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We study the barrier crossing of a particle driven by white symmetric Lévy noise of index � and intensity
D for three different generic types of potentials: �a� a bistable potential, �b� a metastable potential, and �c� a
truncated harmonic potential. For the low noise intensity regime we recover the previously proposed algebraic
dependence on D of the characteristic escape time, Tesc�C��� /D����, where C��� is a coefficient. It is shown
that the exponent ���� remains approximately constant, ��1 for 0���2; at �=2 the power-law form of
Tesc changes into the known exponential dependence on 1/D; it exhibits a divergencelike behavior as �
approaches 2. In this regime we observe a monotonous increase of the escape time Tesc with increasing �
�keeping the noise intensity D constant�. The probability density of the escape time decays exponentially. In
addition, for low noise intensities the escape times correspond to barrier crossing by multiple Lévy steps. For
high noise intensities, the escape time curves collapse for all values of �. At intermediate noise intensities, the
escape time exhibits nonmonotonic dependence on the index �, while still retaining the exponential form of the
escape time density.
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I. INTRODUCTION

In his seminal paper �1�, Kramers proposed to model
chemical reaction rates as the diffusion of a Brownian par-
ticle, initially located in a potential well, across a potential
barrier of finite height. Meanwhile, Kramers’ theory has been
applied to a much more general range of processes associ-
ated with the barrier crossing of a physical entity experienc-
ing random kicks fueled by its contact to a thermal bath
�2–5�.

Since Kramers’ solution numerous different ways have
been reported to access the barrier crossing problem, in par-
ticular, to find the mathematically most convenient formula-
tion, compare, for instance, Refs. �3–6�. The result for the
characteristic escape time reads �7�

Tesc =
2� exp��U�xmax� − U�xmin��/D�

	U��xmin�
U��xmax�

, �1�

where U�x� is the dimensionless potential, a prime stands for
the derivative with respect to the coordinate x; xmin and xmax
are the points, where the potential U�x� attains its minimum
and maximum, respectively; and D is the diffusion coeffi-
cient �noise intensity� of the diffusing particle, stemming
from its coupling to the heat bath. Equation �1� is based on
the assumption that the barrier is high �or equivalently, the
noise intensity is low�, and there exists a constant probability
flux across the barrier maximum.

Random processes in complex systems frequently violate
the rules of Brownian motion. Thus, the presence of static or
dynamic disorder might give rise to memory effects causing
subdiffusion �8,9�, and possible deviations from standard ex-
ponential relaxation �10,11�. The barrier crossing in the pres-
ence of long-range memory effects was, inter alia, modeled
in terms of a generalized Langevin equation �12,13�, or via a
subdiffusive fractional kinetic approach with Mittag-Leffler

survival �14,15�. Subdiffusion is usually associated with a
long-tailed waiting time distribution ��t��A��� / t1+� with
0���1 rendering the resulting continuous time random
walk process semi-Markovian, its hallmark being the power-
law time dependence �x2	K�t� of the mean-squared dis-
placement in absence of an external potential �8,9,16�.

While in subdiffusion the waiting time between succes-
sive jump events becomes modified such that the mean wait-
ing time �0


 t��t�dt diverges and consequently no natural
time scale separating microscopic and macroscopic events
exists, the distribution of the lengths of individual jumps is
narrow. The converse is true for Lévy flights: Here, the
lengths of the jumps are distributed according to the long-
tailed jump length distribution

��x� �
A���


x
1+� , �2�

with 0���2 �8,15,17,18�. Thus, the variance �−


 x2��x�dx

of the jump lengths diverges. Such power-law forms of the
jump lengths have been recognized in a wide number of
fields �9�. Prominent examples for such genuine Lévy flights
are known from noise patterns in plasma devices �19�, and
from random walks of particles or excitations along a fastly
folding polymer, where the walker is allowed to cross the
small gap between two segments of the chain, that are close
by in the embedding space due to polymer looping �20�. In
the latter case, the exponent � is in fact related to the critical
exponents of the polymer chain. Further examples come
from fluctuations in energy space in small systems �21,22�,
and from paleoclimatic time series �23�.

From a mathematical point of view the occurrence of
long-tailed distributions appears quite natural due to the
Lévy-Gnedenko generalized central limit theorem �24,25�.
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Indeed, the tails of probability densities of the type of ��x�,
Eq. �2�, are obtained from the characteristic function of a
symmetric �-stable distribution of the form

��k� � F���x�� = �
−





eikx��x�dx = exp�− c
k
�� , �3�

where c0. The power-law asymptotics at large 
x
, Eq. �2�,
appear immediately from the expansion of the characteristic
function, Eq. �3�, in the limit of small k.

An important question arises when replacing the Brown-
ian particle in a barrier crossing process by a particle execut-
ing Lévy flights. This situation can be modeled by a particle
subject to Lévy stable noise, on the level of the Langevin
equation. First steps in this direction of addressing have been
taken, as reported in Refs. �26–29�. In the present work, we
report extended simulations results for the usually studied
case of low noise strength D, observing a pronounced step-
like behavior of the dependence of the exponent � on the
Lévy index �. We also explore the case of intermediate and
high noise strength, finding a quite rich behavior in the pa-
rameter space, including an optimum � for the escape time.

II. UNDERLYING LANGEVIN EQUATION

We start from the Langevin equation for a particle embed-
ded in an external potential field and subjected to a random
noise,

dx�t�
dt

= −
1

m�

dU�x�
dx

+ ���t� , �4�

where x�t� is the dynamic variable �particle position�, m the
mass, � the friction constant, and U�x� an external potential.
The noise ���t� is a white, symmetric �-stable noise. Equa-
tion �4� is understood in the following way �30�: Integrating
Eq. �4� over the interval �t , t+�t�, we obtain

x�t + �t� − x�t� = −
1

m�
�

t

t+�t dU„x�t��…
dx

dt� + L�,D��t� ,

�5�

where

L�,D��t� = �
t

t+�t

��,D�t��dt� �6�

is an �-stable process with stationary independent incre-
ments and characteristic function

pL�k,�t� = exp�− D
k
��t� . �7�

D is the intensity of the Lévy noise. With the use of Eqs. �6�
and �7� it is straightforward to show �30� that the discrete
time representation of Eq. �5� at times tn=n�t, n=0,1 ,2 , . . .
for sufficiently small time step �t is

xn+1 − xn = −
1

m�

dU�xn�
dx

�t + �D�t�1/���,1�n� , �8�

where ���,1�n�� is a set of random variables possessing Lévy
stable distribution ��x� with the characteristic function �3�
and c=1.

III. SIMULATIONS RESULTS

Before addressing the barrier crossing problem in the
presence of Lévy stable noise analytically below, we present
results from extensive simulations. In these simulations, we
employ three types of potential profiles: bistable, metastable,
and truncated harmonic potentials �see Fig. 1� defined as
follows:

U1�x� = − g1
x2

2
+ g2

x4

4
, �9a�

U2�x� = − g1
x3

3
+ g2x , �9b�

U3�x� = �g1x2/2, − L � x � L ,

0, 
x
  L .
� �9c�

Let us turn to dimensionless variables. To this end we sub-

stitute x→x / x̃, t→ t / t̃, and D→D / D̃ into the discrete time
Langevin equation �8�, and choose the appropriate constants

for rescaling, x̃, t̃, and D̃, for each potential type. Taking into
account that ���t / t̃�= t̃1−1/����t� �30�, we find

x̃ =	g2

g1
, t̃ =

g1

m�
, D̃ =

m�

g1
�g2

g1
��/2

, �10a�

x̃ =	g1

g2
, t̃ =

	g1g2

m�
, D̃ =

m�

	g1g2
�g1

g2
��/2

, �10b�

x̃ = L,
x̃�

D̃
= t̃ =

m�

g1
, �10c�

respectively. In terms of these rescaled variables the discrete
time Langevin equation �8� reads

FIG. 1. The three types of po-
tential profiles U1 �bistable poten-
tial�, U2 �metastable potential�,
and U3 �truncated harmonic po-
tential� considered in the simula-
tions; for g1 ,g2 ,L0.
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xn+1 − xn = −
dU�xn�

dx
�t + �D�t�1/���,1�n� , �11�

where the potential U�xn� refers to, respectively, U1, U2, or
U3 from Eqs. �9�, with g1=g2=L=1.

In the simulations, for each type of the potential the par-
ticle starts from the bottom of the potential well. The adsorb-
ing boundary is located �i� for the bistable potential in the
saddle point x=0, �ii� for the metastable potential far to the
right of the saddle point, at x=10, and �iii� for the truncated
harmonic potential at the boundaries, 
x
=1. The process de-
fined by Eq. �11� is repeated until the particle reaches, or
crosses the adsorbing boundary; then the process in Eq. �11�
is restarted. This procedure is performed 100 000 times, for
fixed D and �, and the mean escape time is then calculated
�31�.

The mean escape times Tesc of the diffusing particle as
function of noise intensity D for the three potential profiles
are shown in Fig. 2 for different values of � ranging from 0.1
to 2 �32�. It is clear that the curves for ��2 obey a different
law in comparison to their Gaussian counterpart. We observe

three different regimes for the dependence of Tesc on the
Lévy noise parameters, which can be classified by the value
of noise intensity. Let us discuss these regimes in detail.

A. Low noise intensity regime

In this regime, instead of an exponential dependence on
1/D, the curves shown in Fig. 2 display a power-law
asymptotic behavior of the mean escape time

Tesc��,D� =
C���
D���� . �12�

Further analysis of the data plotted in Fig. 2 allows us to
determine the dependencies of the power-law exponent ����
and coefficient C��� on the Lévy index � �see Fig. 3�. The
exponent ���� is approximately unity up to ��1.5. The
dependence of C��� for the first two potential types pos-
sesses a weak inflection at small �. Note that for fixed noise
strength D, the dependence of Tesc on the Lévy index � is
monotonic.

FIG. 2. Mean escape times as function of noise intensity D for
the bistable �top�, metastable �middle�, and truncated harmonic po-
tentials �bottom�.

FIG. 3. Dependencies of ���� and C��� for the bistable �top�,
metastable �middle�, and truncated harmonic �bottom� potentials.
See text.
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Let us now turn to the probability density function �PDF�
p�t� of the escape times. We use again our simulation scheme
to obtain p�t� from the Langevin equation �11�, but now for
each fixed values of � and D we collect 200 000 escape
events, which are not averaged but processed with a simple
routine, that constructs the PDF. The results for the three
potentials from Fig. 1 are shown in Fig. 4 �34�. It is immi-
nently clear that in all three cases and for all � �including the
Gaussian case, �=2� the exponential decay pattern

p�t� =
1

T
exp�−

t

T
� �13�

is nicely obeyed, in agreement with the findings from previ-
ous simulations studies �23,28,29�, as well as with the ana-
lytical results reported in Ref. �26�.

Relation �13� allows us to extract the mean escape time
Tesc independently from our previous results in Fig. 2, in two
different ways. Namely, we define

Tesc =
1

p�0�
� T1; �14�

alternatively, we determine

Tesc = − �d ln p�t�
dt

�−1

� T2. �15�

These two ways to determine Tesc are intrinsically different,
T1 depending on the extrapolation of the fitted exponential
behavior to t=0, whereas T2 is determined through the slope
in the logarithmic versus linear plot. Table I shows the results
for T1 and T2 along with the values of Tesc obtained directly
from the simulations results in Fig. 2. Indeed, the value of T2
is consistently closer to Tesc than T1. Overall, however, the
agreement is very good �better than 1.5%�.

B. High and intermediate noise intensity regimes

We consider these two regimes for the case of the trun-
cated harmonic potential as example, compare to the bottom
graph in Fig. 2. The two other cases, bistable and metastable
potentials, demonstrate similar behavior. When the noise in-
tensity D increases beyond the low noise limit, in which the
curves exhibit a linear dependence and are almost parallel,
the various curves for the escape time show a tendency to
collapse. This is the intermediate noise intensity regime,
which for the truncated harmonic potential lies approxi-
mately in the range −2�−log10 D�1. Here, we observe that
Tesc demonstrates a very weak dependence on the Lévy in-

FIG. 4. Escape time probability density functions in dependence
of time for the bistable �top�, metastable �middle�, and truncated
harmonic �bottom� potentials. In the logarithmic versus linear plot,
the exponential dependence is obvious.

TABLE I. Mean escape times, obtained using three separate
methods: Tesc is determined directly from the simulations producing
Fig. 2, while T1 and T2 are defined in Eqs. �14� and �15�,
respectively.

First potential type, D=10−2.0

� Tesc T1 T2

0.1 119.7 117.4 118.1

0.5 187.1 185.1 187.1

1.0 260.8 257.1 258.2

1.5 446.5 443.4 448.4

Second potential type, D=10−1.4

� Tesc T1 T2

0.1 34.2 33.9 34.1

0.5 78.3 77.8 78.1

1.0 153.7 153.0 153.5

1.5 346.6 342.9 344.9

Third potential type, D=10−2.0

� Tesc T1 T2

0.1 108.2 107.1 107.9

0.5 127.4 125.4 126.8

1.0 159.1 155.7 156.7

1.5 250.2 244.6 245.9
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dex, in comparison with the low intensity regime. The expla-
nation is the following. Contrary to the weak noise intensity
regime, where the tail of the Lévy noise distribution plays a
decisive role in the escape process �less frequent but high
amplitude noise spikes, that is, govern the barrier crossing�,
here the main role in the process, due to the higher intensi-
ties, passes on to the central part of the distribution. Since all
stable distributions, including the Gaussian, have central
parts which are of similar shape, the � dependence of the
escape time becomes weaker. Furthermore, in the intermedi-
ate region we observe a nonmonotonic dependence of Tesc
versus �, examples for three values of D taken from the
intermediate regime are shown in Fig. 5. This weak non-
monotonicity most likely reflects minor differences in the
shapes of the distribution of the noise �� in the central part
�relative to the much more pronounced differences in the
tails of these PDFs�. This point will be investigated in more
detail in a forthcoming paper. Another important feature of
the intermediate regime is that the PDF of the escape times
remains exponential. This is clearly seen in Fig. 6. In that
figure, one can also recognize that the curves for �=0.1 and
1.25, as well as �=0.75 and 1.0 are almost coinciding.

In Fig. 5 we also show the dependence of the mean escape
time on the time increment �t used in our simulations, show-

ing a much higher sensitivity to the particular value chosen
for �t than in the regime of low noise strength. This is intu-
itively clear, as now the process is terminated after few
jumps only. As seen in Fig. 5, for decreasing �t, the shown
curves converge. Note, however, that the weak nonmonoto-
nicity of the escape time on � is preserved for all �t.

When the noise intensity D is increased further, the inter-
mediate regime turns over to the high noise intensity regime.
Here, all the curves for the escape time Tesc collapse into a
single curve, that approaches the constant value Tesc=10−2,
independent of D. Noting that in our simulation scheme the
time step �t=10−2 is used, we conclude that in the region of
high noise intensity the particles reach the boundary in a
single jump. We confirmed this conclusion by taking differ-
ent values of the time step, observing that, whereas the pic-
ture in the low and intermediate regions changes negligibly,
in the high intensity regime the collapsed curves again ap-
proach the value of Tesc equal to a single time step.

IV. ANALYTICAL RESULTS FOR THE CAUCHY CASE,
�=1

A standard approach to the classical barrier crossing prob-
lem in the presence of Gaussian white noise is based on the
stationary flux approximation assuming that the probability
current across the barrier is constant. This is equivalent to
requiring that the barrier is high in comparison to thermal
energy, or the noise intensity D low. The stationary flux ap-
proximation is widely used for the classical Kramers prob-
lem �1,3,6,7,35�. Here, we extend this assumption to the case
of white Lévy noise, and obtain analytical results for the
Cauchy case, �=1, in a bistable potential.

We start from the fractional Fokker-Planck equation
�FFPE�

�f

�t
=

�

�x
�dU

dx

f

m�
� + D

��f

�
x
�
, �16�

for the density f�x , t� to find the diffusing particle at position
x at time t �15�. Here, the potential U�x� is defined in Eq.
�9a�, and the fractional Riesz derivative �� /�
x
� is under-
stood via its Fourier transform,

FIG. 5. Dependence of mean escape time Tesc on Lévy index �,
for various noise intensities D in the intermediate regime. For these
results we used the truncated harmonic potential. For sufficiently
small �t, the simulations converge.

FIG. 6. Escape time PDF for the intermediate noise strength,
with D=1. Note that the curves for �=0.1 and 1.25, as well as �
=0.75 and 1.0, almost coincide, pointing at a weak inversion of the
� dependence.
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F� ��

�
x
�
f�x,t�� � �

−





eikx ��

�
x
�
f�x,t�dx = − 
k
�f�k,t� .

�17�

We note that the FFPE �16� is equivalent to the Langevin
approach in Eqs. �4�–�7�.

After rescaling in the same way as outlined above, we
arrive at the FFPE with dimensionless variables,

�f

�t
=

�

�x
�dU

dx
f� + D

��f

�
x
�
, �18a�

where

U�x� = −
x2

2
+

x4

4
. �18b�

We can rewrite Eq. �18a� in terms of the flux j,

�f

�t
+

�j

�x
= 0. �19�

We follow the stationary flux approximation of the Brownian
theory, and also pursue the assumptions used to obtain the
escape time in the Brownian limit �35�, as can be justified in
a more stringent approach �3�. Namely, we solve the station-
ary Eq. �16�, under the assumption that the stationary distri-
bution of particles differs significantly from the equilibrium
distribution: The “source” ensures that all particles are on the
left-hand side of the barrier, causing the steady influx of
particles toward the barrier; after crossing it, the particles
disappear through the “sink.” That is, following Ref. �35� we
assume

�
−


0

f�x�dx = 1 �20a�

and

j�x� = j0 = Tesc
−1 , �20b�

where j0 is the constant flux of particles across the barrier,
and Tesc corresponds to the mean first passage time.

Transforming to Fourier space, the FFPE becomes

�f

�t
= k

�f

�k
+ k

�3f

�k3 − D
k
�f�k� , �21�

while Eq. �19� attains the form

�f

�t
− ikj�k� = 0. �22�

Comparing Eqs. �21� and �22�, we obtain for the Fourier
transform of the flux the expression

j�k� = − i
�3f

�k3 − i
�f

�k
+ iD sgn�k�
k
�−1f . �23�

Now, with the use of Eq. �20b� it follows from Eq. �23� that
the stationary solution in the constant flux approximation is
determined by the following equation �36�:

d3f

dk3 +
df

dk
− D sgn�k�f = 2�ij0��k� . �24�

We solve Eq. �24� on the right and left semiaxes, and then
match the solutions. The details are presented in Appendix B.
This procedure yields

f�k� = � j0
�

2ab
exp�z*k� , k � 0,

j0
�

2ab
exp�− zk� , k � 0,� �25�

where the constants a, b, and z are given in Eqs. �B21�. The
inverse Fourier transform is indeed a PDF, namely

f�x� = �
−





e−ikxf�k�
dk

2�
=

j0

2ab
Re �

0




ek�ix+z� dk

=
j0

2b

1

�x + b�2 + a2 . �26�

The last step is the normalization conditions given by Eq.
�20a�. After integrating Eq. �26�,

j0

2ab
��

2
+ arctan�b

a
�� = 1, �27�

we arrive at the final expression for the mean escape time,

Tesc =
�

4ab
�1 +

2

�
arctan�b

a
�� . �28�

For D�1, we obtain from Eqs. �B26� and �B27� the
asymptotic result for the escape time

Tesc �
�

D
, D � 1. �29�

This result agrees with numerical simulations using the Lévy
noise �� as stochastic force, within the accuracy of about
12%.

V. CONCLUSIONS

We consider symmetric Lévy flights within the entire do-
main of Lévy indices, 0���2, in three generic types of the
potential wells: bistable potential, metastable potential, and
truncated harmonic potential. As the basis for the numerical
analysis we use the Langevin equation with the Lévy noise
as source for the stochastic force, whereas for the analytical
treatment we employ the space fractional Fokker-Planck
equation. We obtain the following results.

First, we demonstrated by extensive numerical analysis
based on solving the Langevin equation the existence of
three dynamic regimes in the barrier crossing behavior of a
particle driven by Lévy noise, namely:

�i� The regime of low noise intensity D, displaying an
algebraic dependence of the mean escape time on D through
Tesc�C��� /D����. In this regime the nature of the Lévy
noise with its characteristic property to allow for large outli-
ers, plays an essential role and dominates the escape process.
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We showed that the exponent ���� remains approximately
constant, ��1 for 0���2; close to �=2, it displays a
divergence towards the exponential dependence on 1/D at
�=2, the case of Gaussian noise. In this low noise intensity
regime, we observe a monotonous increase of the escape
time with increasing � �keeping the noise intensity D fixed�.
The probability density of escape times decays exponentially.

�ii� The regime of intermediate noise intensity, in which
the escape time is determined by the central part of probabil-
ity distribution of the noise. This regime is characterized by
the following features: The difference between the escape
times for different Lévy indices significantly decreases, since
in the central part all stable distributions are very similar to
each other, as well as to the Gaussian distribution. Addition-
ally, there is a nonmonotonic dependence of the escape time
with increasing �. However, the probability densities of es-
cape times still decay exponentially.

�iii� The universal regime of high noise intensity, where
the particle escapes with the first step �or in very few steps�.
The curves denoting the dependence of the escape time Tesc
on noise intensity D collapse onto a single curve for all val-
ues of � �including the Gaussian limit�.

Second, for the particular Cauchy case, �=1, we develop
the kinetic theory of the escape over the barrier in a bistable
potential. We start from the space fractional Fokker-Planck
equation and use the assumption of a constant flux over the
barrier. We find analytically the expression for the escape
time, which at low noise intensities produces the result Tesc
�� /D. This result agrees with numerical simulation within
the accuracy of about 12%.

We finally note that it will be interesting to investigate the
case of rotational diffusion, in particular, in Maier-Saupe-
type potentials �37�.

Note Added in Proof. A paper on a related topic appeared
recently �40�.
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APPENDIX A: SIMULATIONS DESCRIPTION

In this appendix, we briefly outline our simulations strat-
egy, in particular, how we simulate the white Lévy noise
���n�. The corresponding generator is taken from �38�. We
start by calculating the value

X =
sin����

�cos ��1/�� cos��1 − ����
W

��1−��/�

, �A1�

where � is a random value uniformly distributed on the in-
terval �−� /2 ,� /2�, W is an independent random variable
with exponential distribution, and � is the Lévy index, 0
���2.

The proof that the calculated variable X possesses a Lévy
distribution function goes as follows. First, let 0���1.

While �0, the expression for X may be presented as

X = �a���
W

��1−��/�

, �A2�

where

a��� = � sin ��

cos �
��/�1−��

cos��1 − ���� . �A3�

Then

P�0 � X � x� = P�0 � X � x,�  0�

= P�0 � �a���
W

�1/�−1

� x,�  0�
= P�W � x−�/�1−��a���,�  0�

�
1

�
�

0

�/2

d��
a���x�/�1−��




d�e−�

= �
0

�/2

d� exp�− x−�/�1−��a���� . �A4�

The latter expression, according to Ref. �39�, is an integral
representation of Lévy distribution.

In the case 1���2 analogous steps pertain, but now for
the quantity P�X�x ,�0�. When �=1, the relation for X
turns into X=tan �, that is known to be a random value with
Cauchy PDF. One does not need to consider the case ��0: it
merely corresponds to negative X values.

The numerical simulation of Tesc as function of D is per-
formed according to the following flowchart:

�1� A “particle” is placed at the potential minimum.
�2� A value of � is fixed.
�3� The discrete-time Langevin equation �8� is iterated,

until the particle reaches a definite coordinate, namely x=0
for the bistable potential, x=10 for the metastable potential,
and x= ±1 for the truncated harmonic potential.

�4� The event time t=n�t is stored.
�5� Steps 3 and 4 are executed 10 000 times for each fixed

value of D, and the average escape time calculated.
A similar procedure is used to simulate the escape time

PDF p�t�, apart from taking the average. Explicitly:
�1� The “particle” is placed at the potential minimum.
�2� Some value of D is fixed.
�3� Some value of � is taken.
�4� The discrete-time Langevin equation �8� is iterated,

until the “particle” reaches a definite coordinate, namely x
=0 for the bistable potential, x=10 for the metastable poten-
tial, and x= ±1 for the truncated harmonic potential.

�5� The event time t=n�t is stored.
�6� Step 4 is executed 200 000 times for each fixed value

of �, but, this time, the obtained event times are not aver-
aged, but handled with a simple routine, that builds the PDF.

Each run was repeated and both results compared.
Throughout, high reliability was observed.
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APPENDIX B: MATCHING PROCEDURE

In this appendix, we collect the necessary steps to identify
the constants for the determination of the density f in the
barrier crossing for the Cauchy case.

To this end, we solve Eq. �24� on the right and left semi-
axes, and then match the solutions. For the two domains, we
make the exponential ansatz

f�k� = �C1ezk + C2ez*k, k  0,

C3e�k + C4e�*k, k � 0,
� �B1�

where

z = −
u+ + v+

2
+ i

u+ − v+

2
	3, �B2�

with

u+
3 =

D

2
�1 +	1 +

4

27D2� , �B3a�

v+
3 =

D

2
�1 −	1 +

4

27D2� . �B3b�

Moreover, we define

� = −
u− + v−

2
+ i	3

u− − v−

2
, �B4�

with

u−
3 =

D

2
�− 1 +	1 +

4

27D2� = − v+
3 , �B5a�

v−
3 =

D

2
�− 1 −	1 +

4

27D2� = − u+
3 , �B5b�

which implies that

� =
u+ + v+

2
+

u+ − v+

2
i	3, z* = − � . �B6�

To determine the unknown complex constants
C1 ,C2 ,C3 ,C4 we match the results at k=0. Thus, first, we
require f�k−0�= f�k+0�, which, using Eq. �B1� yields

C1 + C2 = C3 + C4. �B7�

The second condition is obtained by integration of Eq.
�24� over the small region �−� ,��:

�
−�

�

dk f� + �
−�

�

dk f� − D�
−�

�

dk sgn�k�f = 2�ij0. �B8�

In the limit �→0 we recover the condition

f��0 + � − f��0 − � = 2�ij0, �B9�

or, after inserting Eq. �B1� into Eq. �B9�,

C1z2 + C2z*2 − C3�2 − C4�*2 = 2�ij0. �B10�

The third condition is that the PDF is a real function:

f�x� = �
0


 dk

2�
e−ikxf1�k� + �

−


0 dk

2�
e−ikxf2�k� �B11�

and

f*�x� = �
0


 dk

2�
eikxf1

*�k� + �
−


0 dk

2�
eikxf2

*�k� . �B12�

On the other hand, by changing k→−k in Eq. �B11�, we find

f�x� = �
−


0 dk

2�
eikxf1�− k� + �

0


 dk

2�
eikxf2�− k� . �B13�

Since f�x� is a real function, we see from Eqs. �B12� and
�B13�,

f1
*�k� = f2�− k�, f2

*�k� = f1�− k� . �B14�

Let us now insert Eq. �B1� into Eqs. �B14�. From the first
equation we have

C1
*ez*k + C2

*ezk = C3e−�k + C4e−�*k. �B15�

The second equation gives rise to the same result. Since z*

=−� �see Eq. �B6��, we have

C1
* = C3, C2

* = C4. �B16�

Moreover, from Eqs. �B16� and �B7� we see that

�C1 + C2�* = C3 + C4 = C1 + C2; �B17�

thus, from Eqs. �B16� and �B17�, we obtain the following
relations:

C1R = C3R, C2R = C4R, �B18a�

C3I = − C1I, C4I = − C2I, �B18b�

C2I = − C1I, C4I = − C3I, �B18c�

C2I = C3I = − C1I = − C4I. �B18d�

Therefore, we are actually dealing with three constants only,
namely, C1R, C2R, and CI:

C1 = C1R + iCI, C2 = C2R − iCI, �B19a�

C3 = C1R − iCI, C4 = C2R + iCI. �B19b�

Inserting Eqs. �B19� into Eq. �B10� produces

C1R�z2 − �2� + C2R�z*2 − �*2� + iCI�z2 − z*2 + �2 − �*2�

= 2�ij0. �B20�

For convenience, we define

a =
u+ + v+

2
, b =

	3

2
�u+ − v+� . �B21�

Then

z = − a + ib, � = a + ib , �B22�

such that
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z2 − �2 = − 4iab , �B23a�

z*2 − �*2 = 4iab , �B23b�

z2 − z*2 + �2 − �*2 = 0. �B23c�

With the use of Eq. �B23� we obtain from Eq. �B20�:

C2R − C1R =
�j0

2ab
. �B24�

Now, combine Eqs. �B19� and �B24�, and insert into Eqs.
�B1�,

f1�k� = �C1R + iCI�ezk + �C1R +
�j0

2ab
− iCI�ez*k, k � 0,

�B25a�

f2�k� = �C1R − iCI�e�k + �C1R +
�j0

2ab
+ iCI�e�*k, k � 0.

�B25b�

We are looking for the stationary �nonequilibrium� distri-
bution; therefore we assume C1R=CI=0 in order to retain in
Eq. �B25� only those terms that are proportional to the flux
j0. This leads us to the result �25�.

To calculate the D�1 limit of the characteristic escape
time �29�, we obtain the following limiting behaviors. Thus,
from Eqs. �B3� and �B21� we see that

u+ �
1
	3
�1 +

	3D

2
� , �B26a�

v+ �
1
	3
�− 1 +

	3D

2
� , �B26b�

and

a � D/2, b � 1, �B27a�

arctan�b

a
� � arctan� 2

D
� �

�

2
. �B27b�

APPENDIX C: COMPARISON TO ANALYTIC RESULTS
FROM REF. [26]

In this appendix, we show that our results are consistent
with those obtained by Imkeller and Pavlyukevich from a
different approach to the barrier crossing problem of a par-
ticle exposed to Lévy stable noise �26�.

We recall that in Ref. �26�, the authors start from the
formula

�exp�ikLt� = exp�− C���t
k
�� , �C1�

with 0���2, where Lt is the Lévy stable process in the
Lévy-Khintchin representation. The constant C is defined as

C��� = 2�
0


 1 − cos y

y1+� dy =
2��1 − ��

�
cos���

2
� �C2�

for � strictly smaller than 2. In Ref. �26�, the authors inves-
tigate the system driven by the Lévy stable process �Lt,
where � corresponds to the noise intensity:

�exp�ik�Lt� = exp�− C���t��
k
�� . �C3�

Note that � is not completely equivalent to our noise inten-
sity D. Indeed, in the main body of the paper we investigate
the system as driven by the Lévy stable process Lt, with

�exp�ikLt� = exp�− Dt
k
�� . �C4�

Since Lt=�Lt, from comparison of Eqs. �C4� and �C3�, we
see that

D = C�����. �C5�

Consider the exemplaric case of the truncated harmonic
potential

U�x� = �x2/2, − 1 � x � 1,

0, otherwise.
� �C6�

From our formula Tesc�C��� /D����, assuming that ����
�1 �that we found to be nicely fulfilled for small and inter-

FIG. 7. Comparison of the coefficients C��� obtained by using
numerical simulations with the analytical behavior of C��� �full
line� derived in Ref. �26�, for the truncated harmonic potential.
While the triangles denote our results for �=1 fixed, the dashed
line refers to our results with ����, where we permit an explicit
dependence on �.

FIG. 8. Comparison of the coefficients C��� obtained by using
numerical simulations with the analytical behavior of C��� �full
line� derived in Ref. �26�, for the bistable potential.
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mediate values of �, see Fig. 3�, we find that

Tesc � C���/D . �C7�

The result reported in Ref. �26� for this potential profile at
small noise intensities behaves like

T �
�

2�� , �C8�

see Eq. �24� from Ref. �26�, with their constants a and b
chosen as unity, a=b=1.

Thus, if we require Tesc=T, then by virtue of Eqs. �C7�,
�C8�, �C5�, and �C2�, we find the relation

C��� =
�

2
C��� = ��1 − ��cos���

2
� . �C9�

From this relation we find the asymptotic behavior of C���,

C��� � ���1� = 1, � → 0,

�/2, � = 1,

1/�2 − �� → 
 , � → 2− � �C10�

that agrees nicely with our numerical results, see Fig. 3 in the
inset of the bottom graph corresponding to the truncated har-
monic potential.

Figure 7 shows a direct comparison between the analyti-
cal result from Ref. �26� and our numerical results, by en-
forcing the ����=1 equality. The agreement is excellent. We
also show that taking a variable ���� into account, only a
slight deviation is obtained.

For comparison, Fig. 8 shows the analogous results for
the case of the bistable potential. While general agreement is
quite good, for Lévy index decreasing below �=1, an in-
creasing deviation is observed. We note that according to the
results from Ref. �26�, the coefficient C is � at �=1, in
accordance with our result �29�.
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