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Abstract. We propose to model three-dimensional (3D) knots as effective
vertex networks with vanishing topological exponents to study their equilibrium
behaviour. This model is self-consistent and predicts weak localization in knots
with up to five essential crossings. The resulting localization exponent for the
3D trefoil is in numerical agreement with a recent simulation study. In more
complex knots, however, delocalization is expected. It is shown that this approach
corresponds to the decomposition of the knot into C coupled loops of variable
size, where C is the number of essential crossings.

1. Introduction

During the polymerization of a long closed chain, freely floating in a solvent, a knot is almost
certainly created, i.e. the topology of the final ring polymer differs from that of the simply
connected unknot ∅. Originally conjectured by Frisch, Wassermann and Delbrück [1], it was
shown for closed self-avoiding chains more recently that the probability p(∅) of finding a ring
polymer with the topology of the unknot decays exponentially with the number N of monomers:
p(∅) ∝ e−N/N0 [2]–[4].

The likelihood of knottedness of polymer chains has a profound impact in biology and
chemistry. For instance, the permanent entanglements in naturally occurring knotted DNA
impede the separation of the two strands of the double helix, and therefore replication and
transcription [5, 6]. Specialized enzymes (topoisomerases) are necessary to actively reduce the
knottedness of DNA under energy consumption from ATP [5, 6]. The specific operation of these
enzymes requires an accurate detection mechanism of knottedness. The existing scenarios for
such a mechanism, based on increased bending or decreased waiting periods between collision
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events between different portions of the DNA in the presence of a knot [7] have been shown
to explain the working efficiency of topoisomerases for DNA chains, which are not too long
in comparison with the persistence length �p of the DNA chain. For much longer chains, an
additional mechanism is necessary to account for the accuracy of topoisomerases; a plausible
explanation may be a (partial) localization of the knotted chain due to thermal fluctuations,
i.e. a segregation into a simply connected part and another one containing all topological
entanglements. Such a (partial) localization would create bending- or collision-enriched zones
and therefore enhance correct detection through the enzymes. Note that in the emanating field
of topological chemistry [8], similar entropy-driven localization properties may be employed to
create novel designer molecules and materials [9].

Apart from this biophysical motivation, it is a key issue in the understanding of knotted
polymers to determine the degree of localization, i.e. the extent of the aforementioned segregation
of all non-trivial topological entanglements into a small portion of the knot of length �, from a
simply connected structure of length L − �†. For 2D self-avoiding walks with oriented over-
and underpassings, the prime components of a knot become strongly localized, and to leading
order behave like point-like objects on the fringe of a simply connected ring polymer [11]. Flat
knots, obtained by pressing a 3D knot against a wall by an external force, localize in a hierarchy
of different contractions of the original configuration [12]. In particular, the gyration radius Rg

of such 2D knots is, to leading order, independent of the knot type [11, 12].
For 3D knots, no such rigorous treatment of the localization problem is known. The difficulty

arises from the fact that the calculation of statistical properties of a knotted polymer chain in three
dimensions requires sampling over the configuration space without changing the topology of the
knot. Knot theory provides powerful tools for distinguishing and classifying knots by means of
invariants, for example, knot polynomials [13]. However, these methods are hard to implement
analytically, and they are based on the projection of a given 3D knot onto a 2D plane, which is
then further analysed by Reidemeister moves [13]. Although quite successful in classifying knots
per se, such projections are not directly suitable for evaluating statistical properties, since they
may disguise certain symmetries of the knot visible only in the 3D space. In fact, the permanent
entanglements in knots effectively reduce the accessible volume in configuration space and
cannot be phrased in a Hamiltonian form. The interplay between topological constraints and
fluctuations can be studied analytically in ‘slip-linked’ chains, so-called paraknots [14]. For
real 3D knots, one can only retreat to simulations studies and phenomenological models. By
Monte Carlo simulations of chains of equal length L, Quake obtained R2

g ∼ A(C)L2ν , which
contains a knot-type sensitive prefactor scaling as A(C) ∼ C1/3−ν with the number C of essential
crossings (ν = 0.588 is the swelling exponent) [15]. This dependence on the knot type actually
occurs qualitatively in DNA electrophoresis motility studies [16]. The scaling behaviour of
A(C) corresponds to the assumption that the knot can be decomposed into C self-avoiding,
non-interacting rings of equal length L/C, i.e. that the knot is completely delocalized [15]. An
analogous result was obtained by Grosberg et al [17] from an inflated sausage model. In contrast,
a number of simulations studies may indicate that these are finite size manifestations: Katritch
et al [10] obtained that the size distribution of the knot region is strongly peaked for relatively
small �; Janse van Rensburg and Whittington [18], and Orlandini et al [19] found for knots with
prime components of up to six crossings that in the L → ∞ limit the knot region for each prime

† To actually determine and measure the size � in simulations studies in three dimensions turns out to be problematic;
compare, for example, [10].
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component is point-like. Remarkably, the localization of (simple) knots can also be recovered
in a certain limit of the inflated sausage model discussed by Grosberg et al [17], see also [4].

2. Effective knot-graphs

Here we propose a self-consistent map of 3D knots Cm on effective vertex networks, which
we call knot-graphs G(C)†. For these, we are able to determine the associated number of
configurations from which, in turn, the localization properties can be deduced. This modelling
is based on the scaling theory for arbitrary polymer networks consisting of self-avoiding chains
formulated by Duplantier [20]. Excluded volume effects are not considered, and it is assumed
throughout that all segments within a knot-graph are much longer than the persistence length of
the chain, i.e. fully flexible.

As in our previous studies of flat knots and paraknots [12, 14] we use the a priori assumption
that the knot is localized and check for the self-consistency of this assumption. To this end, we
assume, a priori, that the knot is localized in the sense that all topological entanglements which
distinguish the knot Cm from the unknot ∅ are localized within a certain portion � of the chain, the
knot region, leaving its complement of size L − � simply connected. The assumed localization
implies that the mean size of the knot region 〈�〉‡ is small in comparison with the overall size of
the chain L, i.e. 〈�〉/L → 0 in the long-chain limit we are working in. The latter statement is
equivalent to requiring that in the distribution p(�) ∼ �−c of the length � of the knot region the
exponent c > 1.

If localization in this sense prevails, we make the second assumption which presumes that the
number of degrees of freedom ωCm of a knot Cm is approximately given by the number of degrees
of freedom of the corresponding knot-graph G(C), ωCm ≈ ωG(C), the latter being defined as
follows. Consider a given knot projection [13], i.e. the projection of a knot onto a plane such that
it corresponds to the configuration with the minimum number of crossings, as shown in figure 1.
These essential crossings reflect the self-engulfing effect of the permanent entanglements which
create the knot topology. If the knot is localized, the knot-graph approximation means that
the chain within the knot region due to this self-engulfing effectively confines itself such that its
entropy is expected to be comparable to the construct which emerges when the essential crossings
are actually thought of as real contact points between the chain. That is, the resulting construct is
a 3D paraknot, a polymer chain with ‘slip-links’ [14]. In other words, the knot-graph assumption
states that, due to the localization of the knot, the number of degrees of freedom of this knot
can effectively be obtained from a polymer network in which the topological entanglements are
replaced by vertices (point-like contacts) which now connect different segments of the polymer,
such that these segments are allowed to exchange length with each other. Physically, one could
envisage such vertex slip-links as little rings enforcing pair contacts along the chain such that the
chain can still slide freely through them and the segments created by the slip-links can exchange

† We denote a knot by the number of essential crossings C and a subscript enumerating the different types of knots
with the same C. As a knot-graph is the same for all m types of a given C, it is denoted by G(C) only.
‡ The mean size 〈�〉 is defined as

〈�〉 =

∫ L

a
�p(�) d�∫ L

a
p(�) d�

where a is a short-distance cutoff determined by the lattice constant. Thus, 〈�〉 ∼ L if c < 1, 〈�〉 ∼ ac−1L2−c if
1 < c < 2, and 〈�〉 ∼ a if c > 2.
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Figure 1. Normal projections (left) and 3D visualization (middle) of the knots
31, 41, 51 and 52, together with the associated knot-graphs G(C) (right) whose
number of vertices is n4 = C −1, in terms of the number of essential crossings C
of the knot. For 31, the arrow indicates the loop which is supposed to become the
large one under the a priori assumption L − � 	 �; effectively, only one of the
two associated vertices marked by the circles can be felt by the knot region with
respect to the big loop for a given snapshot (i.e. the projection shows one crossing
which effectively becomes irrelevant in the 3D configuration space). Similarly
for the other knots.

length across these slip-link vertices. A subtlety arises in the actual number of such effective
vertices, which are to be considered relevant for the knot-graph G(C) associated with a 3D knot
Cm. We claim it is C − 1, again for the localized state we assumed. Observing the two circled
crossings for the trefoil in figure 1, and assuming that the segment depicted by the arrow is the
large, simply connected part of size L − �, it can be seen that only a negligible minority of
configurations are realized such that both entanglements are actually enforced. This observation
can be generalized for any knot which is localized, and it corresponds to the statement that a
knot with C crossings can be represented by C polymer rings [15]†.

A justification for this second assumption, including the C − 1 choice for the number of
effective vertices, comes from the studies of Quake who assumed in his analysis that a knot Cm

can be decomposed intoC independent loops. The predictions of this model were corroborated by
numerical studies [15] and correspond to the results of the inflated sausage model of Grosberg
et al [4, 17]. The difference to our model in Quake’s approach lies only in the fact that for

† This argument appeals to one’s 3D imagination, much as does the argument brought forth in [15] when arguing
for the dissection of a knot Cm into C loops.
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Figure 2. Polymer network G with vertices (•) of different order (n1 = 5,
n3 = 4, n4 = 3, n5 = 1).

small chains all the rings are of approximately the same size, whereas in the long chain limit
considered herein, they are of variable size such that the coupled fluctuations necessarily have
to be considered. In fact, we will show that a knot-graph G(C) with C − 1 effective slip-link
vertices corresponds exactly to C coupled loops.

To proceed, we recall that the configuration number of an arbitrary polymer network G with
N = 1

2

∑
N≥1 NnN segments of (fixed) length s1, s2, . . . , sN , which are connected by the set of

nN vertices of order N , is [20]–[22]

ωG ∼ µLs
γG−1
N YG

( s1

sN
,

s2

sN
, . . . ,

sN−1

sN

)
(1)

where YG is a scaling function, and L = 1
2

∑
N≥1(L − 2)nN + 1 is the Euler number of physical

loops; see also figure 2. µ is the (nonuniversal) connectivity constant of a self-avoiding walk,
and the configuration exponent is γG = 1−Ldν +

∑
N≥1 nNσN , where σN are critical exponents

designated to a junction (vertex) at which N legs of a self-avoiding walk are joined.
For the values of the critical exponents σN , there are two limiting cases: (i) one has hard

vertices, i.e. the effective vertices in a knot-graph are considered real vertices in the polymer
network sense at which N legs of a self-avoiding polygon meet; in particular, σN≥3 < 0 [20].
This is a highly improbable scenario as, due to the magnitude, σN would lead to a maximally
punished (smallest possible) ωG(C). The other extreme is the limit of (ii) soft vertices, i.e. keeping
in mind that the knot-graph is only an effective representation of the knot, it is assumed that the
topological exponents vanish,

σN ≈ 0; (2)

i.e. the tendency in a 3D knot is that two portions of the polymer, albeit held close by each other
through the permanent topological entanglements, avoid direct contact with each other for self-
avoiding effects. If the knot region is not too small, there are sufficient degrees of freedom left
to assume that the topological exponents which usually quantify the penalty of bringing several
legs of a self-avoiding polygon together in a vertex become negligible. That is, although different
segments are close and effectively act like a vertex network, they will still tend to keep a minimum
distance between each other to avoid penalties from the self-avoiding interaction. We will now
show that this phenomenological knot-graph model fulfils all conditions self-consistently and is
in good agreement with an exponent recently obtained for the 3D trefoil.
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For the original trefoil graph, we observe two vertices of order 4, or L = 3 physical loops,
thus

ω′
G(3) ∼ µL(L − �)−3dνYG(3)

( s1

L − �
,

s2

L − �
,

s3

L − �

)
, (3)

where the prime indicates that we keep the individual segments fixed. In our a priori assumption
that L − � 	 �, the big ring segment should not be perceptibly influenced by the vicinal small-
knot region. Thus, the expected exponent of the factor (L − �) should be −dν, the well known
loop closure exponent for a self-avoiding loop [12]. This determines the scaling behaviour of the
first argument of the scaling function. Moreover, as the individual segments in the knot region
can actually exchange length and thereby create additional degrees of freedom, we can integrate
them out and obtain the following result (compare [12, 14]):

ωG(3) ∼ µL(L − �)−dν�−cG(3) , cG(3) = 2dν − 2 ≈ 1.528. (4)

This implies

〈�〉 ∼ a0.528L0.472, (5)

i.e. weak localization (in the sense that 〈�〉 grows with L, but limL→∞〈�〉/L = 0). In particular,
this renders the procedure following the a priori assumption � 
 L − � self-consistent,
a posteriori, see in more detail in what follows. The result (5) is remarkably close to the
scaling L0.4±0.1 reported by Farago et al [23] in force–extension simulations of a trefoil knot.

As shown for flat knots in [12], there exist contractions of the original configuration of such
a graph in which one or more of the segments become so small that on the level of the scaling
approach the vertices connected by such segments can no longer be resolved and are considered
coalesced. The resulting configurations exhibit different scaling exponents c, which define a
hierarchy of likely shapes of the network. For 31 and 41, the hierarchy of contractions and the
associated exponents are shown in figure 3. For both, the leading order is taken by the original
configuration, in contrast to the 2D case (with non-trivial σN ) where the figure-eight structure
leads the hierarchy of every prime knot [12]. In fact, from the general localization exponent

c = (L − 1)dν − (N − 2) = 2 −
∑
N≥1

nN

(N

2
−

[N

2
− 1

]
dν

)
(6)

of a 3D network with σN = 0, it can be seen that the minimum value of c, and therefore the most
likely contraction, is achieved for configurations with the maximum number of four-vertices (in
our hierarchies, only vertices of even order and N ≥ 4 occur)—but this corresponds exactly with
the original knot-graph; for these leading shapes with n4 four-vertices, expression (6) simplifies
to

c = 2 − 0.236n4, (7)

such that c > 1 holds exclusively for n4 ≤ 4: only knots with five essential crossings or less
localize within our model. For more complex knots, our procedure (both the map to a knot-graph
and the determination of c from the scaling function) is no longer self-consistent, and we expect
delocalization for such more complex knots. Conversely, the weak localization found for simple
knots ensures that:

(i) a confined knot region exists and therefore the map to a knot-graph is meaningful (a priori
and knot-graph assumptions), and
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Figure 3. Knot graphs G(3) and G(4) with their hierarchies of contractions.
Below each contraction, the associated localization exponent c is given. For G(3),
the corresponding three-loop representation is shown on the right, indicating the
constraints. For higher order knots, the corresponding graph G(C) corresponds
to C − 1 loops around a central loop, as becomes obvious from the configuration
number results (4) and (6). The constraints, which couple individual segment
lengths, reflect the self-embracing nature of knots, i.e. that one loop engulfs
another.

(ii) the knot of size 〈�〉 ∼ ac−1L2−c region contains sufficient degrees of freedom such that
the different segments can still avoid coming too close to each other, i.e. to ensure the
assumption σN ≈ 0 (soft vertices assumption).

Thus, the knot-graph modelling of 3D knots is self-consistent in a delicate twofold sense.

3. Discussion

Compare our results with the decomposition model of knots into C independent, self-avoiding
loops of length L/C used by Quake [15, 24]. As mentioned before, this model predicts that the
average extension of the knot decreases with increasing complexity, as to R2

g ∼ AC1/3−νL2ν .
In contrast, our model predicts that knots with C ≤ 5 localize weakly, and to leading order
their gyration radius is fully independent of C. Only for higher knots, delocalization effects
are expected, leading to a behaviour of the prefactor A similar to Quake’s result. Whereas
the C-dependence of the simulations in [15] may be attributed to finite-size effects [19], the
difference in the independent loop model advocated in [15] to our model suggested here lies in
the coupling of loops: knot-graphs are equivalent to coupled self-avoiding loops, as is obvious
from the corresponding expression for ωG(C) and the knot-graphs G(C) themselves (as σN ≡ 0).
These loops exchange length and share some of the segment sizes, as illustrated for the trefoil
graph in figure 3. In this sense, the knot-graph model is the natural complement to Quake’s
model in the long chain limit.

With respect to previous simulation results, we note that the localization behaviour is
consistent with the results reported by Janse van Rensburg and Whittington [18], Orlandini
et al [19], as well as with the peaks in the distribution of the size of the knot regions located
at relatively small sizes reported by Katritch et al [10]. Only for the six-knot, for which [18]
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and [19] find localization, a discrepancy seems to exist. However, since this case is exactly
the first non-localizing knot in our model, it might be related to the approximative nature of our
approach. It may well also be a borderline case in the numerical resolution of the results reported
in [18, 19]. Conversely, there is no contradiction with the findings of Katritch et al [10], as a peak
in the distribution of sizes of the knot region can occur even if the average size is proportional
to L†.

Intuitively, one could try to model a knot in the ideal chain limit in terms of random walks
which have to mutually return inside one another. However, this approach leads to equally
distributed loop sizes in all dimensions. The model presented here, in contrast, leads to weak
localization in dimensions above 4 for ideal chains, and it seems that the cooperatively acting
closed loops grasp the self-embracing nature of knots better than the (unclosed) returning random
walk picture.

Two major aspects are different from the results of the (exactly treatable) case of flat knots:

(i) 3D knot-graphs are not universal in the sense that only the simple knots localize at all, and
each of these has a different leading shape in the associated hierarchy;

(ii) the trade-off between the degrees of freedom within the knot region and the segregated
simple ring polymer is shifted towards the knot region.

This causes the interesting phenomenon that simple knots should be localized weakly, whereas
more complex knots are expected to delocalize. Note, however, that the universality of both
strong localization 〈�〉 ∼ a and leading figure-eight contraction would pertain to 3D knots of
any C, if the case of hard vertices was realized.

4. Conclusion

The strong localization (〈�〉 ∼ a) found in flat (2D) knots and in simple paraknots in both two
dimensions and three dimensions is brought about through the assistance of the topological expo-
nents σN [12, 14]. They come into play as each N -vertex forces the legs of N self-avoiding walks
close to each other. In contrast, in the model conjectured here, the weak localization still allows
sufficient degrees of freedom for the knot region such that different segments can avoid coming
too close to each other. As a consequence, the proposed map of 3D knots on effective vertex net-
works predicts weak localization for the knots 31, 41, 51 and 52, or composite knots whose prime
components correspond to these, where the weak localization is caused by the loop closure expo-
nents dν. All knots with a higher number of essential crossings are expected to delocalize. The
leading order contribution within the associated hierarchy of contractions for C ≤ 5 knots corre-
sponds to the original knot network with the maximum number of σ4-vertices. For the trefoil, the
obtained value for c is in good agreement with the measured value reported by Farago et al [23].
In composite knots with simple prime components, the latter become statistically independent,
weakly localized units around the central large loop, compare [12, 14]. The knot-graph approach
is based on a delicate balance in the localization properties: the obtained weak localization, 〈�〉 ∼
ac−1L2−c with 1 < c < 2, gives rise to a confined knot region for C ≤ 5; still, this region grows
with L, such that the assumption of vanishing vertex exponents σN ≈ 0 becomes reasonable.

† Even if the mean size of the ‘knot region’ grows linearly with the system size, a typical configuration might still
be asymmetric, as for the constructed probability density function p(�, L − �) ∼ �−3/4(L − �)−3/4. Here, p is
peaked in the corners � → 0 and → L, and at the same time 〈�〉 ∼ L (compare [12, 14]).

New Journal of Physics 4 (2002) 91.1–91.10 (http://www.njp.org/)

http://www.njp.org/


91.9

Let us put these results into perspective with the knot detection problem in long biological
DNA†. If the knot is simple (as most of the reported DNA knots are) our model predicts weak
localization in the long-chain limit. Even if finite-size effects come into play (the persistence
length of a double-helix is roughly 500 Å) there should remain an entropy-caused asymmetry
between the knot region and the remaining part of the DNA which, in turn, may be enough
to enable the knot detection through topoisomerases, as predicted by the models in [6]. For
electrophoresis motility assays of DNA chains, it is expected that simple knots in long enough
chains should exhibit no motility dependence on the knot type (see footnote on previous page). To
actually quantify what a long chain in that context is may strongly depend on the environmental
conditions such as salt content.

Our approach to map 3D knots on knot-graphs is certainly an approximation. On the one
hand, the assumption that the topological exponents vanish, σN ≈ 0, in a 3D knot may well be
taken for granted. This is due to the existing degrees of freedom of the knot in its 3D embedding,
which allows the segments to avoid coming into direct contact, and therefore avoid penalties from
self-avoiding interactions. Furthermore, the claim that a knot-graph comprises C − 1 vertices
is consistent with previous modelling approaches. On the other hand, the phenomenological
mapping on a polymer network with effective vertices is an interpretation of both the results for
the flat knots as well as the symmetries indicated in the knot projection, fuelled by the fact that
in a weakly localized knot region the different segments are automatically close to each other.
This being said, we believe that this (self-consistent!) model gives rise to rich and interesting
predictions which may stimulate further investigations in simulation studies; in particular, the
simulation study of the localization behaviour of 3D knots with C � 6. Similarly, motility assays
for longer chains could possibly distinguish the qualitatively different behaviour of C ≤ 5 and
higher knots. Finally, it is hoped that it may instigate a more direct analytical approach to the
mutually engulfing, self-embracing nature of knots and other permanent entanglements in single
and multichain systems.
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