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Exact results for the first passage time and leapover statistics of symmetric and one-sided Lévy flights
(LFs) are derived. LFs with a stable index � are shown to have leapover lengths that are asymptotically
power law distributed with an index � for one-sided LFs and, surprisingly, with an index �=2 for
symmetric LFs. The first passage time distribution scales like a power law with an index 1=2 as required
by the Sparre-Andersen theorem for symmetric LFs, whereas one-sided LFs have a narrow distribution of
first passage times. The exact analytic results are confirmed by extensive simulations.
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The statistics of first passage times is a classical concept
to quantify processes, in which it is of interest when the
dynamic variable crosses a given threshold value for the
first time; e.g., when a tracer in some aquifer reaches a
certain probe position, two molecules meet to form a
chemical bond, animals search for sparse food locations,
or a share at the stock market crosses a preset market value
[1,2]. Here, we revisit the first passage time problem for
processes with nontrivial jump length distributions,
namely, Lévy flights (LFs), and derive exact asymptotic
expressions for the first passage time density pf��� of
symmetric and one-sided LFs. For the former, we obtain
the Sparre-Andersen universality pf��� ’ �

�3=2, while a
narrow behavior is found for one-sided LFs. Apart from
calculating the first passage times, we investigate the be-
havior of the first passage leapovers, that is, the distance ‘,
the random walker overshoots the threshold value d in a
single jump (see Fig. 1). Surprisingly, for symmetric LFs
with a jump length distribution ��x� ’ jxj�1�� (with index
0<�< 2), the distribution of leapover lengths across x �
d is distributed like pl�‘� ’ ‘

�1��=2; i.e., it is much
broader than the original jump length distribution. In con-
trast, for one-sided LFs, the scaling of pl�‘� bears the same
index �.

For processes subject to a narrow jump length distribu-
tion with a finite second moment

R
1
�1 x

2��x�dx, the cross-
ing of a given threshold value d is identical to the first
arrival at x � d [2]. This is no longer true for LFs:
Intuitively, a particle, whose jump lengths are distributed
according to the symmetric long-tailed distribution ��x� ’
jxj�1�� (0<�< 2) is likely to crisscross the point x � d
multiple times before eventually hitting it, causing the first
arrival at d to be slower than its first passage across d [3]. A
measure for the ability to crisscross d is the distribution of
leapover lengths, pl�‘�. Information on the leapover be-
havior of LFs is thus important to the understanding of how
far proteins searching for their specific binding site along
DNA overshoot their target [4], climatic forcing visible in

ice core records exceeds a given value [5], or defining
better stock market strategies determining when to buy or
sell a certain stock instead of fixing a threshold price [6].
The quantification of leapovers is vital to estimate how far
diseases would spread once a carrier of that disease crosses
a certain border [7]. Leapover statistics of one-sided LFs
provide an interesting alternative interpretation of the dis-
tribution of the first waiting time in ageing continuous time
random walks [8], just to name a few examples.

The master equation for a Markovian diffusion process,
 

@P�x; t�
@t

�
1

�

Z 1
�1
���x� x0�P�x0; t�

� ��x0 � x�P�x; t��dx0; (1)

accounts for the influx of probability to position x and the
outflux away from x, where ��x� is a general, normalized
jump length distribution. The time scale for single jumps is
�. The solution to Eq. (1) in Fourier space is P�k; t� �
e��1���k��t=�, denoting the Fourier transform f�k� �R
1
�1 e

ikxf�x�dx by explicit dependence on the wave num-
ber k. For instance, for the symmetric jump length distri-
bution ��x� ’ ��jxj�1��, one finds

 P�k; t� � e�K
���jkj�t; (2)

with K��� � ��=�, the characteristic function of a sym-
metric Lévy stable law as obtained from continuous time

x = 0

d

x

FIG. 1 (color online). Schematic of the leapover problem: the
random walker starts at x � 0 and after a number of jumps
crosses the point x � d, overshooting it by a distance ‘.
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random walk theory in the diffusion limit or from the
equivalent space fractional diffusion equation [9].

In the following, we study processes with the long-tailed
composite jump length distribution

 ��x�=� � ��jxj � "��c1���x� � c2��x��=jxj1��; (3)

where ��x� is the Heaviside function. For c1 � c2, ��x�
defines a symmetric LF, and for c1 � 0 and c2 > 0, a
completely asymmetric (one-sided) LF permitting exclu-
sively forward jumps. The cutoff " excludes the singularity
at x � 0, and we take "! 0 [10].

In the theory of homogeneous random processes with
independent jumps, there exists a theorem, which provides
an exact expression for the joint probability density func-
tion (PDF) p��; ‘� of first passage time � and leapover
length ‘ (‘ � 0) across x � d for a particle initially seeded
at x � 0 [11,12]. We here evaluate this theorem that ap-
pears to have been widely overlooked and derive a number
of new analytic results for pf��� and pl�‘� of symmetric
and one-sided LFs. With the probability to jump longer
than x,

 M �x� �
Z 1
x
��x0�dx0; x > 0; (4)

the theorem states that the double Laplace transform
p�u;�� �

R
1
0

R
1
0 e
�u���‘p��; ‘�d�d‘ of the joint PDF is

given in terms of the multiple integral [11,12]

 p�u;�� � 1� q��u; d� �
�
u
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00
M�d� s00 � s0 � s�: (5)

The PDFs pf��� and pl�‘� for first passage time and leap-
over lengths follow from Laplace inversion of p�u; 0� and
p�0; ��, respectively. In Eq. (5), we use the auxiliary
measures q
�u; x� defined through Fourier transforms

 qx;
�u; k� �
Z 1
�1

eikx
@q
�u; x�

@x
dx

� exp
�


Z 1

0

e�ut

t

Z 
1
0
�eikx � 1�P�x; t�dxdt

�
;

(6)

and the condition q
�u; 0� � 0. They are related to the
cumulative distributions of the maximum, Q��t; d� �
Prfmax0���tx���< dg, and minimum, Q��t; d� �
Prfmin0���tx���< dg, of the position x�t� such that
q
�u; d� � u

R
1
0 e
�utQ
�t; d�dt. The complicated inte-

grals above reduce to elegant results for symmetric and
one-sided LFs, as we show now.

For symmetric LFs (c1 � c2 � c), the propagator is
defined by the characteristic function (2) with generalized
diffusion coefficient K��� � 2c��1� �� cos���=2�=�. In
the limit u! 0 (long time limit), we obtain from Eq. (6)

 qx;��u; k� 

u1=2���������

K���
p

jkj�=2
exp

�
isgn�k���

4

�
: (7)

Inverse Fourier transform and integration yields

 q��u; d� 

2u1=2

�
���������
K���
p

���=2�
d�=2; d > 0: (8)

From pf�u� � 1� q��u; d�, we therefore find

 pf��� 

d�=2

�
�������������
�K���
p

���=2�
��3=2 (9)

for the asymptotic first passage time PDF valid for ��
d�=K��� [13]. Figure 2 shows good agreement with the
simulations [14]. We note that previously only the ��3=2

scaling was known from simulations and application of
Sparre-Andersen’s theorem [3].

For symmetric LFs, for 0<�< 2, we obtain that

 M �x� �
K���

2��1� �� cos���=2�
x��; x > 0: (10)

Using that for symmetric LFs q���; x� � q���;�x�, it
turns out after some transformations from Eq. (5) that

 pl��� �
Z 1

0
e��‘

sin���=2�

�
�d=‘��=2

d� ‘
d‘; (11)

from which it follows immediately that

 pl�‘� �
sin���=2�

�
d�=2

‘�=2�d� ‘�
; (12)

see Fig. 3. Note that pl is independent of K���. In the limit
�! 2, pl�‘� tends to zero if ‘ � 0 and to infinity at ‘ � 0
corresponding to the absence of leapovers in the Gaussian
continuum limit. However, for 0<�< 2, the leapover
PDF follows an asymptotic power law with index �=2
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FIG. 2 (color online). First passage time density pf��� for
symmetric LFs. Lines represent Eq. (9). The curves for � �
0:75 and 1.25 are multiplied by a factor of 10 and 100. Symbols:
simulations.
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and is thus broader than the original jump length PDF ��x�
with index �. This is remarkable: while � for 1<�< 2
has a finite characteristic length hjxji, the corresponding
mean leapover length diverges.

Consider now one-sided LFs with c1 � 0 in Eq. (3). In
this case, the PDF has the characteristic function

 P�k; t� � exp
�
�K���tjkj�

�
1� isgn�k� tan

�
��
2

���
; (13)

where K��� � c2��1� �� cos���=2�=� and M�x� for
x > 0 is twice the expression in Eq. (10). Equation (6)
leads to

 qx;��u;k� �
u

u� �
; � �K�����ik��=cos

�
��
2

�
; (14)

as ��ik�� � ��isgn�k�jkj�� � jkj� exp��isgn�k���=2�.
From this, we calculate

 

Z 1
�1

eikxpf�u�jd�xdx �
��ik���1

��ik�� � u cos���=2�=K���
:

(15)

With the definition of the Mittag-Leffler function [9]

 

Z 1
0
E����x

��e�sxdx �
s��1

s� � �
; (16)

and the substitution ik! �s, we obtain

 pf�u� � E���u cos���=2�d�=K����: (17)

From the relation between E� and the M�-function [15],

 

Z 1
0
e�utM��t�dt � E���u�; 0<�< 1; (18)

the following result for the first passage time PDF yields

 pf��� �
K���

cos���=2�d�
M�

�
K����

cos���=2�d�

�
: (19)

The M�-function has the series representation and asymp-

totic behavior with exponential decay

 M��z� �
X1
n�0

��z�n

n!��1� �� �n�
(20)

 

��z����1=2�=�1�������������������������

2��1� ��
p exp

�
�

1� �
�
��z�1=�1���

�
: (21)

With E���s� � 1� s=��1� �� �O�s2� [9] and expan-
sion pf�u� 
 1� uh�i of Eq. (17), the mean first passage
time h�i � d� cos���=2�=�K�����1� ��� yields. h�i is
finite and grows with the �th power of the distance d.
For � � 1=2, we recover the exact form

 pf��� � K���
�������
2

�d

s
exp

�
�
�K����2�2

2d

�
: (22)

h�i and Eq. (22) were previously obtained from a different
method [16], while the full expression (19) for the PDF
pf��� has not been reported. The first passage PDF pf��� is
displayed in Fig. 4 in nice agreement with the simulations.
Note that for � � 1=2, the tail of ��x� is so long that it is
most likely to cross x � d in the first jump, while for �>
1=2, pf��� has a maximum at finite � > 0.

To obtain the leapover statistics for the one-sided LF,
we first note that since P�x < 0; t� � 0 (only forward steps
are permitted), we have qx;��u; k� � 1, and thus
@q��u; x�=@x � 	�x�. Combining Eqs. (5) and (6),

 pl��� � 1� lim
u!0

�
u

Z d

0

Z 1
0
e��s

0
M�d� s0 � s�

	
@q��u; s�

@s
ds0ds: (23)

Expanding the Mittag-Leffler function, Eq. (17) produces
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u cos���=2�

K�������
x��1: (24)
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FIG. 4 (color online). First passage density for one-sided LF
(K��� � 1). The full lines represent numerical evaluations using
the exact analytic expression (20), while for the dashed lines, the
asymptotic behavior (21) is used. Symbols: simulations.
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FIG. 3 (color online). Leapover density pl�‘� for symmetric
LFs. Lines according to the exact expression (12).
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Equations (14) and (24) inserted into Eq. (23) then yield

 pl��� �
sin����
�

Z 1
0
e��‘

d�

‘��d� ‘�
; (25)

leading to the leapover PDF

 pl�‘� �
sin����
�

d�

‘��d� ‘�
; (26)

see Fig. 5, which corresponds to the result obtained in
Ref. [16] from a different method. Thus, for the one-sided
LF, the scaling of the leapover is exactly the same as for the
jump length distribution, namely, with exponent �.

The leapover distribution (26) also provides a new as-
pect to the first waiting time in a renewal process with
broad waiting time distribution  �t� ’ t�1�
 (0<
< 1).
Interpret the position x as time and the jump lengths drawn
from the one-sided ��x� as waiting times t. Consider an
experiment, starting at time t0, on a system prepared at
time 0 (corresponding to position x � 0). Then, the first
recorded waiting time t1 of the system will be distributed
like p1�t1� � ��1 sin����t�0 =�t

�
1 �t0 � t1��, as obtained

from a different reasoning in Ref. [8]. We note that the
first passage time � in this analogy corresponds to the
number of waiting events.

While for symmetric LFs, it was previously established
that the first passage time distribution follows the universal
Sparre-Andersen asymptotics pf��� ’ ��3=2; here, we de-
rived for the first time the prefactor of this law, in particu-
lar, its dependence on the generalized diffusion coefficient
K���. For the same case, we derived the previously un-
known leapover distribution pl�‘�, which is interesting for
two reasons: (i) pl�‘� is independent of K���, synonymous
to the noise strength; (ii) its power law exponent is �=2,
and thus pl�‘� is broader than the original jump length
distribution. For one-sided LFs, we found the previously
reported leapover distribution and derived the so far un-

known first passage time distribution, whose first moment
was derived from a different method before. While the
leapovers follow the same asymptotic scaling pl�‘� ’
‘�1�� as the jump lengths ��x�, once more independent
ofK���, the first passage times are narrowly distributed. We
also drew an analogy between the leapovers and the first
waiting time in a subdiffusive renewal process. For both
symmetric and one-sided LFs, extensive simulations con-
firmed the analytic results.

Knowledge of the prefactors of the leapover and first
passage distributions, the dependence on distance d and
leapover length ‘ in particular, will be useful for compari-
son with experimental data, e.g., to describe threshold or
target overshoot properties in search problems, climate
records, stock market prices, or disease spreading [4–7].
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FIG. 5 (color online). Leapover distribution for one-sided LF
with d � 10. Lines: exact asymptotic power law from Eq. (26).
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