
DNA Bubble Dynamics as a Quantum Coulomb Problem

Hans C. Fogedby1,2,3,* and Ralf Metzler3,4,†

1Department of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark
2Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

3NORDITA, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark
4Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada

(Received 22 August 2006; published 15 February 2007)

We study the dynamics of denaturation bubbles in double-stranded DNA. Demonstrating that the
associated Fokker-Planck equation is equivalent to a Coulomb problem, we derive expressions for the
bubble survival distribution W�t�. Below Tm, W�t� is associated with the continuum of scattering states of
the repulsive Coulomb potential. At Tm, the Coulomb potential vanishes and W�t� assumes a power-law
tail with nontrivial dynamic exponents: the critical exponent of the entropy loss factor may cause a finite
mean lifetime. Above Tm (attractive potential), the long-time dynamics is controlled by the lowest bound
state. Correlations and finite size effects are discussed.
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Under physiological conditions the Watson-Crick
double helix is the equilibrium structure of DNA, its
stability being effected by hydrogen bonding of base pairs
(bps) and stacking between pairs of bps [1,2]. By variation
of temperature or pH value double-stranded DNA progres-
sively denatures, yielding regions of single-stranded DNA
(DNA bubbles) whose size ranges from a few to some
hundred broken bps, depending on T and pH conditions
[3–5]. Eventually, the double strand fully denatures, the
helix-coil transition at the melting temperature Tm [3].

Fueled by thermal activation, DNA bubbles occur spon-
taneously and fluctuate in size until closure (T < Tm) or
denaturation (T > Tm). This DNA breathing can be probed
on the single molecule level in real time by fluorescence
methods [6]. Assuming that bp unzipping and zipping
occur on a slower time scale than the relaxation of the
polymeric degrees of freedom of the bubbles, DNA breath-
ing can be interpreted as a random walk in the 1D coor-
dinate x, the number of denatured bps.

Based on the Poland-Scheraga model [7], DNA breath-
ing has been studied in terms of continuous [8,9] and
discrete [10–13] approaches. Here we show that the
Fokker-Planck equation for bubble dynamics is equivalent
to a quantum Coulomb problem with a repulsive potential
(T > Tm) or attractive potential (T < Tm). This mapping
allows us to derive the survival behavior of bubbles (T <
Tm) or the double strand (T > Tm) and the correlations in
terms of the spectrum of a ‘‘hydrogenlike’’ system even
when explicitly taking the entropy loss factor into account,
extending previous results [9,13].

Static and dynamic model.—The Poland-Scheraga free
energy for the bubble statistics has the form [3,5,9]

 F � �0 � �x� c lnx; (1)

where x � 0 is the bubble size in units of broken bps. We
here assume a continuum formulation and imply a cutoff
for x� 1. �0 is the free energy barrier for bubble initiation,

�x the free energy for the dissociation of x bps, and c lnx
the entropy loss factor associated with the formation of a
closed polymer ring; the critical exponent c � 1:76 [3,5].
We write � � �1�1� T=Tm� for the free energy density �.
In units of kTr with reference temperature Tr � 37 �C,
approximate values for the parameters are �0 	 10kTr,
�1 	 4kTr, and c 	 2kTr; for standard salt conditions
Tm 	 70 . . . 110 �C, depending on the relative content of
adenine-thymine (AT) versus guanine-cytosine (GC) bps
[3,5,6,12].

The stochastic bubble dynamics is governed by the
Langevin equation with Gaussian white noise ��t�,

 dx=dt � �DdF =dx� �; h��i�t� � 2DkT��t�; (2)

where the kinetic coefficient D of dimension �kTr��1s�1

sets the time scale, 
DkTr��1 ��s [6]. With dimension-
less parameters � � c=2kTr and � � ��1=2kTr��T=Tm �
1�, and measuring time in units of �s, the Fokker-Planck
equation corresponding to Eq. (2) is
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Note that close to Tr, � 	 1 and � 	 2�T=Tm � 1�.
General results.—Eliminating the first order term by

means of the substitution P � e�xx�� ~P, ~P satisfies
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This is the imaginary time Schrödinger equation for a par-
ticle with unit mass in the potential V�x� � ����
1�=2x2 ���=x� �2=2, i.e., subject to the centrifugal bar-
rier ���� 1�=x2 for an orbital state with angular momen-
tum � and Coulomb potential ���=x. Introducing the
Hamiltonian H � ��1=2�d2=dx2 � V�x� and expanding
~P on the normalized eigenstates �n, H�n � En�n, the
transition probability P�x; x0; t� from initial bubble size x0
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to a final bubble size x at time t yields in closed form

 P�x; x0; t� � e��x�x0�

�
x0

x

�
�X

n

e�Ent�n�x��n�x0�: (5)

Here the completeness of �n ensures the initial condition
P�x; x0; 0� � ��x� x0�. To account for bubble closure we
imply the absorbing boundary condition �n�0� � 0. For a
finite DNA strand of length L, i.e., maximum bubble size
L, we impose the absorbing condition �n�L� � 0 (com-
plete denaturation). Expression (5) is the basis for our
discussion of DNA breathing, relating the dynamics to
the eigenstates of the Coulomb problem [14].

The transition probability P is controlled by the
Coulomb spectrum. Below Tm [� / �T=Tm � 1�< 0], the
Coulomb problem is repulsive with a continuum of states,
corresponding to a (biased) random walk in bubble size
terminating in bubble closure (x � 0). At Tm (� � 0), the
Coulomb potential is absent and the states are solely
governed by the centrifugal barrier, including the limiting
case of a regular random walk. Above Tm (� > 0), the
potential is attractive and traps an infinity of bound states;
at long times the lowest bound state dominates the bubble

dynamics, associated with full DNA denaturation. In Fig. 1
we depict the two cases � _ 0.

(i) T � Tm. At long times and fixed x and x0, it follows
from Eq. (5) that P is controlled by the bottom of the
energy spectrum. Below and at Tm the spectrum is con-
tinuous with lower bound �2=2. With Ek � �2=2� k2=2 in
terms of the wave number k and noting that �k�x� /
�kx�1�� for small kx we have P / exp
�j�j�x� x0��
�x=x0�

�� exp���2t=2�
R
1
0 dk exp��k2t=2��k2xx0�

1��; by
a simple scaling argument the long-time expression for
the probability distribution yields

 P�x; x0; t� ’ xx
1�2�
0 e�j�j�x�x0�e��

2t=2t�3=2��: (6)

The lifetime of a bubble of initial size x0 created at t � 0
follows from Eq. (6) by calculating the first passage time
density (FPTD) as time derivative of the survival probabil-
ity, W�t� � �

R
1
0 dx@P=@t [15], or, via Eq. (3), W�t� �

�1=2�
@P=@x� �2�=x� 2��P�x�0. This produces

 W�t� ’ x1�2�
0 ej�jx0e��

2t=2t�3=2��: (7)

Below Tm, � < 0 and the FPTDW�t� decays exponentially.
The characteristic time scale is set by � � 2=�2 / �Tm �
T��2, diverging at Tm. From Eq. (6) we infer that P�x; t� /
exp
�c1j�j�x� c2j�jt�� with constants ci > 0, indicating
that the profile of the distribution has a drift �j�j towards
bubble closure at x � 0.

At Tm (� � 0) the FPTD falls off like a power law,
W�t� / t��, with � � 3=2��; see the exact result in
Eq. (10). The associated exponent contains the entropy
loss factor, � � c=2kTr, with � 	 1 at T 	 Tr. Ignoring
the logarithmic entropic effects (� � 0) we obtain � �
3=2, characteristic of an unbiased random walk [9]. From
(7) we also infer that the mean bubble lifetime scales like
�mean / x0=j�j / x0�Tm � T��1, diverging at Tm.

(ii) Above Tm (� > 0) P is controlled by the lowest
bound states in the attractive Coulomb potential with dis-
crete spectrum En � ��

2=2��1� 
�=��� n��2�, n �
1; 2; . . . . The lowest state has E1 � �2��� 1=2�=���
1�2, and the corresponding nodeless normalized bound
state is �1�x� � Ax1�� exp
���x=��� 1�� with normal-
ization A2 � 
2��=��� 1��2��3=��2�� 3� [14]. This
bound state is localized at �1=�T � Tm� and thus recedes
to infinity as we approach Tm. From (5) we have
P�x; x0; t� � e��x�x0��x=x0�

��e�E1t�1�x��1�x0�, and we
note that the dominant contribution to the distribution
originates from the region where the bound state peaks,
i.e., at �1=�T � Tm�. Inserting in (5) we obtain
 

P�x; x0; t� � A2xx1�2�
0 e
�=�1����
x�x0�1�2���

 e��
2�1�2��t=2�1���2 ; (8)

after some reduction. The profile of the distribution (8)
drifts towards larger bubble sizes with velocity ��.

Exact result at Tm.—At criticality (� � 0) the problem
of bubble dynamics is equivalent to the noisy finite-time
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FIG. 1. Schematic of the potential V�x� � �2=2 of Eq. (4).
(a) T < Tm: repulsive potential with continuous spectrum. The
bubble fluctuations correspond to a Brownian walk in bubble
size x before collapse at x � 0. (b) T > Tm: attractive potential
that can trap a series of bound states. At long times the lowest
bound state indicated in the figure dominates. The bubbles
increase in size leading to denaturation.
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singularity studied in Ref. [16]. The eigenstates of H are
Bessel functions, �k�x� � �kx�1=2J1=2���kx�; we obtain
via a well-known identity [17,18]

 P �
�
x0

x

�
�
�xx0�

1=2t�1e��x
2�x2

0�=2tI1=2���xx0=t�; (9)

where I� is the Bessel function of imaginary argument
[17]. From Eq. (9) we infer the FPTD

 W�t� �
2x1�2�

0

��1=2���
e�x

2
0=2t�2t��3=2��; (10)

whose maximum at t � x2
0=�3� 2�� assumes the value

 Wmax �
2

��1=2���

�
2e

3� 2�

�
�3=2��

x�1=2
0 : (11)

Note that the correction by the exponent � causes a finite
mean lifetime for �> 1=2, in contrast to previous results
based on an unbiased random walk (� � 0). Figure 2
shows the bubble lifetime distribution for two different
values of Tm corresponding to different power-law tails
of W�t�.

Correlations.—In the experiments of Ref. [6] the corre-
lation function C�t� of a labeled bp is recorded. C�t� is
proportional to the integrated survival probability, C�t� /R
L
0 P�x; x0; t�dx, where L is the chain length [12]. By

definition of W�t� we have C�t� � 1�
R
t
0 W�t

0�dt0 �R
1
t W�t

0�dt0 [19]. We distinguish three cases:
(i) Below Tm (� < 0) we obtain from Eq. (6) C�t� �

1� x1�2�
0 ej�jx0

R
t
0 e
��2t0=2�t0��3=2��dt0, or, in terms of the

incomplete Gamma function � [17],

 C�t� 	 x1�2�
0 ej�jx0��2=2�1=2�����1=2��; �2t=2�: (12)

With ���; x� 	 x��1e�x for x! 1 we find

 C�t� 	 x1�2�
0 ��2ej�jx0t�3=2��e��

2t=2 (13)

for long t, that for � � 0 matches the asymptotic behavior
of the model derived in Ref. [6]. Note that the basic time
scale of the correlations is set by ��2 / �Tm � T��2. For
t� ��2 we find the power lawC�t� / t�3=2��; at t� ��2

the correlations fall off exponentially. The size of the time
window showing power-law behavior increases as Tm is
approached. In frequency space the structure function
~C�!� �

R
exp�i!t�C�t�dt has a Lorentzian shape for

j!j � �2, with power-law tails for j!j � �2:

 

~C�!�

x1�2�
0

�

�
ej�jx0
!2 � ��2=2�2��1; for j!j � �2;
ej�jx0 j�j�2j!j1=2��; for j!j � �2:

(14)

In Fig. 3, we demonstrate the correct long-time asymp-
totics of our � model (12) with the drift-diffusion approxi-
mation and the autocorrelation data from Ref. [6]. We also
show that with a rescaling of the characteristic time the �
model with � � 0 (magenta line) and � � 1 (cyan) de-
scribes the long-time behavior of the data well.

(ii) At Tm (� � 0) the exact expression for the FPTD
(10) combined with relation C�t� �

R
1
t W�t

0�dt0 yield

 C�t� � 1�
��1=2��; x2

0=2t�
��1=2���

: (15)

For short times (t! 0) the behavior

 C�t� 	 1�
�x2

0=2���1=2

��1=2���
t1=2��e�x

2
0=2t (16)

obtains, while in the long-time limit (t! 1) we find

 C�t� 	
2�x2

0�
1=2��

�1� 2����1=2���
t�1=2��: (17)

(iii) Above Tm (� > 0) the DNA chain eventually fully
denatures, and the correlations diverge in the thermody-
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FIG. 2. Bubble lifetime distribution W�t�, Eq. (10), for Tm �
2Tr (full line) and Tm � 10Tr (dashed line). Inset: log- log plot
at long t, with slopes �2, �1:6 indicated by the straight lines.
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namic limit. We can, however, at long times estimate the
size dependence for a chain of length L. From the general
expression (5) we derive

 C�t� ’ e��x0x�0
X
n

e�Ent�n�x0�
Z L

0
e�x�n�x�

dx
x�
: (18)

We obtain with the lowest bound state �1�x� �
Ax1�� exp
���x=��� 1�� of energy E1 � �2���
1=2�=��� 1�2 and after integration over x
 

C�t� / A2e��x0�2��1�=���1�e��
2
���1=2�=���1�2�t

 x1�2�
0 �1�����2f1� 
L�=�1��� � 1�

 e�L=�1���g: (19)

The correlations decay exponentially with time constant
���2��� 1�2=�2�� 1�. In frequency space the structure
function has a Lorentzian line shape of width ��2�2��
1�=��� 1�2, and for the size dependence one obtains

 C�t� �
�
Le�L=�1���; for �L=�1��� � 1;
L�=�1���; for �L=�1��� � 1

: (20)

Note that close to Tm the correlation C�t� / L.
Relevance to experiment.—Explicit expressions for bub-

ble lifetimes and correlations are important for the design
and interpretation of DNA-breathing experiments. Thus,
the presence of the exponent � changes the slope of the
correlation function at the midpoint, and the slope of the
power-law region at higher T. For the DNA constructs
studied in Ref. [6], we have � 	 1 and T 	 Tr 	 Tm=2,
so that by Eq. (7) a typical bubble lifetime of 1 ms or
slightly above corresponds to an initial (mean) bubble size
of 5 to 6 open bps, somewhat larger than the typical size
found in Ref. [5]. Both points would allow one, together
with additional experiments as those outlined in Ref. [20],
to obtain more accurate information on the time scales of
bp zipping, and the stacking interactions of DNA.

Summary and conclusion.—We demonstrated that the
fluctuation dynamics of DNA denaturation bubbles can be
mapped onto the imaginary time Schrödinger equation of
the quantum Coulomb problem, allowing us to calculate
the bubble lifetime distributions and associated correlation
functions, below, at, and above the melting temperature
Tm. At Tm, the DNA breathing corresponds to a one-
dimensional finite-time singularity [18]. The detailed study
of DNA breathing is of particular interest as the bubble
dynamics provides a test case for new approaches in small
scale statistical mechanical systems where the fluctuations
of DNA bubbles can be probed on the single molecule level
in real time.

Our analysis reveals nontrivial scaling of the survival
time of a bubble after its original nucleation. The associ-
ated critical exponents depend on the parameter � stem-
ming from the entropy loss factor of the flexible bubble,
i.e., on the ratio Tr=T of reference and actual temperature.
This correction through � decreases with increasing T; at

physiological temperature, � 	 1 significantly changes
the power-law exponents. Thus, at Tm the typical bubble
lifetime becomes finite due to the logarithmically increas-
ing entropy loss factor. FPTD and correlations also depend
on the difference T=Tm � 1, and therefore explicitly on the
melting temperature Tm (and thus the relative content of
AT or GC bps). We also obtained the critical dependence of
the characteristic time scales on T � Tm as well as the
finite size dependence of the correlation function.
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