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[1] We present a physical model to explain the behavior of long-

term, time series measurements of chloride, a natural passive tracer,

in rainfall and runoff in catchments [Kirchner et al., Nature,

403(524), 2000]. A spectral analysis of the data shows the chloride

concentrations in rainfall to have a white noise spectrum, while in

streamflow, the spectrum exhibits a fractal 1/f scaling. The

empirically derived distribution of tracer travel times h(t) follows

a power-law, indicating low-level contaminant delivery to streams

for a very long time. Our transport model is based on a continuous

time random walk (CTRW) with an event time distribution

governed by y(t) � Abt
�1�b. The CTRW using this power-law

y(t) (with 0 < b < 1) is interchangeable with the time-fractional

advection-dispersion equation (FADE) and has accounted for the

universal phenomenon of anomalous transport in a broad range of

disordered and complex systems. In the current application, the

events can be realized as transit times on portions of the catchment

network. The travel time distribution is the first passage time

distribution F(t;l) at a distance l from a pulse input (at t = 0) at the

origin. We show that the empirical h(t) is the catchment areal

composite of F(t;l) and that the fractal 1/f spectral response found

in many catchments is an example of the larger class of transport

phenomena cited above. The physical basis of y(t), which

determines F(t;l), is the origin of the extremely long chemical

retention times in catchments. INDEX TERMS: 1860

Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic

processes; 1871 Hydrology: Surface water quality; 3210

Mathematical Geophysics: Modeling

1. Introduction

[2] The distribution of travel times required for chemical
substances to travel through a catchment is an important
hydraulic quantity, determining the retention of pollutants until
they are eventually released to a stream or lake. The same
distribution controls the transport of chemicals in subsurface
hydrological systems. The nature of this distribution determines
the expected ecological impact of contaminants.
[3] In a long-term catchment study conducted at Plynlimon,

Wales, Kirchner et al. [2000] (hereafter denoted KFN) compare
the (input) time series of the concentration cR(t) of chloride tracer
in the rainfall to the (output) time series of the concentration cs(t)

into the Hafren stream. They relate the concentrations through the
convolution integral

cs tð Þ ¼
Z 1

0

h t0ð ÞcR t � t0ð Þdt0 ð1Þ

where the effective travel time distribution h(t) governs the lag time
between injection of the tracer through rainfall and outflow to the
stream.
[4] KFN observe that the streamflow (volume of water)

responds rapidly to storm rainfall inputs while the cs(t) response
is highly damped (i.e., low-level contaminant delivery to streams
for a very long time). The timescales of catchment hydrologic and
chemical response are resolved using spectral methods [Duffy and
Gelhar, 1985] (in which the input/output response can be com-
pared at each (time) wavelength). The spectral power of the water
fluxes of rainfall and streamflow coincide while the spectra of cs(t)
show strong attenuation on all wavelengths less than 5–10 years.
Further, the cR(t) spectra scale as white noise in sharp contrast to
the fractal 1/f scaling of the cs(t) spectra. Using these results in the
Fourier transform of the convolution in (1), with f denoting
frequency, and Cs, H and CR representing the respective Fourier
transforms,

Cs fð Þ ¼ H fð ÞCR fð Þ ð2Þ

and the relation of the power spectra is

Cs fð Þj j2¼ H fð Þj j2 CR fð Þj j2 ð3Þ

Since |CR( f )|
2 is nearly a white noise spectrum (a constant) one

has |H( f )|2 / |Cs( f )|
2. From the measured power-law scaling of

|Cs( f )|
2 / f �0.97, KFN conclude that

h tð Þet�m ð4Þ

(from H( f ) � f �(1�m) ), where m 
 0.5.
[5] In order to ensure that h(t) is integrable and possesses a

finite average travel time, KFN arbitrarily chose the gamma
distribution

h tð Þ ¼ tg�1

|g� gð Þ e
�t=| ð5Þ

with g = 0.48 and | = 1.9 years, with a characteristic travel
time Th �

R
0
1h(t)tdt = g|. Due to the relatively large value of

|, essentially the entire data correspond to the power-law h(t)
� tg�1 with the power spectrum |Cs( f )|

2 / |H( f )|2 � f �2g.
KFN refer to similar scaling between f�0.7 and f�1.2 found in
Scandinavian and North American field sites, which indicates a
certain ubiquity to fractal, scale-free forms (which is the issue
we address in this letter).
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2. Transport Models

[6] The first step to understanding transport in the catchment is
the clarification of the meaning of (1). The h(t) is the effective
response to a pulse of rain falling on the entire area of the
catchment. Every point of this area is a source of chloride and
the stream is a line sink for the chloride. We simplify the area to be
a rectangle of width l about this stream sink (with periodic
boundary conditions on the sides perpendicular to the stream
[Scher and Montroll, 1975]). The sink or absorbing boundary
ensures the correct ‘‘counting rate’’ of chloride at the arriving
point, i.e., the first passage time distribution F(t;l ) is the appro-
priate travel time distribution from a pulse source at point l. In
terms of this intrinsic distribution,

cs t; lsð Þ ¼
Z 1

0

X
l2�

F t0; l � lsð ÞcR t � t0; lð Þdt0 ð6Þ

where cs(t;ls) is the chloride concentration at the stream position ls
at time t, � is the size of the catchment and cR(t;l ) the rain-input at
a position l in �. We can consider the sampling positions {ls} of cs
to be a small region compared to � and hence cs(t;ls) 
 cs(t). To do
the l-sum we assume that the rainfall is distributed uniformly in �,
cR(t;l ) 
 cR(t). Hence, we recover (1) now with

h tð Þ �
X
l2�

F t; lð Þ ð7Þ

The distribution F(t;l ) must be integrable in time and thus so h(t)
for a finite �. The basis of comparison for various transport
approaches is the computation in (7).

3. Advection-Dispersion Equation (ADE)

[7] The textbook approach to transport of passive tracers in both
surface and subsurface systems usually focuses on the advection-
dispersion equation (ADE)

@W=@t þ v@W=@x ¼ D@2W
�
@x2 ð8Þ

e.g., for 1d with constant v the average fluid velocity and D the
dispersion coefficient. This equation governs the temporal
evolution of the probability density function (pdf) W(x,t) of
finding a tracer particle, which undergoes dispersive motion, at a
certain position x at time t after release at t = 0. The pdf W is the
normalized concentration profile.
[8] The travel time distribution belonging to (8) can be obtained

by the Laplace Transform (LT ) technique. This yields the LT ~F (u; x)
�
R
0
1F (t; x)e�utdt of the first passage time from x to the absorbing

boundary at x ¼ 0; ~F u; xð Þ ¼ exp x v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Duþ v2

p� ��
2Dð Þ

	 

. LT

inversion delivers the travel time distribution

F t; xð Þ ¼ xffiffiffiffiffiffiffiffiffi
4pD

p
t
3
2

exp
� vt � xð Þ2

4Dt

 !
ð9Þ

which when inserted for F(t; x) in (7) yields

h tð Þ /
Z l

0

F t; xð Þdx ¼ v

2
erf zð Þ þ erf

Pe

4z
� z


 ��

þ
exp �z2ð Þ � exp � Pe

4z
� z

	 
2� �
ffiffiffi
p

p
z

�
ð10Þ

where the Peclet number Pe � lv=D; z � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
v2t=D

p
and erf(z) is

the error function (the same result (10) was also derived in
Kirchner et al., 2001). For t < 0.1D/v2, h(t) � t�1/2 which is
similar to (4) for m 
 0.5. [This upper limit on the time range
holds for Pe � 1; for Pe < 1 the limit is smaller.] The range is
estimated by assuming D to be the macrodispersion, D = va,
where a is the dispersivity. Assuming v 
 102 m/yr and on the
km scale a � (1–102) m, t < 0.1a/v � (10�3�10�1) yr. One
needs v 
 10 m/yr and a � 102 m in (10), for h(t) � t�1/2 to
partially overlap the time range of observation of this dependence
[Kirchner et al., 2000]. Moreover, this behavior is only the same
as (4) in the special case where m (or g) = 1/2. The catchment
data (spectral power � f�2g) quoted above cover a range of 0.7
� 2g � 1.2.
[9] For large t, h(t) in (10) exhibits an exponential decrease

�t�3/2 exp (�v2(4D)�1t) which is faster than (5). The decrease in
h(t) at large t (t� l/v) is due to the finite size of the catchment and
not an arbitrary limiting time. The relation between the operative
time range of (4) and l will be determined in the following.

4. Continuous-Time Random Walk and
Time-Fractional-ADE

[10] As shown above the standard treatment of the transport
using the ADE yields a marginal accounting of the data. A
transport model must determine a F(t;l ) that when inserted in (7)
gives rise to (4) for over three decades of time [Kirchner et al.,
2000]. As we will show this is best expedited with a non-Gaussian
form of F(t;l ). A particularly dispersive form of F(t;l ) is associated
with anomalous transport which has been observed in a wide range
of disordered and complex systems: electron hopping/multiple-
trapping in amorphous semiconductors [Scher and Montroll,
1975], particle migration in fracture networks [Kosakowski et al.,
2001], contaminant transport in heterogeneous porous media
[Berkowitz and Scher, 1998], anomalous diffusion [Metzler and
Klafter, 2000], and Hamiltonian chaos [Klafter et al., 1996]. There
are key common features in these anomalous transport phenomena,
e.g., non-Gaussian propagation of an initial pulse of particles with
a mean position ‘(t) and standard deviation s(t) exhibiting the same
sublinear dependence on t (in the presence of a bias or head). A
continuous time random walk (CTRW) transport process has
successfully accounted for these unusual basic features. The
anomalous behavior is an outcome of a CTRW governed by a
long-tail distribution of the individual transition times or event
times (which have to be defined in each physical context, e.g., trap
release),

y tð ÞeAbt
�1�b ð11Þ

where Ab is a constant. Over the observation time range in which
(11) obtains we have for the propagating plume P(l,t)

‘ tð Þetb; s tð Þetb 0 < b < 1 ð12Þ

The highly dispersive nature of this P(l,t) can be discerned by
the ratio s(t)/‘(t) � constant, instead of the familiar 1

� ffiffi
t

p
for a

Gaussian plume. The latter is produced for b > 2 (while for 1
< b < 2 one has an intermediate t-dependence).
[11] The CTRW accounts naturally for the cumulative effects of

a sequence of transitions which constitutes the particle transport.
The formalism of the CTRW has been well documented in the
literature [Berkowitz and Scher, 1998; Metzler and Klafter, 2000].
For brevity we show the key equation for our purpose here in
Laplace space (for three dimensions)

~F s; uð Þ ¼ ~P s; uð Þ
�
~P 0; uð Þ s 6¼ 0 ð13Þ
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where the particle starts at the origin at t = 0+, ~P(s, u) is the LT of
P(s, t), the probability density to find the particle on s at time t
(plume), and ~F (s, u) is the LT of F(s, t), the probability per time for
the particle to first arrive at s at time t.
[12] Explicit evaluations for ~F (s, u) have been determined for

symmetric situations (e.g., plane (line) source to plane (line) sink)
and with the use of (11) [Scher and Montroll, 1975]. The
symmetric cases allow a reduction of the problem to a one-
dimensional form of F which we write as F(t; x) and

~~F u; xð Þ ¼ exp �xub
�
�l

	 

0 < b < 1ð Þ ð14Þ

(u dimensionless). The inverse LT of ~F (u; x) has been expressed in
terms of a class of Fox H-functions [Metzler and Klafter, 2000],
but it is more expedient to work directly with (14) in the evaluation
of h(t), which will be considered in the next section.
[13] Mathematically, the CTRW (in the special case using (11)

and 0 < b < 1) is interchangeable with the time-fractional
advection-dispersion equation (FADE) [Metzler and Klafter, 2000]

@W

@t
¼ 0D

1�b
t �vb

@

@x
þ db

@2

@x2


 �
W x; tð Þ ð15Þ

where the Riemann-Liouville operator is defined in terms of the
convolution [Metzler and Klafter, 2000],

0D
1�b
t W x; tð Þ ¼ 1

� bð Þ
d

dt

Z t

0

dt0
W x; t0ð Þ
t � t0ð Þ1�b ; 0 < b < 1: ð16Þ

The form of FADE (15) is the natural generalization of the ADE (8)
for power-law forms of y. The solutions of FADE reproduce those
of the CTRW in this special case, and in the spatial continuum limit
they form a natural bridge between the CTRW and the ADE
[Berkowitz and Scher, 2001].

5. Long Retention Times

[14] We proceed to insert (14) into the LT of (7) to obtain

~h uð Þ /
Z l

0

exp �lub
�
�l

	 

dl ¼ �lu�b 1� exp �lub

�
�l

	 
	 

ð17Þ

where �l is the mean step distance. The expression for ~h(u) in (17)
has been thoroughly studied in another context [Scher and
Montroll, 1975]; the main features are

h tð Þe tb�1; t < t*
t�b�1; t > t*

�
ð18Þ

(t dimensionless time). The exponent for t > t* ensures that h(t)
is integrable. On a log-log plot h(t) is two constant slopes, b � 1,
�1 � b, with a turnover range between them. The center time of
this range, t*, can be estimated as the time for the argument of the
exponent in (17) to be �O(1) (using u � 1/t)

t*e 1� b
b


 �1�b
b

bl
�
�l

	 
1
b ð19Þ

(The b-factors derive from a more detailed analysis [Scher and
Montroll, 1975, Appendix C].) For b = 1/2, in (17) one can do the
inverse LT and obtain h(t) � (pt)�1/2(1 � exp(�l2 /4�l2t)), clearly
showing (18)–(19).
[15] The change from t to t is model dependent (to be discussed

below). We use t = vot/�le, where vo is a characteristic velocity (of

the velocity distribution) and e is a constant. For b = 1/2, vo � 100
m/yr, l � 1/2 km, �l � 30 m and e � 1/2, one has (from (19) with
t* = vot*/�le), t* � 10 yr, which is a reasonable time scale for the
change from h(t) � tb�1. Hence, our scaling result (18) agrees with
the KFN data (4) over the measurement time range (>3 decades for
t � 10 yrs) with b = g (� 1 � m). The t-‘‘cutoff’’ for h(t) in (18) is
algebraic, t�b�1, not exponential as in (5)! This behavior of h(t) is
indicative of extremely long chemical retention times in catch-
ments. The turnover to the t�b�1 dependence (in (18)) is a
prediction of the CTRW theory and has not yet been observed.
A finite value of Th depends on a change in the behavior of (11).
For t � t*, the tail of y(t) becomes steeper and for b > 2, the
intrinsic arrival time distribution evolves to ~F (t; x).
[16] Independent tests of our transport model can be obtained

with experiments using a different tracer (d) and boundary con-
ditions. For injection of the tracer d at various catchment points
{x}, the concentration in the stream cd (t; ls) is proportional to F(x
� ls, t), determined for these boundary conditions. [This result
answers the question raised by Stark and Stieglitz [2000] about a
site-specific spill.] This is also a method for obtaining a value of b,
which determines the shape of F(x, t).
[17] There are many different physical mechanisms (cf. Refs.

above) that can give rise to the y(t) in (11) that has generated our
results for h(t). The common features are the representation of the
transport process as a series of transitions [Berkowitz and Scher,
1998, 2001] and the encounter within this series of a sufficient
number of transition-times that are much larger than the median
one. These relatively few long-time events, which can be due to
release from traps/stagnant-regions and/or passage through low
velocity segments, can have a dominant influence on the overall
transport. The relative weighting of these events is expressed by
the exponent of the power-law in (11).
[18] The hydrologic environments beneath the catchment sub-

regions can contain a sufficient number of these low velocity
sections and stagnant dead-ends. The local slope (and interconnec-
tion [Rodriguez-Iturbe and Rinaldo, 1997]) of the catchment side-
channels also affects the velocity distribution. The subsurface of the
catchment basin can be modeled as a heterogeneous porous medium
and/or a random fracture network [Berkowitz and Scher, 1998]. In
the latter the fragment-length distribution, f (s), and the fragment-
velocity histogram, �(X), are mapped onto the probability rate for a
transit time t (through a fragment) with a displacement s,

½y s; tð Þ / � Xð Þf sð Þ� ð20Þ

where x = 1/v, X̂ ¼ v̂, t = sx and y(t) �
P

s y(s, t). The anomalous
transport observed in the fracture network particle tracking
simulations is due to the power-law tail of �(X) ! x�1�b at large
x. This is the expected behavior to be found in the catchment
subsurface �c(X) distribution because this hydrologic environment
is the same as ones modeled successfully by the CTRW theory
[Berkowitz and Scher, 1998, 2001]. The experiments outlined
above can test these properties.

6. Conclusion

[19] In this letter we introduce the phenomenon of anomalous
transport into an analysis of the comparison of the power spectra of
the time series of chloride in rainfall and in (stream) runoff. An
effective distribution of travel times h(t) is derived (by KFN from
the data) which we show is composed of the summation from all
sites of the source distribution F(s, t) in the catchment. The latter,
in turn, is composed of a sequence of transitions governed by a
power-law (tail) distribution (11). The results agree naturally with
the data reported from a number of catchment studies, in the sense
of a power-law scaling of h(t) over decades of t in the observational
time range (using reasonable parameters). A consequence of our
transport model is a power-law ‘‘cutoff’’ of h(t) predicting
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extremely long chemical retention times with subsequent impact on
the long-term effects of contaminants on these ecosystems.
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