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Abstract
We demonstrate how the stochastic global optimization scheme of simulated
annealing can be used to evaluate optimum parameters in the problem of DNA
breathing dynamics. The breathing dynamics is followed in accordance with the
stochastic Gillespie scheme, the denaturation bubbles in double-stranded DNA
being studied as a single molecule time series. Simulated annealing is used
to find the optimum value of the activation energy for which the equilibrium
bubble size distribution matches with a given value. It is demonstrated that the
method overcomes even large noise in the input surrogate data.

PACS numbers: 87.15.Av, 05.40.−a, 87.14.Gg, 02.60.Pn, 87.80.Nj

1. Introduction

Optimization techniques have successfully been used across the disciplines [1–7]. In general,
a given problem is cast in a manner such that finding the extremum point of a functional
in some search space renders the desired solution. For illustration, consider the non-trivial
problem of finding the global minimum in a rugged potential energy surface. In this problem
one starts from any arbitrary point, and then moves on the search space following certain
criteria (one could be that a move is accepted if the gradient norm decreases in a given move)
and converges on a point for which the gradient norm is zero. To verify whether the obtained
point is indeed a minimum or not, one needs to check if the eigenvalues of the associated
Hessian matrix at that point are all positive or not. In general, for any problem in which a
finite number of optimum values of parameters are sought after, one can write an adequate
functional and extremize it by following the above procedure.

However, an optimization procedure whose mode of action is solely guided by minimizing
the local gradient norm (one which is deterministic) may face difficulties, especially in search
spaces with multiple minima. If the obtained minimum is a local one, there is no way
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of escaping from it again and moving toward the global minimum. Here the concept of
true global optimizers, whose search is not solely driven by a local gradient, or one which is
generically stochastic in nature, is needed. Simulated annealing (SA) is such a global optimizer
and has been very successfully used since it was originally introduced by Kirkpatrick et al [8].
In particular, in these references SA was used to tackle the famed traveling salesman problem
(a so-called nondeterministic polynomial (NP) time problem). Due to its successful application
a large amount of literature on SA has been published across fields, see, for instance, [9–13].

SA is a search technique which borrows its concepts from the physical process of
annealing. If one is trying to produce a good alloy, a molten state of the metallic mixture is
prepared at a very high temperature (starting annealing temperature Tat) and then gradually
cooled. If the rate of cooling (annealing schedule) is slow enough the system will solidify
at the minimum (stable) thermodynamic state. SA exactly follows this principle. The search
space is sampled initially at a high temperature (Tat), and then gradually at lower values of Tat

determined by a preassigned schedule. The temperature Tat controls the strength of thermal
fluctuations, so that even if the system is trapped in a local minimum, a high enough Tat can
take it out of the attractive basin and the search can carry on to locate deeper minima, and
eventually the global one. In the limit of very small Tat or if the search is carried on for a
sufficient length of time, the global minimum will be unequivocally found. Operational details
of this procedure are presented below.

In this communication, we employ SA to study the dynamics of DNA denaturation
bubbles. We show that SA finds the optimum value of the activation energy for base pair
breaking and therefore reproduces correctly the bubble free energy landscape. Moreover we
demonstrate that SA performs well even in the presence of strong noise superimposed on the
surrogate input data. In the optimization procedure we start with an arbitrary value of the
activation energy and allow SA to improve it until the bubble size distribution matches a given
distribution. We specifically use SA in this problem as we believe it is well suited to analyze
experimental data on DNA bubble dynamics.

This paper is organized as follows. In the following we first discuss the methodology of
SA in detail and connect it to the optimization of the activation energy required for DNA base
pair opening. Then the simulation results are presented and discussed, and finally the paper is
concluded.

2. DNA bubble dynamics and simulated annealing

Double-stranded DNA can locally denature, i.e., the base pairs usually forming the double-
helix break [14]. The result is a DNA bubble consisting of single-stranded DNA, see figure 1.
Driven by thermal fluctuations this bubble changes its size by breaking or reannealing of base
pairs at the two interfaces between bubble and intact double strand [14]. The resulting DNA
breathing or DNA bubble dynamics therefore is a stochastic process [15–17]. To follow the
time series of the kinetics one needs to resort to a formulation that intrinsically includes the
fluctuations in an efficient way. It was shown in [16] that the Gillespie algorithm [18], in
which the multi-step rate equation is written as a single master equation, provides time series
and equilibrium quantities of bubble breathing dynamics.

A denaturation bubble opens (nucleates) with an initiation free energy factor σ0 =
exp(−Es/kBT ) ≈ 10−5 . . . 10−3 at room temperature [19]. Once initiated, additional base
pairs break with a free energy E(T ), with associated statistical weight u = exp(−E(T )/kBT ).
This free energy E(T ) is composed of the free energies for hydrogen bonding and base stacking
[20]. In general, the value of E(T ) will depend on the type of nearest-neighbor base pairs
(AT or GC) [20]; however, here we consider a homopolymer DNA in which all E(T ) are
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Figure 1. DNA denaturation bubble. The bubble consists of single-stranded DNA that is embedded
in a still intact double strand. At the interface between bubble and double strand, base pairs break
or reanneal stochastically, giving rise to the bubble dynamics.
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Figure 2. Plot of the equilibrium probability Peq(m) to find a bubble of m broken base pairs for a
bubble domain of maximum size m = 18. The parameters for the open boxes are σ0 = 10−3 and
u = 0.6. We also show the SA estimates PTat (m) at various annealing temperatures Tat. The plot
for Tat = 17 matches quite well with the preset surrogate equilibrium distribution, Peq(m).

equal. Thermal melting of the DNA double strand defining the melting temperature Tm occurs
when E(Tm) = 0. Below the melting temperature the fully closed (no bubble) state will
always be favorable. However fluctuations may initiate a transient bubble. The ensuing
opening/closing dynamics of a single DNA bubble can in fact be monitored in fluorescence
correlation experiments [21]. At equilibrium the probability distribution to find a bubble of
size m broken base pairs is plotted in figure 2 with logarithmic ordinate. The initial jump
corresponds to the initiation free energy factor σ0. Subsequently one observes a straight decay
corresponding to the investment of the free energy E(T ) per broken base pair.

In this work we wish to employ a stochastic optimization search for the correct
determination of u at the particular temperature in which the system is studied. For this
we have a theoretical probability distribution profile for the occupation at various DNA sites
[16] with which we will compare our distribution profiles for various u values determined for
different annealing temperatures given by the annealing protocol. SA will guide our search
for the optimum u such that we arrive at the theoretical distribution profile in as few iterations
as possible.

In the SA algorithm thermal fluctuations are used to cross barriers in the underlying
search landscape such that optimum parameters can be found even in a rugged surface. The
simulation is started at a sufficiently high annealing temperature Tat. This makes nearly
all moves acceptable as the criterion for accepting or rejecting a move is determined by
the Metropolis criterion. In our case the objective function (often called cost function in
the SA language) which is being minimized is the sum of the squares of the difference
of the occupation probabilities at the various sites

cost =
m∑

i=1

(Peq(m) − PTat(m))2, (1)
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where Peq(m) denotes the preset surrogate probability distribution to have m broken base pairs,
and PTat(m) is the distribution obtained from SA at temperature Tat. If, on going from one
step to the other in the annealing protocol defined below, the magnitude of the cost function
decreases, this move is accepted. If it increases, the move is not discarded immediately. We
subject it to the Metropolis test [22]: the quantity

� = costi − costi−1 (2)

is computed where costi is the magnitude of the cost in the present step and costi−1 is the value
at the step before. As we observe an increase in the cost function, the quantity � is positive.
The probability of accepting this move is then determined by evaluating the function

F = exp(−�/Tat). (3)

By definition F ranges between 0 and 1. For each evaluation of F we invoke a random
number Rn between 0 and 1. If F is greater than Rn we accept the move, following the idea
that the cost increase corresponding to the ‘Boltzmann factor’ F is smaller than the intensity
of the fluctuation corresponding to the random number Rn. If F < Rn the move is rejected.
Thus at high Tat, F will be close to 1 and most moves will be accepted, and a greater region
of search space will be sampled. As the simulation proceeds, Tat is lowered by following
the annealing schedule, as the optimization proceeds. This decrease in Tat can be a simple
decrease by a certain factor or an exponential decrease depending on the nature of the problem.
Once on the right path toward the global minimum we need not search the entire space and
concentrate on a small region which will funnel the search specifically to the global minimum.
As Tat is lowered less and less moves pass the Metropolis test. More and more of the accepted
moves correspond to a decrease in the cost function and we move toward the global minimum.
In the current setup it is the value of the base pair breaking free energy factor u for which F is
minimized.

3. Results and discussion

We focus on the evolution of a few quantities important to characterize the denaturation
bubbles, as we move through the annealing schedule. The optimum search for u was started
with the cost function far away from zero, the starting value being close to 0.1; the starting
guess value of u chosen here is arbitrary, which could easily have been some other value far
from the actual solution. In our simulation the annealing schedule was a 2% decrease in Tat,
i.e., starting with an initial annealing temperature of Tat = 100 after each simulation step (or
temperature step) Tat was decreased by 2% of its current value. For each temperature step
Tat in the SA run, a maximum of 30 samplings were carried out, however, in cases when 20
steps were successful from the Metropolis sampling, the simulation was started at the next
lower annealing temperature obtained following the annealing schedule. In figure 3 we plot
the profile of u against the inverse of the annealing temperature Tat. The convergence is
rapid toward the correct value u = 0.6, reaching u = 0.5997 after about 10 iterations. The
simulation is carried on for more steps to ensure that the obtained value corresponds to a final
plateau.

During sampling for moves which pass the Metropolis test, the instantaneous values of
u can show fluctuations at a particular annealing temperature (as one samples the system a
number of times at a given annealing temperature) and more so when the annealing temperature
is high. This fluctuations in u will decrease as we move closer to the solution which is achieved
at a lower annealing temperature. This is because the Metropolis sampling scheme is such
that a smaller and smaller number of moves is accepted as the annealing temperature goes on
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Figure 3. Plot of the SA estimate of the statistical weight factor u versus the annealing temperature
1/Tat. Inset: histogram showing the Metropolis sampling of instantaneous fluctuations in u for
the entire range of annealing temperature performed during the optimization process. The main
figure plots the best u at a given temperature step obtained from the fluctuating data shown in the
histogram.

decreasing. The histogram in the inset of figure 3 depicts this fluctuations in u for the entire
range of annealing temperature in the SA sampling performed. Initially, the u values show
higher fluctuations as these correspond to sampling at a higher annealing temperature, but
these fluctuations gradually decrease and near the vicinity of the solution u values other than
those close to the actual solution are not accepted. Hence, the maximum normalized count in
the inset of figure 3 corresponds to u = 0.6, which is the actual solution.

In figure 2 we plot the evolution of the bubble size distribution PTat(m) for some different
annealing temperatures Tat. It can be seen that at higher Tat finer details of the population
of the free energy landscape, corresponding to the occupation of large bubble states (high
m), are not sampled, and consequently the probability distribution falls off too quickly.
At successively lower temperatures the profile found from SA converges toward the true
equilibrium distribution of the bubble. While the curve for Tat = 100 is far away from the
equilibrium data, the curve for Tat = 17 exactly superimposes on the equilibrium profile. The
other two curves for Tat = 67 and Tat = 47 show the intermediate dynamics and approach
toward the equilibrium profile, respectively. This is done so that we can follow the subtle
features of the dynamics and exactly track whether larger mth sites get populated or not.
The observation is that as we proceed a significant population develops at larger m values with
the decay from higher m to lower m becoming more gradual. This is expected physically since
rare events need a finer sampling resolution (note the logarithmic axis in figure 2).

To test the robustness of the SA procedure, we also carried out calculations to see how
a very noisy distribution profile, created by introducing reasonable perturbations onto the
equilibrium distribution data (Peq(m) ± λ × rn, λ ∼ 5, rn ∈ [0, 1]), converges to the correct
one. The results of the calculation are shown in figure 4. The SA run was started with the
zigzag profile (solid line) denoted as noisy data. The starting temperature was kept pretty
large (at nearly 106), since the cost function was of a large value to start with. In this case the
cost function can be written as

cost(u=0.6) =
m∑

i=1

(Peq(m) − PTat(m))2, (4)
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Figure 4. Plot of log PTat (m) against m at various SA steps. The plot for 600 steps matches the
theoretical distribution.

(This figure is in colour only in the electronic version)

which looks similar to equation (1), with the only interpretational change being that we are
trying to find out the correct distribution, keeping the activation energy u = 0.6 in all the
cases. The goal of the SA run is to smoothen the noisy profile and reach the optimum
distribution (given by symbols) for u = 0.6. Gradually with the progress of the calculation
at successive steps (10, 50, 200 and 600) the profile becomes more regular, with the noisy
structures vanishing and at the 600 th step a profile which matches the exact theoretical one is
generated as is evident from figure 4.

4. Conclusion

Potential application of the SA algorithm presented in this work will analyze experimental
single molecule data. Currently, except in one case, there are no available experimental data.
The only experimental data that are available come from fluorescence correlation measurement
[21]. However, it is only a question of time until new experimental data become available.
Considering this the present communication tries to establish a groundwork which can be
further extended to analyze experimental data in the future.

Another potential application of SA would be the subject of recent publication [23]
in which a novel setup for obtaining more accurate data for DNA denaturation has been
proposed. In particular, this setup has the potential to reveal position-resolved data. Having
these potential experiments in mind we wanted to find out the potential of SA to actually tackle
the involved analysis. In the submitted work we show that this is actually possible.
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As we show in the present work, the SA algorithm is extremely insensitive to noisy input
data; even after adding random values of significant amplitude to the input data the correct
parameters are found. This was not necessarily expected a priori, and this is what we consider
a major result of our work.

In this work we have shown how optimum parameters in systems of biological interest
can be found out with the use of stochastic optimization techniques. These results have
inspired us to look into more complicated problems, like a two-dimensional model in which
not only the size of the bubble but the exact position of cleavage of base pairs can be found
out [17]. In addition to that, the experimental work involving single molecule techniques so
far concentrates on homopolymer DNA. It will be interesting to see what power SA exhibits
when longer and heteropolymer structures are tested. Work in this direction is in progress,
which we wish to address in our future communications.
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