time series I (t) for the T7 promoter, for the opening
of base pairs at labels xT = 38 (in the TATA motif) and 41 (in the
adjacent GC region). Middle: fluorescence time φ(τ) corresponding
to the bubble lifetime and waiting time ψ(τ) elapsing between
bubble events. While the bubble lifetime in both regions of the
sequence are approximately equivalent, the occurrence frequency of
bubbles is indeed significantly higher within the TATA domain.
Bottom: mean fluorescence time for� = 0 for parameter sets from
Blake et al [57] and Krueger et al [6]. One recognizes the much
stronger sequence sensitivity for the parameters from Krueger et al.
The shaded area corresponds to the TATA domain. Again the lifetime
does not appear to significantly distinguish the TATA domain. In
contrast the simultaneous opening of 4 sequential base pairs clearly
favours opening of the motif [24, 25].

density of waiting times ψ(τ) spent in the I = 0 state, whose
characteristic timescale τ ′ = ∫ ∞

0 dτ τψ(τ) is more than an
order of magnitude longer than at xT = 41. In contrast, we
observe similar behaviour for the density of opening times
φ(τ) for xT = 38 and 41. The solid lines are the results
from the master equation showing excellent agreement with the
results from the Gillespie stochastic simulation. Notice that
whereas ψ(t) is characterized by a single exponential, φ(t)
show a crossover between different regimes. For long times
both ψ(τ) and φ(τ) decay exponentially as they should for a
finite DNA stretch.

3.3. Bubbles in biological sequences

After presenting our results for the T7 promoter sequence
above in this section we comment on the biological relevance
of the distribution of soft and hard zones, in particular with
respect to transcription initiation. A more detailed analysis can
be found in [22–25].

Let us start by briefly commenting on the biochemical
relevance of the TATA box motif (also referred to as Goldberg–
Hogness box). It is a DNA sequence (cis-regulatory element)
found in the promoter region of most genes in eukaryotes
and a group of single-celled microorganisms called archaea.
Similar binding motifs with similar properties exist in other
organisms. The TATA box is the binding site of transcription
factors and is involved in the process of transcription by RNA
polymerase. Its core sequence is 5’-TATAAA-3’ or a variant,
usually followed by three or more adenine bases. Commonly
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Figure 8. Equilibrium opening probability of base pairs in the
sequence of the bacteriophage T7 core promoter. The dotted line
marks the transcription initiation site.

it is located 25 base pairs upstream to the transcription site.
The TATA box is normally bound by the TATA binding protein
(TBP) during transcription. The TBP unwinds the DNA and
strongly bends it. At a later stage the TATA box is bound
by RNA polymerase and transcription commences12. The
high proneness towards bubble formation at the TATA box
is therefore believed to actively contribute to transcription
initiation13.

3.3.1. Bacteriophage T7 core promoter. Its sequence is
displayed in equation (26). It contains the TATA box at base
pair labels 36–39. Figure 8 shows the equilibrium probabilities
for the base pairs to be open. In this example the TATA box is
located right next to the transcription start site. From the graph
one can see that indeed the simultaneous opening probability
of four base pairs is significantly increased at the position of
the TATA box. Note the level of the opening probability of
a random sequence also drawn in the figure. Accordingly
several domains of significantly increased bubble probability
exist along this sequence.

3.3.2. Adenovirus major late promoter. Its 86 base pair
sequence

(27)

contains a transcription start site at the position labelled TSS,
compare figure 9. In this example the (extended) TATA box is
located upstream at the base pair label—31. In this example
the TATA box is extremely more likely to open simultaneously
than any other domain along the sequence.

12 Other proteins are also involved in this quite complex process.
13 In particular with the stability parameters from Krueger et al [6] the stacking
free energy of a TA/AT pair of base pairs essentially vanishes.

Figure 9. Equilibrium opening probability of base pairs in the
sequence of the adenovirus major late promoter.

Figure 10. Equilibrium opening probability of base pairs in the
sequence of the Adeno Associated Viral P5 promoter.

3.3.3. Adeno associated viral P5 promoter. This sequence
consists of the 69 base pairs

(28)

and supports binding of TBP at the (extended) TATA box as
well as the binding of the Yin Yang 1 (YY1) transcription
factor. YY1 is known to interact with the TBP [67]. YY1
binds to a specific sequence element of the form CCATNTT
in the sequence. As can be seen from figure 10 these two
binding motifs have a significantly higher cooperative opening
probability than any other sequence element of this promoter.
The analysis also shows a broader but lower peak around the
transcription start site.

In summary this analysis shows that indeed local
instability of the DNA sequence appears to occur at specific
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binding sequences for proteins involved in transcription
initiation. Whether it is just the lower free energy needed to
break these sequences or indeed rare bubble openings at these
site that help the protein binding remains an open question.

4. DNA bubble coalescence

It has been shown in a quantitative analysis that the
experimentally accessible autocorrelation function is sensitive
to the stacking parameters of DNA [24, 25]. However, it has
not been fully appreciated to what extent the fluorophore and
quencher molecules, that are attached to the DNA construct in
the experiments reported in [14, 64, 68], influence the stability
of DNA. Moreover, the zipping rates measured in the single
molecule fluorescence setup differ from those determined in
NMR experiments [11, 14]. We here propose and study
an alternative setup for the single molecule fluorescence
investigation of DNA breathing, as shown in figure 11,
that may improve and complement the single molecule data
obtained from a DNA construct with a single bubble domain14.
In this setup, a short stretch of DNA, clamped at both ends,
is designed such that two soft zones consisting of weaker AT
bps are separated by a more stable barrier region rich in GC
bps. For simplicity, we assume that both soft zones and barrier
are homopolymers with a bp-dissociation free energy�Gs and
�Gb, respectively, and, in accordance with the experimental
findings of [14], we neglect secondary structure formation in
the barrier zone. At temperatures higher than the melting
temperature Ts of the soft zones but still lower than the melting
temperature Tb of the barrier region, thermal fluctuations
will gradually dissociate the barrier, until the two bubbles
coalesce. Once coalesced, the free energy corresponding to
one cooperativity factor σ0 ≈ 10−5···−3 is released, stabilizing
the coalesced bubble against reclosure of the barrier. Moreover
there exists a significant dynamic barrier stemming from the
necessity of diffusional encounter of two bases in order to
reanneal the barrier. Both points lead to a long lifetime of
the coalesced state. This fact should allow for a meaningful
measurement of the coalescence time in experiment, and
therefore provide a new and sensitive method to measure DNA
stability data and base pair zipping rates. We also study the
case when the system is prepared as above and then T suddenly
increased such that T > Tb > Ts so that the system is driven
towards coalescence. In both cases the two boundaries between
bubbles and barrier perform a (biased) random walk in opposite
free energy potentials.

The statistical weight of the construct before coalescence,

ZX,Y = (
ξ eNLβε

′)
e(X−Y+N)βε

(
ξ eNRβε

′)
, (29)

at Tb > T > Ts involves the cooperativity factor ξ ≈ 10−5

for each bubble, and a Boltzmann factor for each broken bp
with free energies ε′ > 0 and ε < 0, compare reference [24].

14 Due to the stabilization of the coalesced bubble as discussed below this setup
would allow for measurements of a first passage for the merging of the two
initial bubbles and thus distinguish this setup from the open–close dynamics in
the previous experiments.

Figure 11. Schematic of the DNA construct for bubble coalescence.
Note that the position of both ends of the barrier region are measured
from the same point (the position of the leftmost barrier base pair).

Upon coalescence, the boundary free energy corresponding to
one factor ξ is released,

Zcoal = ξ e(NL+NR)βε
′+Nβε, (30)

stabilizing the system against immediate transition back to a
two bubble state. It is this distinctive feature that should render
this setup an interesting model system for single molecule
analyses of DNA denaturation dynamics, as the coalesced state
can be determined by measuring first passage time statistics
(corresponding to the introduction of an absorbing boundary
condition at the point of coalescence).

In our analysis we use a continuum approach to the
stochastic motion of the two zipping forks at either end of
the barrier zone with locations x and y. The probability
density P(x, y, t) then follows the bivariate Fokker–Planck
equation [69]

∂

∂ t
P(x, y, t) =

([
∂2

∂x2
+ ∂2

∂y2

]
− 2 f

∂

∂x
+ 2 f

∂

∂y

)

×P(x, y, t), (31)

with the dimensionless force f = N(u − 1)/(1 + u) and time
rescaled by k(1 + u)/2N2. Equation (31) is completed by the
initial condition P(x, y, 0) = δ(x − x0)δ(y − y0) and the
reflecting boundary conditions (the bubbles in the soft zones
are assumed to be open at all times)
(
∂

∂
x − 2 f

)
P(x, y, t)

∣∣∣∣
x=0

=
(
∂

∂y
+ 2 f

)
P(x, y, t)

∣∣∣∣
y=1

= 0. (32)

Moreover, we impose the absorbing boundary condition
P(x, x, t) = 0. This defines the vicious walker property [70],
terminating the process when the two walkers meet. The fact
that the two walker move in opposite potentials actually make
this problem a previously unsolved case of vicious walkers
models [69].

Typical examples of individual trajectories resulting from
a Gillespie algorithm are displayed in figure 12, where traces
of the two interfaces (forks) cornering the barrier region
are shown. Bubble coalescence terminates each pair of
trajectories.

The analysis in [69] reveals the distribution of coalescence
positions (i.e., where the two zipper forks eventually meet) and
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Figure 12. Trajectories of the random motion of the two bubble forks.

Figure 13. Left: distribution of coalescence positions within the rescaled barrier zone [0, 1]. Right: distribution of coalescence times.

the coalescence times, as shown in figure 13. The curves for
the PDF ρ(x) of the coalescence position exhibit a pronounced
crossover from a relatively sharply peaked form to an almost
flat behaviour. The former occurs for large positive force f ,
corresponding to a strong drift toward a potential well, with
negligible influence of the boundary conditions. In contrast,
for large negative f , corresponding to a high barrier for
coalescence, the insensitivity of ρ(x) to the position x can
be explained in terms of a simple Arrhenius argument: the
probability of the walker to be at a position x is proportional
to the Boltzmann weight, exp(−βφ(x)), where φ(x) =
− ∫ x F(x ′) dx ′ is the free energy corresponding to the force
F(x). Then, the joint probability to have both walkers meet
at the same position is given by the product exp(−β[φL(x) +
φR(x)]) ≈ const as the two walkers are in opposite linear
potentials and the position dependence of the exponent cancels
out. This simple picture necessarily breaks down close to
the boundaries. (ii) The f -dependence of the mean first
passage time τ crosses over from the τ � 1/ f behaviour
typical for diffusion in a strong positive force pushing the two
walkers together, to the exponential form τ � exp(2| f |) of

the associated Kramers problem. The former problem was
studied in [50] by neglecting the boundaries and switching to
the relative coordinate description which enables one to find
the analytic result τ = 1/(4 f ). For the Kramers problem
( f 	 −1) the analytic solution for both ρ(x) = [1− e−2| f |x −
e−2| f |(1−x)]| f |/(| f |−1) and τ = e2| f |/[16 f 2(| f |−1)] can be
found rather easily [71] by the expansion into the lowest two
eigenmodes of p(x, t|x0).

5. Coupled dynamics of DNA bubbles and selectively
single-strand DNA binding proteins

A traditional puzzle had been the question why the presence
of selectively single-strand DNA binding proteins (SSBs)
does not lead to full denaturation of the DNA [1]. While
ideas about a kinetic block were brought forth relatively
early [72–74], experimentally this puzzle could only be
solved by single molecule methods in which the denaturation
was not induced by temperature but force. In a series
of experiments the binding and unbinding kinetics of SSBs
and their mutants to DNA denaturation bubbles and the
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Figure 14. Effective free energy of the SSB–DNA bubble interaction in the limit γ 
 1 (——), and free energy landscape for various fixed n
(u = 0.6, M = 40, c = 1.76, λ = 5). Left: κ = 0.5; right: stronger binding, κ = 1.5. In the latter case the binding strength of the SSB
suffices to cause a decreasing effective free energy and therefore induce full denaturation of the DNA. Due to the finite size effects the
nucleation barrier for initiation of SSB exchange has to be crossed.

resulting effect on the denaturation force were studied in great
detail [19, 75, 76]. Here we discuss a simple model for the
SSB–DNA interaction in a homopolymer approach by a master
equation approach [51, 52].

The quantity of interest is the joint probability P(m, n, t)
to have a bubble consisting of m broken bps, and n SSBs
bound to the two arches of the bubble. In addition to the
rates for bubble increase and decrease, the rates for SSB-
binding and unbinding are necessary to define the breathing
dynamics in the presence of SSBs. On the statistical level,
the effect of the SSBs becomes coupled to the motion of
the zipper forks. Thus, the rate for bubble size decrease is
proportional to the probability that no SSB is located right
next to the corresponding zipper fork; and the rate for SSB-
binding is proportional to the probability that there is sufficient
unoccupied space on the bubble. Binding is allowed to be
asymmetric with respect to the two arches of the bubble, and
is related to a parking lot problem in the following sense.
The number λ of bases occupied by a bound SSB is usually
(considerably) larger than one. In order to be able to bind
in between two already bound SSBs, the distance between
these two SSBs must be larger than λ. The larger λ the less
efficient the SSB-binding becomes, similar to parking large
cars on a parking lot designed for small vehicles. Apart
from the binding size λ of the SSBs, two additional physical
parameters come into play: the unbinding rate q of the SSBs,
and their binding strength κ = c0 K eq consisting of the volume
concentration c0 of SSBs and the equilibrium binding constant
K eq = v0 exp(β|ESSB|), with the typical SSB volume v0 and
binding energy ESSB.

The coupled dynamics of SSB-binding and bubble
breathing is discussed in [51, 52]; similar effects in end-
denaturing DNA were studied in [68] in detail. Here, we report
the behaviour of the effective free energy landscape in the
limit of fast SSB-binding in the sense that the dimensionless
parameter γ ≡ q/k of SSB-unbinding and bubble zipping

rates is large, γ 
 1. This limit allows one to average out
the SSB-dynamics and to calculate an effective free energy,
in which the bubble dynamics with the slow variable m runs
off. The result for two different binding strengths κ is shown
in figure 14, along with the free energies corresponding to
keeping n fixed. It is distinct that while for lower κ the
presence of SSBs diminishes the slope of the effective free
energy, for larger κ the slope actually becomes negative. In
the first case, that is, the bubble opening is more likely, but
still globally unfavourable. In the latter case, the presence of
SSBs indeed leads to full denaturation. One observes distinct
finite size effects due to λ > 1: only when the bubble reaches a
minimal size m � λ, SSB-binding may occur, a second SSB is
allowed to bind to the same arch only once m � 2λ, etc. This
effect also produces the nucleation barrier for full denaturation
in the right plot of figure 14. Similar finite size effects were
investigated for biopolymer translocation in [77, 78]. We note
that the transition to denaturation could also be achieved by
reaching a smaller positive slope of the effective free energy
in the presence of SSBs, and additional titration or change of
the effective temperature through actual temperature change
or mechanical stretching as performed in the experiments
reported in [19, 75, 76].

6. Concluding remarks

DNA possesses a number of properties that render it a
very attractive model system. Thus the study of the DNA
denaturation transition has occupied statistical physics for
around five decades. DNA is comparatively thin and stiff
locally while its overall length is fully macroscopic. Thus
it is probably the closest available example for testing the
predictions from polymer physics. In particular single DNA
can be probed and manipulated and its interactions with
binding proteins and chemicals investigated. This includes
the monitoring of single DNA bubbles and their interaction
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with specifically single-stranded DNA binding proteins, both
described here, as well as the interaction of DNA with
intercalators [40]. By now single molecule assays can also be
used to study the search mechanisms of DNA binding proteins
scanning it for specific binding sites relevant in gene regulation
and DNA repair [20, 79–81]. This attractiveness of DNA
combines with its ultimate role as the molecule of life and
therefore is one of the finest examples where the interests of
biological physics meet those of biochemists and molecular
biologists.

The label century of biology is frequently bestowed upon
the 21st (e.g., [82]). In the wash of the success of biology,
molecular and systems biology in particular, one experiences
a mushrooming number of works in the biological physics
sector. Indeed many of these problems pose very attractive and
new questions to physicists and along with the availability of
single molecule techniques prompt new advances, for instance
in statistical physics.

On a general level the contribution of physics to biology
lies in the number of various concepts that physicists can
provide, ranging from novel single molecule probing methods
to the theoretical framework that physicists are trained in.
This has been true for the development of the statistical and
dynamic models to describe DNA denaturation and breathing,
or for a large part of the development of facilitated diffusion
models for dilute solutions peaking in the Berg–von Hippel
model [83], and possibly will pertain even more to the
current undertaking to understand transport and regulation
processes in living cells and organisms. Thus attempts to
understand the topology of cellular networks such as protein
networks or regulatory networks more generally caused the
development of a new area in physics and mathematics whose
implications are now feeding back to biology [87]. Or, instead
of reducing biochemical pathways in the cell to sets of rate
equations the spatial aspect of diffusion at low concentrations,
for instance, of regulatory proteins, are being promoted as
important ingredients [79, 84–86].

The DNA mechanisms outlined in this paper are expected
to contribute to the way chemicals and proteins bind to
DNA and initiate subsequent biochemical reaction cascades.
We showed here that we are on the way to a quantitative
understanding of DNA breathing and that it can be probed
on the level of single DNA molecules. Techniques such
as fluorescence correlation spectroscopy or optical tweezers
will most likely become crucial when trying to understand
DNA breathing under cellular conditions or conditions of
reconstituted crowding when, among other things, the entropic
contribution on base pair denaturation should become less
relevant but DNA bubbles may be promoted by local DNA
structure due to the packaging of DNA (e.g., twist-induction
of bubbles). An essential question is how under more realistic
conditions the stability parameters of DNA become modified,
in particular, whether the asymmetry between different
nearest neighbour combinations of base pairs becomes more
pronounced. Equally important will be the question how
the local stability is affected by the fact that in vivo the
DNA is decorated by a variety of other binding proteins
all of which also contribute to change the local structure.

Thus the simultaneous presence of several transcription factors
necessary to trigger a certain biochemical pathway may
significantly alter the opening probabilities of the transcription
start sites etc, and therefore also their occurrence frequency.
A first step towards a better understanding of such complex
interactions may be to introduce labelled DNA constructs and
to follow their behaviour when crowding is increased and other
species of binding proteins introduced. Such knowledge will
also be relevant to better control DNA-targeting therapies.

Another example for the challenges ahead is the current
lack of understanding of non-local biochemical processes in
living cells under conditions of molecular crowding [88–91].
It is being realized that knowledge obtained under dilute
conditions in vitro does not necessarily translate to the situation
in vivo and this point will need considerable more quantitative
investigation. As it stands the input from biological
physics will be crucial, for example regarding the diffusive
processes. It appears that subdiffusion of biopolymers occurs
in conditions of molecular crowding [92–94], this being the
likely source for strong scatter of time averages and apparent
diffusivities of single trajectories [92, 95, 96], requiring great
care in the quantitative analysis [97, 98]. In the end a more
local picture of in vivo gene regulation will emerge.
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